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Diabetes is a global health crisis with rising incidence, mortality, and economic

burden. Traditional markers like HbA1c are insufficient for capturing short-term

glycemic fluctuations, leading to the need for more precise metrics such as

Glucose Variability (GV) and Time in Range (TIR). Continuous Glucose Monitoring

(CGM) and AI integration offer real-time data analytics and personalized

treatment plans, enhancing glycemic control and reducing complications. The

combination of transcutaneous auricular vagus nerve stimulation (taVNS) with

artificial Intelligence (AI) further optimizes glucose regulation and addresses

comorbidities. Empowering patients through AI-driven self-management and

community support is crucial for sustainable improvements. Future horizons in

diabetes care must focus on overcoming challenges in data privacy, algorithmic

bias, device interoperability, and equity in AI-driven care while integrating these

innovations into healthcare systems to improve patient outcomes and quality

of life.
KEYWORDS

diabetes blood glucose, glucose variability, time in range, continuous glucose
monitoring, taVNS, artificial intelligence
Introduction

Diabetes remains a global health crisis, profoundly impacting morbidity, mortality, and

healthcare expenditure. Under the Traditional Management Paradigm, fasting blood

glucose and glycated hemoglobin (HbA1c, 1) served as cornerstone diagnostic metrics,

with interventions typically relying on invasive fingerstick glucometers, oral hypoglycemic

agents, and insulin pens. Modern Technological Breakthroughs have revolutionized care

through continuous glucose monitoring (CGM), enabling data-driven optimization of

glucose variability (GV, 2) and time-in-range (TIR, 3) as therapeutic targets. Innovations

like insulin pumps and hybrid closed-loop artificial pancreas systems further exemplify this

progress. Future Integration Directions lie in combining AI, CGM, and transcutaneous
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auricular vagus nerve stimulation (taVNS) – a promising non-

pharmacological therapy representing a paradigm shift in diabetes

management. This multimodal approach could enable real-time

glucose-responsive neuromodulation while minimizing medication

dependence. However, challenges remain, including the need for

further clinical validation of taVNS and addressing data privacy and

ethical issues related to AI in healthcare. Figure 1 illustrates the

evolution and core innovations in diabetes management. This paper

examines these advancements, their transformative potential, and

critical barriers to implementing next-generation diabetes

care solutions.
The evolving landscape of diabetes:
epidemiology, burden, and the need
for innovation

Diabetes mellitus has emerged as a significant global health

concern, with Type 2 diabetes (T2D) accounting for the majority of

cases. The prevalence of T2D has been rapidly increasing

worldwide, particularly affecting younger age groups.

Epidemiological studies have highlighted the substantial burden

of diabetes, not only in terms of mortality but also in terms of

morbidity and healthcare costs. One seminal study conducted in the

United States estimated that diabetes accounted for 5.9% of deaths

among adults aged 20 years and above, with T2D being the

predominant contributor to this mortality rate. Globally, the
Frontiers in Endocrinology 02
number of deaths from T2D across all age groups has grown

from 238,100 to 723,700 since 1990, a 203.9% increase (4). The

global incidence rate of T2D in youth and young adults rose from

56.02 per 100,000 in 1990 to 123.86 per 100,000 in 2021 (5).

Moreover, the burden of T2D tends to be higher in

socioeconomically disadvantaged populations, exacerbating health

disparities. This underscores the urgent need for targeted

interventions to address the social determinants of health and

mitigate the impact of diabetes on vulnerable communities (6). In

addition to mortality, diabetes is associated with a spectrum of

complications, including cardiovascular disease, renal failure,

neuropathy, and retinopathy, which significantly reduce patients’

quality of life and impose substantial economic burdens on the

healthcare system (7). Furthermore, the rising prevalence of

prediabetes, a precursor to T2D, poses additional challenges. A

study in China estimated that approximately 35.7% of adults had

prediabetes, highlighting the need for early intervention strategies

to prevent the progression to overt diabetes (8). Recent evidence

also suggests an association between diabetes and an increased risk

of cancer. A meta-analysis of global studies involving over 891,000

participants found that prediabetes was associated with a 15%

higher risk of developing cancer. These findings underscore the

interconnectedness of diabetes with other chronic diseases and

emphasize the importance of adopting a holistic approach to

diabetes management (9).

