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Secretion of placental
peptide hormones: functions
and trafficking
Sadia M. Ahmadi, Maira L. Perez and Carlos M. Guardia*

Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes
of Health, Durham, NC, United States
The placenta is a dynamic endocrine organ that plays a crucial role in fetal

development by secreting a diverse array of peptide hormones that regulate

maternal and fetal physiology. These hormones, including human chorionic

gonadotropin (hCG), human placental lactogen (hPL), and placental growth

hormone (hPGH), among others, are essential for pregnancy maintenance,

fetal growth, and metabolic adaptation. Dysregulation of the secretory

machinery and the levels of these hormones in circulation is associated with a

myriad of pregnancy-related disorders. Despite their significance, the

mechanisms governing their intracellular trafficking and secretion remain

incompletely understood. This review synthesizes current knowledge on the

secretion pathways of placental hormones, highlighting the interplay between

constitutive and regulated secretion, and the challenges in defining these

mechanisms due to the unique structure of the syncytiotrophoblast. We also

discuss how emerging technologies, such as 2D and 3D placental models and

advanced protein trafficking assays, can provide deeper insights into the

regulation of placental hormone secretion. Understanding these processes will

not only enhance our knowledge of placental biology but also provide new

avenues for diagnosing and treating pregnancy-related disorders.
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Introduction

The placenta is credited for its importance in mammalian in utero development. As the

first and largest fetal organ to develop, the placenta is the medium through which oxygen

and nutrients are provided to the embryo alongside other metabolic and endocrinologic

functions (1–4). Disorders in human placental development can have consequences in the

health of the fetus and pregnant host that are lifelong. Common diseases during pregnancy,

such as preeclampsia and intrauterine growth restriction, are attributed to defects in

placental development and secretion (5, 6). The effects of fetal development on the

predisposition to health complications in adulthood have already been proposed,

according to the fetal origins hypothesis (7).
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In order to assure the proper execution of the fetal development

program, the placenta secretes a variety of hormones throughout

the entire pregnancy. These hormones are mostly proteins and are

produced and secreted through the secretory pathway (8–10). A

compartmentalized cell maintains correct folding, processing, and

delivery of all proteins entering and exiting the secretory cells

dynamically. Placental hormones are mostly produced by a

special cellular structure called syncytiotrophoblast. This

multinucleated epithelium layer emerges in direct contact with

the blood of the pregnant host as a result of regulated cell-cell

fusion (11). The complexity of this cellular scenario makes it

difficult to study intracellular trafficking events, including

hormone secretion. Accordingly, dysregulation of such pathways

has significant effects on placenta function and development.

Despite its long-lasting contribution to health and disease, both

within and beyond the scope of reproduction, the human placenta

remains largely overlooked in scientific research and its

complexities are not fully understood. Ethical and practical

implications for achieving a human placental model creates
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additional obstacles in research. The purpose of this review is to

outline key components of placental development with a focus on

protein trafficking based on published work. The compilation of

existing knowledge is short of extensive, given the ongoing gaps in

placenta research. We also encourage an open discussion on the

future of placental research through emerging technologies, such as

2D and 3D lab-generated models, that can illuminate placental

development and offer new tools to interrogate cellular mechanisms

in greater detail.
Placenta development

The origins of the human placenta can be traced to the

trophectoderm, visible around day 5 post-fertilization. The

trophectoderm is the external layer of the blastocyst and has a

region in contact with the inner cell mass (12) (Figure 1A). This

polar side of the trophectoderm, proximal to the inner cell mass,

adheres to the uterine epithelium during embryo implantation. The
FIGURE 1

Graphic representation of early stages of human placenta development. (A) Preimplantation embryo, showing the external trophectoderm cell layer
that protects the inner cell mass or embryo proper, in close contact with a layer of uterine epithelial cells that rest on top of the decidua. (B, C) Early
post-implantation embryo, showing the primitive syncytium surrounded by lacunae and primary villi made out of cytotrophoblasts. (D) First trimester
fully developed placenta. Inset shows the detailed cellular architecture of an anchoring villus. The cytotrophoblast cell column keeps this villus
attached to the decidua and provides the interstitial extravillous trophoblasts that invade nearby spiral arteries, plugging them first and remodeling
them later in pregnancy.
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trophectoderm subsequently transforms into the trophoblast and

initiates the implantation process around day 6 post-

fertilization (13).