In diabetes care, traditional markers like HbA1c offer insights

into average glycemic control but fail to capture short-term
FIGURE 1

Evolution and core innovations in diabetes management. Evolution and core innovations in diabetes management such as the shift from traditional
metrics (fasting plasma glucose, HbA1c) to modern measures (glucose variability, time in range), diagnostic tools (glucometers vs. continuous
glucose monitoring), and interventions (oral drugs, insulin pens vs. insulin pumps, artificial pancreas systems). The integration of AI and taVNS with
CGM represents a future direction in diabetes care. Additionally, it addresses challenges in AI-integrated diabetes care, such as data privacy (GDPR/
HIPAA), algorithm generalizability, device interoperability, and equity in AI-driven care.
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fluctuations in blood glucose levels, known as GV. GV refers to the

extent of blood glucose fluctuations over time and has been linked

to adverse outcomes, including microvascular and cardiovascular

complications (10, 11). Advances in CGM have made it feasible to

assess GV using metrics like the coefficient of variation (CV) and

mean amplitude of glucose fluctuation. Clinically, a CV <36%

indicates stable glucose levels, while higher values signal

instability and predict severe hypoglycemic episodes within six

months (10, 12). TIR, another key CGM metric, reflects the

percentage of time glucose levels remain within a target range

(typically 3.9–10.0 mmol/L). TIR provides a holistic view of

glycemic control, encompassing both average glucose levels and

variability. Studies have highlighted its clinical importance, with

higher TIR correlating to fewer hypo- and hyperglycemic events,

and reducing severe hypoglycemia risk by 46% (13, 14). Clinical

guidelines recommend TIR levels exceeding 70%, adjusted for

specific patient populations, making it a practical target for

optimizing care.

Therefore, there is an urgent need for innovative solutions

to address the challenges of diabetes. AI and personalized care

are seen as key elements in the future management of diabetes.

AI can analyze vast amounts of data to predict an individual’s

risk of developing diabetes and formulate personalized treatment

plans (15). Moreover, personalized care can provide tailored

treatment and management strategies based on each patient’s

specific circumstances.
Technological advancements in
glucose monitoring: enabling
personalized diabetes management

Advances in blood glucose monitoring technologies have

revolutionized diabetes management, enabling more personalized

and effective glycemic control strategies. CGM systems have

become central to modern care, providing real-time glucose data

and trends. Studies consistently show that CGM use improves

glycemic control, reduces hypoglycemia, and enhances patient

satisfaction compared to traditional self-monitoring methods (13, 16).

The integration of CGM with insulin pumps has led to closed-

loop systems, or artificial pancreas systems, which automate insulin

delivery based on glucose feedback. These systems mimic pancreatic

function, offering tailored insulin delivery that significantly

increases time spent within target glucose ranges and reduces

hypoglycemia (14, 17). The hybrid closed-loop system further

enhances flexibility, allowing manual adjustment of meal timing

while maintaining automated basal insulin delivery, thus providing

greater customization to achieve further personalized care (18).

Emerging technologies are set to improve glucose monitoring

further. Implantable sensors provide long-term monitoring without

frequent insertions, boosting adherence and comfort. Non-invasive

devices eliminate the need for painful fingersticks, making

monitoring more user-friendly (19, 20). Smartphone apps with

glucose-tracking features empower patients to analyze and share

data, fostering active disease management (21).
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The convergence of CGM with artificial intelligence is

accelerating precision medicine applications. The Dexcom G7

system synchronizes CGM data directly to Apple Health via

Bluetooth, allowing real-time glucose trend visualization on

iPhones or Apple Watches. Its cloud-based API supports third-

party applications in generating personalized dietary

recommendations. Currently, the accuracy and safety of Dexcom

G7 are verified (22). In a large-scale real-world study of adults with

type 2 diabetes without insulin and poor glycemic control, the use of

Dexcom CGM was associated with significant improvements in

glycemic control within 12 months. The use of the high alarm

system function was positively correlated with blood glucose

outcome. The high proportion of CGM use within 12 months

indicates that continued CGM use is beneficial in this population

(23). A clinical trial in Rwanda with type 1 diabetes using Dexcom

caused a significant increase in target glucose duration and a

decrease in HbA1c (24). Such integrations exemplify the

transition from passive monitoring to proactive, data-driven care

models. The ongoing advancement of AI technologies has

significantly enhanced cost-effectiveness in healthcare, particularly

demonstrating substantial potential in diabetes care. In a Chinese

study involving 251,535 participants for diabetic retinopathy (DR)

screening, AI systems demonstrated cost-effectiveness in most

scenarios, though outcomes may be influenced by screening

sensitivity parameters (25). A Japanese modeling study revealed

that implementing AI-powered DR screening for diabetes

management yields superior cost-effectiveness compared to

conventional approaches (26). Research from Australia also

confirmed that the deployment of AI-assisted DR screening in

primary care settings achieved both operational efficiency and cost

savings across Indigenous and non-Indigenous populations (27).

These collective findings confirm that progress in AI technology

continues to optimize healthcare cost-benefit ratios, establishing a

robust foundation for scalable applications in diabetes treatment.

These technological strides collectively empower patients and

clinicians to implement truly personalized diabetes management

strategies, fundamentally transforming the care continuum from

episodic intervention to continuous health optimization.
TaVNS: a multi-target approach to
diabetes management

TaVNS, a non-invasive neuromodulation technique, specifically

targets auricular regions—the only areas of the ear with vagus nerve

distribution (28). As a crucial pathway connecting the central and

peripheral nervous systems, the auricular branch of the vagus nerve,

when activated, transmits electrical signals to the nucleus tractus

solitarius (NTS), which subsequently modulates brain activity and

peripheral organ functions bidirectionally (29). This mechanism

enhances parasympathetic activity and restores autonomic balance

(30), providing a neuroscientific basis for metabolic regulation.