Trophoblastic cells proliferate throughout the invasion of the

uterine epithelium, forming a dual layer structure. The inner layer is

comprised of mono-nucleated cytotrophoblast cells (CTB) that are

initially shielded from the host tissue by a primitive, external

syncytiotrophoblast (STB) (Figure 1B). The STB is a continuous

multi-nucleated structure that forms from the fusion of neighboring

CTBs (11). Across the surface of the STB, microvilli function as a

region of contact between the placenta and the pregnant host and

continue to expand until term (14). More broadly and later in

development, the STB is regarded as the primary site for nutrient

and gas exchange and noted for its endocrine function (15, 16).

The lacunar stage occurs between days 8 and 13 post-

fertilization and is characterized by the appearance of fluid-filled

masses within the primitive STB that grow to form lacunae

(Figure 1C). Trabeculae, which are bands of the STB, separate the

lacunae from one another (12, 17). The formation of the lacunar

system divides the trophoblast layer into three sublayers: a primary

chorionic plate, the lacunar system, and the trophoblastic shell (18).

The STB continues to invade the uterus into the endometrium

which transforms into decidual tissue and completely engulfs the

blastocyst by day 12 post-conception (19, 20). Specifically, the

decidual tissue beneath the blastocyst, and subsequently placenta,

is termed the decidua basalis (12). Decidual cells are derived from

the proliferation and differentiation of endometrial stromal cells

during early implantation (18). Trophoblastic proliferation exhibits

higher density on the side of the blastocyst that implanted

(implantation pole), therefore this site will eventually give rise to

the placenta (18).

Around day 13, the underlying CTB cells proliferate to form

projections that extend through the STB into the trabeculae and

invade the lacunar system (Figure 1C). This marks the start of the

villous stage, happening between days 13 and 28 post-fertilization.

Proliferation and branching of the trophoblast lead to the formation

of primary villous trees, with the lacunae functioning as the

intervillous space. The invasive nature of the trophoblast also

causes the release of erythrocytes from maternal capillaries into

the lacunae (18). Mesenchymal cells emerge around day 14 and

proliferate along the interior lining of the cytotrophoblast cells (18).

CTB cells continue to grow to form a continuous, shell structure

around the villi that separate it from the decidua around day 15,

with some CTB cells invading the decidua as extravillous

trophoblasts (EVTs).

Mesenchymal cells from the embryo grow through the villous

core, invading the primary villi, to form secondary villi (21).

Between days 18 and 20, fetal capillaries emerge in the

mesenchyme, resulting in the establishment of tertiary villi upon

the cross sectioning of fetal capillaries in the villous stroma (22, 23)

(Figure 1D). Fetal circulation will be separated from maternal blood

via the placental barrier which consists of a continuous STB lining

the intervillous space, a layer of villous CTB cells, a basal lamina

(made of mostly laminin, collagen, and fibronectin), connective

tissue, and fetal endothelium (18). At the start of the fifth week, the
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framework of the placenta is established. Vascular remodeling is

also apparent near the end of the first trimester.

In summary, throughout the first month of pregnancy, the

intricate process of placental formation unfolds, with the CTBs

serving as a perpetual stem cell constantly regenerating the STB and

monitoring fetal needs given the proximity to the fetal circulation.

The STB responds to their environment via developmentally timed

endocytosis and secretion of a myriad of hormones, and the EVTs

are active in remodeling and regulating host blood flow. Altogether,

these three main trophoblast cell types orchestrate the formation

and function of the placenta for the entire pregnancy period.
Placental protein hormones

More than a passive physical barrier, the placenta is a highly

active endocrine organ. Placental cells release large quantities of

hormones in the host bloodstream throughout pregnancy that are

vital for gestational success (Figure 2). Placental hormones are

predominantly made by the STB, although CTBs and EVTs are also

observed to have a role in hormone production (24, 25). The

trafficking of these placental hormones can be an important

indicator of pregnancy-related diseases. This section explores the

major protein hormones secreted by the placenta, including their

cellular origin, functions, and mechanisms in particular

physiological pathways (Table 1).
hCG

Human chorionic gonadotropin (hCG) is a heterodimeric

glycoprotein with two subunits, hCG-a and hCG-b. This

hormone is primarily generated by the STB and may possibly be

synthesized by EVTs as well (26). The levels of hCG rapidly increase

during the first trimester, with peak concentration near week 10 of

pregnancy. Between 12 to 16 weeks, however, hCG levels gradually

decline to a fifth of the peak concentration until term

(27) (Figure 2).