Recent studies further elucidate the potential mechanisms of

taVNS in diabetes management. For instance, taVNS has been

shown to modulate blood glucose in Zucker diabetic fatty (ZDF)
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rats by regulating intestinal melatonin receptors and melatonin

secretion, suggesting a novel pathway for glycemic control (31)

Additionally, taVNS improved depressive-like behaviors in ZDF

rats via the P2X7R/NLRP3/IL-1b pathway, highlighting its potential
in addressing diabetes-related comorbidities (32) Furthermore,

taVNS has been found to enhance insulin receptor expression in

the liver, skeletal muscle, and pancreas, potentially improving

insulin resistance (33). Beyond diabetes, taVNS has shown

promise in treating polycystic ovary syndrome (PCOS), a

condition often associated with insulin resistance and metabolic

dysfunction, by modulating autonomic nervous system activity and

restoring metabolic homeostasis (34).

Clinical research supports its benefits in patients with impaired

glucose tolerance (35). While direct diabetes evidence requires

validation, taVNS demonstrates multi-target mechanisms across

diseases. A 171-patient trial showed taVNS reduced stress in

tinnitus patients and enhanced parasympathetic function

in 80% of participants (36). By restoring autonomic balance,

taVNS regulates insulin secretion to lower blood glucose (37).

Notably, sepsis patients exhibited reduced pro-inflammatory

cytokine and elevated anti-inflammatory markers post-taVNS

(38), directly addressing diabetes-related chronic inflammation.

Appetite modulation studies revealed taVNS lowers post-meal

ghrelin (39), aiding weight control in obese T2D patients.

Gastrointestinal benefits include improved gastric accommodation

in functional dyspepsia (40) and constipation relief in constipation-

predominant irritable bowel syndrome via immune modulation

(41). These findings suggest taVNS may indirectly influence glucose

metabolism by regulating gut hormone secretion and gut-brain

axis communication.

Comorbidity management amplifies metabolic benefits. Four-

week taVNS improved sleep and reduced anxiety in healthcare

workers (42), crucial as poor sleep (43) and anxiety (44) impair

glycemic control. Pain relief effects—reducing joint inflammation in

hand osteoarthritis (45) and chemotherapy-induced neuropathy

(38)—may lessen the stress-induced glucose peak caused by chronic

pain in diabetics.

In summary, taVNS offers multi-modal action: autonomic

regulation, anti-inflammation, appetite/gut modulation, and

comorbidity management. These mechanisms provide theoretical

and practical foundations for diabetes intervention. Though large-

scale trials are needed, cross-disease evidence highlights its

therapeutic potential in comprehensive diabetes care.
Integrating taVNS with AI: a paradigm
shift in diabetes care

Artificial pancreas systems, which integrate CGM with

automated insulin delivery, have shown significant efficacy in

maintaining glycemic control by dynamically adjusting insulin

doses based on real-time glucose data. Building upon this

framework, the incorporation of taVNS offers a complementary

approach to further enhance glucose regulation through

noninvasive neuromodulation.
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Emerging evidence supports CGM as a transformative tool for

non-insulin-treated T2D. Clinical studies demonstrate CGM’s

association with improved glycemic control (46), reduced

hypoglycemia risk, and enhanced healthcare efficiency (47). An

182-patient randomized controlled trial confirmed glycemic

improvements in non-insulin users (48), while real-world data

from 70 million patients revealed sustained benefits across

therapies (47). Integration with AI-powered digital therapeutics

further amplifies outcomes: a trial involving 118 non-insulin-

treated T2D patients showed dual improvements in glucose

regulation and weight management (49). CGM data also

addresses clinical challenges in patients with discordant HbA1c

and average glucose levels through patient-specific predictive

models (50). These advancements position CGM-AI integration

as a cornerstone for next-generation diabetes management,

extending beyond traditional insulin-centric paradigms.

The proposed AI-taVNS-CGM system operates through a

closed-loop feedback mechanism. Real-time CGM data is

processed by a reinforcement learning (RL) algorithm, such as the

RL-DITR system (51). This algorithm learns the optimal insulin

regimen by analyzing glycemic state rewards through patient model

interactions, aiming to control blood glucose levels and reduce

hypoglycemia and hyperglycemia-ketotic events. Based on this

model, suitable taVNS parameters can be trained. CGMfroster

based on Transformer architecture, through self-supervised

learning from large-scale CGM data learning individual blood

glucose dynamic characteristics, can accurately characterization of

individual fasting glucose homeostasis maintenance and

postprandial hyperglycemia adaptation dynamic behavior, can

assist the diagnosis, judgment and complication prediction, type 2

diabetes into diabetic subtype, accurately predict postprandial blood

glucose response, and according to the prediction results for

diabetes patients with personalized dietary advice, lifestyle

intervention recommended (52).

In this context, taVNS can be integrated with CGM and AI

algorithms to provide a non-invasive, personalized approach to

glycemic management for individuals not dependent on insulin

pumps. By receiving real-time CGM data via smartphones or

dedicated software and incorporating user inputs on meal intake

and physical activity, the system can analyze these inputs to

determine optimal taVNS stimulation frequency and duration.

This approach leverages the benefits of taVNS for a broader

patient population, offering a novel, non-pharmacological

intervention for glycemic control. Figure 2 illustrates the AI-

taVNS-CGM feedback loop.
Empowering patients through AI-
driven self-management and
community engagement

Patient self-management plays a crucial role in diabetes care,

empowering individuals to take an active role in monitoring their

blood glucose levels, adhering to treatment regimens, and making

lifestyle modifications. Structured self-management education
frontiersin.org
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programs, often delivered by healthcare providers or certified

diabetes educators, help patients develop essential skills for

managing their condition effectively (53). These programs

typically cover glucose monitoring, medication management,

healthy eating, physical activity, and coping strategies for dealing

with diabetes-related challenges. Studies have demonstrated that

patients who actively engage in self-management experience better

glycemic control, reduced risk of complications, and improved

quality of life (54).

Community health education programs aim to raise awareness

about diabetes risk factors, prevention strategies, and management

techniques among at-risk populations. These initiatives utilize

various platforms, including workshops, seminars, social media,

and community health fairs, to disseminate information and

promote healthy lifestyle behaviors. Research has shown that

culturally tailored educational interventions are particularly

effective in engaging diverse communities and fostering behavior

change (55). Moreover, community-based programs provide

opportunities for peer support, enabling individuals with diabetes

to share experiences, seek advice, and access resources in a

supportive environment (56).

To further enhance patient engagement, innovative strategies

such as gamified mobile applications have been developed to make

diabetes management more interactive and enjoyable. These apps

use game-like elements, such as rewards, challenges, and progress

tracking, to motivate patients to adhere to their treatment plans and

maintain healthy habits. For instance, mySugr allows users to log

blood glucose levels, track meals, and earn points for consistent self-

monitoring, which can be redeemed for virtual or real-world

rewards. Such gamification techniques have been shown to

improve glycemic control in people with type 1 and type 2
Frontiers in Endocrinology 05
diabetes (57). Crucially, integrating patient-reported outcomes

(PROs) into AI systems enables dynamic intervention

customization. This synergy extends to device optimization:

community-generated data from CGM and taVNS devices can be

aggregated on cloud platforms, where AI algorithms refine device

parameter based on population-level insights. These innovations

establish a self-reinforcing cycle: engaged patients produce richer

datasets, enhancing AI precision and enabling personalized device

adjustments, which in turn improve treatment adherence

and outcomes.

By actively participating in community programs, patients not

only gain access to valuable resources and peer support but also

contribute to a richer data ecosystem that enhances AI-driven

diabetes care. Notably, diabetes patient communities are not just

beneficiaries of technological innovations but vital contributors to

the innovation process. Their real-world usage experiences and

demand feedback play a crucial role in emerging enterprises’

product design iterations, driving the development of more

human-centric and efficient diabetes management solutions (58).

AI systems, leveraging community-generated data, can provide

personalized guidance tailored to individual needs, such as dietary

recommendations, exercise plans, and medication adjustments.

Furthermore, community-based supervision fosters accountability,

encouraging patients to adhere to their treatment regimens and

adopt healthier behaviors. This collaborative approach—combining

patient engagement, community support, and AI-driven insights—

creates a sustainable feedback loop that improves both individual

outcomes and population-level diabetes management.

The integration of community engagement and AI-driven data

ecosystems creates a transformative framework for diabetes

management. By embedding patients within community
FIGURE 2

AI-taVNS-CGM feedback loop. This figure illustrates the dynamic interaction between AI, taVNS, and CGM in diabetes management. It shows how AI
processes data from CGM to dynamically adjust taVNS parameters (e.g., stimulation frequency/duration) in response to real-time blood glucose data.
The loop also demonstrates how taVNS provides physiological feedback signals that are fed back into the AI system to further refine the treatment
regimen. This integrated system enables personalized, real-time diabetes management by combining the strengths of AI-driven data analysis, CGM’s
continuous glucose monitoring, and taVNS’s non-invasive neuromodulation.
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networks, AI systems gain structured access to longitudinal health

data from wearable devices and patient-reported outcomes through

centralized platforms (59). This data synergy enables machine

learning models to generate personalized glycemic control

recommendations, such as adaptive insulin dosing algorithms and

neuromodulation parameter adjustments tailored to individual

metabolic patterns.
Future directions: overcoming
challenges in AI-taVNS integration for
scalable diabetes care

The application of taVNS in diabetes management remains in

the mechanistic exploration stage. Current evidence is primarily

derived from preclinical studies and small-scale clinical trials, with

limited data on its efficacy, safety, and long-term outcomes in

diverse diabetic populations. While taVNS has demonstrated

glycemic benefits in ZDF rats and patients with impaired glucose

tolerance, its effects in individuals with established type 1 or type 2

diabetes require further validation. Future research should focus on

large-scale, randomized controlled trials to evaluate taVNS’s safety,

optimal stimulation parameters, long-term adherence, and cost-

effectiveness compared to conventional therapies. Additionally,

studies should explore its potential synergies with existing

treatments, such as CGM and AI-driven interventions, to develop

comprehensive, personalized diabetes care strategies. Despite these

challenges, taVNS holds significant promise as a non-invasive,

neuromodulatory approach to diabetes management, particularly

for patients with comorbid conditions such as depression or PCOS.

Its potential to address both metabolic and psychological aspects of

diabetes underscores the need for continued investigation into its

mechanisms and clinical applications. Unlike pharmacological

interventions requiring hepatic metabolism and carrying drug

interaction risks, taVNS delivers targeted neuromodulation

through wearable stimulators. This electrophysiological

mechanism circumvents systemic toxicity while enabling real-

time AI-powered parameter adjustments—a key advantage for

personalized chronic disease management (60). Notably, taVNS

demonstrates therapeutic potential for diabetes comorbidities like

depression (61) and polycystic ovary syndrome, potentially

reducing polypharmacy burdens through its neuromodulatory

effects on neuroendocrine-immune pathways.

AI-CGM-taVNS systems face ethical and technical challenges in

diabetes management. Data privacy concerns arise from third-party

access to cloud-based CGM metrics for AI-driven taVNS

optimization, requiring strict GDPR/HIPAA compliance (62). To

mitigate these biases, federated learning has emerged as a key

solution, enabling institutions to collaboratively train shared

models without exchanging raw data (63). This decentralized

approach preserves patient privacy, complies with data protection

regulations, and reduces algorithmic bias by incorporating diverse

datasets. Additionally, adversarial debiasing techniques can be

employed to further minimize demographic disparities in model

performance (64).
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Technical hurdles include device interoperability gaps.

Marfoglia et al. transformed clinical data into the Fast Healthcare

Interoperability Resources (FHIR) model, enhancing semantic

interoperability and facilitating the reuse of real-world data (65).

Salgado-Baez et al. proposed a FHIR-based standard solution for

the comprehensive analysis of drug data in a large German hospital,

successfully achieving drug order message generation and ensuring

drug interaction and standardized data exchange (66). Similarly,

IEEE P1752 (67) offers standardized semantics for mobile health

data, facilitating meaningful description, exchange, and analysis of

sleep and physical activity metrics, which are critical for diabetes

management. These frameworks enhance interoperability and

ensure data clarity for clinical/research applications.

In low-resource settings, AI-driven tools hold transformative

potential but require balanced implementation. Wong et al. outline four

pillars: infrastructure, data management, education, and ethical AI

practices, emphasizing localized data collection (68). Evidence from

India highlights AI’s role in improving healthcare accessibility, such as

automated diagnostics reducing reliance on scarce expertise (69, 70).

However, systemic risks persist, including biased datasets that

disproportionately harm marginalized populations (71, 72) and digital

illiteracy barriers (73). To address these limitations, integrated strategies

should combine lightweight AI systems for low-bandwidth environments,

policy reforms fostering public-private partnerships, and tiered training

programs enhancing both clinician expertise and community digital

literacy. Crucially, AI-taVNS integration must embed social support,

such as infrastructure upgrades and culturally adapted health education,

to avoid oversimplifying chronic disease management (74).

Clinical adoption of AI-CGM-taVNS systems faces cost barriers

in resource-limited settings and demands clinician/patient training

for AI-driven insights. Future priorities include interdisciplinary

consortia for open-source AI architectures, randomized trials

validating algorithm-driven taVNS protocols, and regulatory

frameworks for AI-medical device integration. Collaborative efforts

leveraging federated learning, FHIR/IEEE P1752 interoperability

standards, and cost optimization can ensure equitable access to AI-

enhanced diabetes care across diverse populations.
Conclusion

The evolving landscape of diabetes management is increasingly

driven by innovative approaches that address the growing global

burden of diabetes. Traditional metrics like HbA1c are insufficient

in capturing the complexity of glycemic control, highlighting the

need for more comprehensive measures such as GV and TIR (75).

These metrics, supported by CGM technology, provide real-time

data that empowers both patients and healthcare providers to

optimize diabetes management. AI algorithms further enhance

this process by predicting risks and personalizing treatment plans,

addressing both short-term fluctuations and long-term stability.

Empowering patients through AI-driven self-management tools

and community engagement is crucial for sustainable improvements.

Gamified apps and social media communities enhance adherence and

provide peer support, while integrating PROs with AI enables

dynamic, personalized interventions.
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However, challenges remain in the practical application of AI and

taVNS integration, including data privacy concerns, algorithmic bias,

device interoperability, and equity in AI-driven care. Future research

should focus on large-scale clinical trials, cost-effectiveness analyses,

and interdisciplinary collaboration. Policy support, open data

protocols, and regulatory frameworks are essential for widespread

adoption. Implementation strategies should combine resource-

efficient computational tools for diverse healthcare settings, policy

incentives for cross-sector technology co-development, and scalable

education initiatives addressing both clinical AI adoption and

community health literacy. By leveraging these advancements, we

can tailor interventions to individual needs, optimize glycemic

control, and improve the quality of life for patients with diabetes.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author/s.
Author contributions

KZ: Writing – original draft, Writing – review & editing. YQ:

Writing – review & editing. WW: Writing – review & editing. XT:

Writing – review & editing. JW: Writing – review & editing. LX:

Validation, Writing – review & editing. XZ: Funding acquisition,

Validation, Writing – review & editing.
Frontiers in Endocrinology 07
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. The work was supported

by the Beijing Science and Technology Development Fund Project

for Traditional Chinese Medicine (BJZYYB-2023-28).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. American Diabetes Association. 2. Classification and diagnosis of diabetes:
standards of medical care in diabetes-2021. Diabetes Care. (2021) 44:S15–33.
doi: 10.2337/dc21-S002

2. Monnier L, Colette C, Owens DR. Glycemic variability: the third component of
the dysglycemia in diabetes. Is it important? How to measure it? J Diabetes Sci Technol.
(2008) 2:1094–100. doi: 10.1177/193229680800200618

3. Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G,
et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report
by the american diabetes association (ADA) and the european association for
the study of diabetes (EASD). Diabetes Care. (2018) 41:2669–701. doi: 10.2337/
dci18-0033

4. Huang X, Wu Y, Ni Y, Xu H, He Y. Global, regional, and national burden of type 2
diabetes mellitus caused by high BMI from 1990 to 2021, and forecasts to 2045: analysis
from the global burden of disease study 2021. Front Public Health. (2025) 13:1515797.
doi: 10.3389/fpubh.2025.1515797

5. Xu S-T, Sun M, Xiang Y. Global, regional, and national trends in type 2 diabetes
mellitus burden among adolescents and young adults aged 10-24 years from 1990 to
2021: a trend analysis from the Global Burden of Disease Study 2021. World J Pediatr
WJP. (2025) 21:73–89. doi: 10.1007/s12519-024-00861-8

6. Cousin E, Schmidt MI, Ong KL, Lozano R, Afshin A, Abushouk AI, et al. Burden
of diabetes and hyperglycaemia in adults in the Americas, 1990-2019: a systematic
analysis for the Global Burden of Disease Study 2019. Lancet Diabetes Endocrinol.
(2022) 10:655–67. doi: 10.1016/S2213-8587(22)00186-3

7. Shrestha SS, Honeycutt AA, Yang W, Zhang P, Khavjou OA, Poehler DC, et al.
Economic costs of diabetes in the U.S. @ in 2017. Diabetes Care. (2018) 41:917–28.
doi: 10.2337/dci18-0007

8. Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. Prevalence and
ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. (2017) 317:2515–23.
doi: 10.1001/jama.2017.7596
9. Huang Y, Cai X, Qiu M, Chen P, Tang H, Hu Y, et al. Prediabetes and the risk of
cancer: a meta-analysis. Diabetologia. (2014) 57:2261–9. doi: 10.1007/s00125-014-
3361-2

10. Monnier L, Colette C, Wojtusciszyn A, Dejager S, Renard E, Molinari N, et al.
Toward defining the threshold between low and high glucose variability in diabetes.
Diabetes Care. (2017) 40:832–8. doi: 10.2337/dc16-1769

11. Su G, Mi S, Tao H, Li Z, Yang H, Zheng H, et al. Association of glycemic
variability and the presence and severity of coronary artery disease in patients with type
2 diabetes. Cardiovasc Diabetol. (2011) 10:19. doi: 10.1186/1475-2840-10-19

12. Ceriello A, Prattichizzo F, Phillip M, Hirsch IB, Mathieu C, Battelino T.
Glycaemic management in diabetes: old and new approaches. Lancet Diabetes
Endocrinol. (2022) 10:75–84. doi: 10.1016/S2213-8587(21)00245-X

13. Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, et al. Clinical
targets for continuous glucose monitoring data interpretation: recommendations from
the international consensus on time in range. Diabetes Care. (2019) 42:1593–603.
doi: 10.2337/dci19-0028

14. Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, et al.
International consensus on use of continuous glucose monitoring. Diabetes Care.
(2017) 40:1631–40. doi: 10.2337/dc17-1600

15. Wang SCY, Nickel G, Venkatesh KP, Raza MM, Kvedar JC. AI-based
diabetes care: risk prediction models and implementation concerns. NPJ Digit Med.
(2024) 7:1–2. doi: 10.1038/s41746-024-01034-7

16. Gabbay MAL, Rodacki M, Calliari LE, Vianna AGD, Krakauer M, Pinto MS,
et al. Time in range: a new parameter to evaluate blood glucose control in patients with
diabetes. Diabetol Metab Syndr. (2020) 12:22. doi: 10.1186/s13098-020-00529-z

17. Gimenez M, Tannen AJ, Reddy M, Moscardo V, Conget I, Oliver N.
Revisiting the relationships between measures of glycemic control and hypoglycemia
in continuous glucose monitoring data sets. Diabetes Care. (2018) 41:326–32.
doi: 10.2337/dc17-1597
frontiersin.org

https://doi.org/10.2337/dc21-S002
https://doi.org/10.1177/193229680800200618
https://doi.org/10.2337/dci18-0033
https://doi.org/10.2337/dci18-0033
https://doi.org/10.3389/fpubh.2025.1515797
https://doi.org/10.1007/s12519-024-00861-8
https://doi.org/10.1016/S2213-8587(22)00186-3
https://doi.org/10.2337/dci18-0007
https://doi.org/10.1001/jama.2017.7596
https://doi.org/10.1007/s00125-014-3361-2
https://doi.org/10.1007/s00125-014-3361-2
https://doi.org/10.2337/dc16-1769
https://doi.org/10.1186/1475-2840-10-19
https://doi.org/10.1016/S2213-8587(21)00245-X
https://doi.org/10.2337/dci19-0028
https://doi.org/10.2337/dc17-1600
https://doi.org/10.1038/s41746-024-01034-7
https://doi.org/10.1186/s13098-020-00529-z
https://doi.org/10.2337/dc17-1597
https://doi.org/10.3389/fendo.2025.1583227
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2025.1583227
18. Davis GM, Hughes MS, Brown SA, Sibayan J, Perez-Guzman MC, Stumpf M,
et al. Automated insulin delivery with remote real-time continuous glucose monitoring
for hospitalized patients with diabetes: A multicenter, single-arm, feasibility trial.
Diabetes Technol Ther. (2023) 25:677–88. doi: 10.1089/dia.2023.0304

19. Evidence reviews for continuous glucose monitoring in adults with type 2 diabetes:
Type 2 diabetes in adults: diagnosis and management: Evidence review C (2022).
London: National Institute for Health and Care Excellence (NICE. Available online
at: http://www.ncbi.nlm.nih.gov/books/NBK589411/ (Accessed March 7, 2025).

20. Klonoff DC. Continuous glucose monitoring: roadmap for 21st century diabetes
therapy. Diabetes Care. (2005) 28:1231–9. doi: 10.2337/diacare.28.5.1231

21. Barnard KD, Wysocki T, Ully V, Mader JK, Pieber TR, Thabit H, et al. Closing
the loop in adults, children and adolescents with suboptimally controlled type 1
diabetes under free living conditions: A psychosocial substudy. J Diabetes Sci Technol.
(2017) 11:1080–8. doi: 10.1177/1932296817702656

22. Garg SK, Kipnes M, Castorino K, Bailey TS, Akturk HK, Welsh JB, et al.
Accuracy and safety of dexcom G7 continuous glucose monitoring in adults with
diabetes. Diabetes Technol Ther. (2022) 24:373–80. doi: 10.1089/dia.2022.0011

23. Layne JE, Jepson LH, Carite AM, Parkin CG, Bergenstal RM. Long-term
improvements in glycemic control with dexcom CGM use in adults with noninsulin-
treated type 2 diabetes. Diabetes Technol Ther. (2024) 26:925–31. doi: 10.1089/
dia.2024.0197

24. Baker J, Cappon G, Habineza JC, Basch CH, Mey S, Malkin-Washeim DL, et al.
Continuous glucose monitoring among patients with type 1 diabetes in Rwanda
(CAPT1D) phase I: feasibility study. JMIR Form Res. (2024) 9:e64585. doi: 10.2196/
64585

25. Wang Y, Liu C, Hu W, Luo L, Shi D, Zhang J, et al. Economic evaluation for
medical artificial intelligence: accuracy vs. cost-effectiveness in a diabetic retinopathy
screening case. NPJ Digit Med. (2024) 7:43. doi: 10.1038/s41746-024-01032-9

26. Akune Y, Kawasaki R, Goto R, Tamura H, Hiratsuka Y, Yamada M. Cost-
effectiveness of AI-based diabetic retinopathy screening in nationwide health checkups
and diabetes management in Japan: A modeling study. Diabetes Res Clin Pract. (2025)
221:112015. doi: 10.1016/j.diabres.2025.112015

27. HuW, Joseph S, Li R, Woods E, Sun J, Shen M, et al. Population impact and cost-
effectiveness of artificial intelligence-based diabetic retinopathy screening in people
living with diabetes in Australia: a cost effectiveness analysis. EClinicalMedicine. (2024)
67:102387. doi: 10.1016/j.eclinm.2023.102387

28. Ruffoli R, Giorgi FS, Pizzanelli C, Murri L, Paparelli A, Fornai F. The chemical
neuroanatomy of vagus nerve stimulation. J Chem Neuroanat. (2011) 42:288–96.
doi: 10.1016/j.jchemneu.2010.12.002

29. Se K. Vagus nerve stimulation for epilepsy: A review of the peripheral
mechanisms. Surg Neurol Int. (2012) 3(Suppl 1):S47. doi: 10.4103/2152-7806.91610

30. Clancya JA, Marya DA, Wittea KK, Greenwooda JP, Deucharsb SA, Deuchars J.
Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve
activity. Brain Stimulat. (2014) 7:871–877. doi: 10.1016/j.brs.2014.07.031

31. Zhang Y, Zou N, Xin C, Wang Y, Zhang Z, Rong P, et al. Transcutaneous
auricular vagal nerve stimulation modulates blood glucose in ZDF rats via intestinal
melatonin receptors and melatonin secretion. Front Neurosci. (2024) 18:1471387.
doi: 10.3389/fnins.2024.1471387

32. Li S, Zhang Y, Wang Y, Zhang Z, Xin C, Wang Y, et al. Transcutaneous vagus
nerve stimulation modulates depression-like phenotype induced by high-fat diet via
P2X7R/NLRP3/IL-1b in the prefrontal cortex. CNS Neurosci Ther. (2024) 30:e14755.
doi: 10.1111/cns.14755

33. Zhang Y-Z-H, Xin C, Zhang Z-X, Zhang K-Q, Li L, Rong P-J, et al. Mechanism
of melatonin-mediated antihyperglycemic effect of transcutaneous auricular vagus
nerve stimulation. Zhen Ci Yan Jiu Acupunct. Res. (2023) 48:812–7. doi: 10.13702/
j.1000-0607.20221300

34. Zhang S, He H, Wang Y, Wang X, Liu X. Transcutaneous auricular vagus nerve
stimulation as a potential novel treatment for polycystic ovary syndrome. Sci Rep.
(2023) 13:7721. doi: 10.1038/s41598-023-34746-z

35. Huang F, Dong J, Kong J, Wang H, Meng H, Spaeth RB, et al. Effect of
transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a
pilot randomized study. BMC Complement Altern Med. (2014) 14:203. doi: 10.1186/
1472-6882-14-203

36. Ylikoski J, Markkanen M, Pirvola U, Lehtimäki JA, Ylikoski M, Jing Z, et al.
Stress and tinnitus; transcutaneous auricular vagal nerve stimulation attenuates
tinnitus-triggered stress reaction. Front Psychol. (2020) 11:570196. doi: 10.3389/
fpsyg.2020.570196

37. Zou N, Zhou Q, Zhang Y, Xin C, Wang Y, Claire-Marie R, et al. Transcutaneous
auricular vagus nerve stimulation as a novel therapy connecting the central and
peripheral systems: a review. Int J Surg Lond Engl. (2024) 110:4993–5006.
doi: 10.1097/JS9.0000000000001592

38. Wua Z, Zhanga X, Caia T, Wua D, Lia Z, Zhang L, et al. Transcutaneous
auricular vagus nerve stimulation reduces cytokine production in sepsis: An open
double-blind, sham-controlled, pilot study. Brain Stimulat. (2023) 16(2):507–514.
doi: 10.1016/j.brs.2023.02.008

39. Kozorosky EM, Lee CH, Lee JG, Nunez Martinez V, Padayachee LE, Stauss HM.
Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of
ghrelin. Physiol Rep. (2022) 10:e15253. doi: 10.14814/phy2.15253
Frontiers in Endocrinology 08
40. Zhu Y, Xu F, Lu D, Rong P, Cheng J, Li M, et al. Transcutaneous auricular vagal
nerve stimulation improves functional dyspepsia by enhancing vagal efferent activity. Am
J Physiol Gastrointest Liver Physiol. (2021) 320:G700–11. doi: 10.1152/ajpgi.00426.2020

41. Shi X, Hu Y, Zhang B, Li W, Chen JD, Liu F. Ameliorating effects and
mechanisms of transcutaneous auricular vagal nerve stimulation on abdominal pain
and constipation. JCI Insight. (2021) 6:e150052. doi: 10.1172/jci.insight.150052

42. Srinivasan V, Abathsagayam K, Suganthirababu P, Alagesan J, Vishnuram S,
Vasanthi RK. Effect of vagus nerve stimulation (taVNS) on anxiety and sleep
disturbances among elderly health care workers in the post COVID-19 pandemic.
Work Read Mass. (2024) 78(4):1149–56. doi: 10.3233/WOR-231362

43. Slebe S, Splinter JJ, Schoonmade LJ, Blondin DP, Campbell DJT, Carpentier AC, et al.
The effect of altered sleep timing on glycaemic outcomes: Systematic review of human
intervention studies.Diabetes ObesMetab. (2025) 27(3):1172–1183. doi: 10.1111/dom.16104

44. Gálvez I, Navarro MC, Torres-Piles S, Martıń-Cordero L, Hinchado MD,
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