This hormone binds to a G-protein coupled receptor that is also

receptive to luteinizing hormone (LH). The LH-hCG receptor is

expressed predominantly in gonadal and uterine cells (28), as well

as placental STB, CTBs and EVTs (29, 30). Binding of hCG to its

LH-hCG receptor leads to the activation of adenylyl cyclase and

phospholipase C. Stimulation of adenylyl cyclase results in higher

intracellular concentrations of cyclic adenosine monophosphate

(cAMP), whereas phospholipase C subsequently generates inositol

phosphates and increases intracellular calcium levels (31).

The recognition and maintenance of pregnancy is mediated by

hCG. Binding of hCG to LH receptors on ovarian corpus luteum

(CL) cells prevents luteolysis and prolongs CL function. In doing so,

hCG promotes progesterone production via the CL that is necessary

for averting menstruation and establishing pregnancy (32). It is also

proposed that hCG facilitates the fusion of trophoblast cells,

particularly the differentiation of CTBs into the STB. This is

made possible by the increase in cAMP which initiates the
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protein kinase A pathway and activates downstream proteins, such

as glial cells missing transcripton factor 1 (GCM1) (33). Targets of

the GCM1 protein include the endogenous retroviral protein

syncytin-1, which has direct involvement in CTB fusion (34).
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Notably, there is an upregulation of placental proteins specific for

the STB, such as the beta-subunit of hCG (hCG-b) after

syncytialization (33). The hCG hormone also enhances

trophoblast invasion through increasing CTB secretion of matrix
FIGURE 2

Temporal patterns of major placental peptide hormone secretion across pregnancy. Graphical representation of the maternal serum concentrations
(expressed as a percentage of maximum value) of key placental hormones during gestation. Human chorionic gonadotropin (hCG) and
gonadotropin-releasing hormone (GnRH) peak during the first trimester and decline thereafter (104, 250). Placental growth hormone (hPGH), human
placental lactogen (hPL), leptin, insulin-like growth factor-I (IGF-I), and vascular endothelial growth factor/soluble fms-like tyrosine kinase-1 (VEGF/
sFLT-1) progressively increase during the second and third trimesters (250–256). Proopiomelanocortin (PMOC) shows a steady rise throughout
pregnancy that plateus during the second trimester (257). Finally, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and
activin/inhibin demonstrate a marked elevation toward late gestation (258–261).
TABLE 1 Summary of the different placental hormones described in this review.

Hormone Placental origin Target receptor Functions Associated pathologies

hCG(a)
STB
EVT

LH-hCG

↑ progesterone synthesis
↑ CTB differentiation (syncytialization)

↑ trophoblast invasion
↑ VEGF production

Pregnancy loss
Preeclampsia

hPL(b)
STB
EVT

PRLR & GRH

↑ glucose uptake, metabolism, storage
↑ lipolysis

↑ pancreatic islets
↑ insulin secretion and resistance

↑ fetal anabolism

Low fetal birth weight
Pregnancy loss

Perinatal maternal mood

hPGH(c)

STB
EVT

GRH

↑ IGF-I synthesis
↑ insulin resistance
↑ gluconeogenesis

↑ lipolysis
↑ trophoblast invasion

Low fetal weight
Preeclampsia?

Leptin(d)

STB
EVT

LepRb

↑ hCG secretion
↓ progesterone synthesis

↑ CTB proliferation, ↓ CTB apoptosis
↑ trophoblast invasion
↑ placental angiogenesis

↑ lipolysis
↓ placental triglyceride and cholesterol levels

↑ amino acid transport

Pregnancy loss
Preeclampsia

Gestational diabetes
Intrauterine fetal growth restriction

(Continued)
frontiersin.org

https://doi.org/10.3389/fendo.2025.1584303
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Ahmadi et al. 10.3389/fendo.2025.1584303
metalloproteinases MMP-2 and MMP-9 and decreasing the levels

of their TIMP inhibitors TIMP-1, TIMP-2, and TIMP-3 (35). These

effects are achieved by the hCG-mediated activation of ERK and

AKT signaling pathways (36). Additionally, hyperglycosylated hCG,

an hCG variant, binds and antagonizes TFGb receptors which

allows for the tumor-like invasion of trophoblast cells into the

uterus (37). The secretion of hCG is enhanced by the cAMP-PKA

and ERK pathways alongside other hormones like GnRH, leptin,

and activin (38–42). Hormones such as inhibin and progesterone

are noted for their antagonistic effects on hCG secretion (42, 43).

Other observed functions characterize hCG as an angiogenic factor

contributing to placental and uterine vascularization (44–46).

Additionally, hCG plays a role in promoting vascular endothelial

growth factor (VEGF) production by the STB, facilitating umbilical

cord growth (47–49), and promoting fetal organ development, a

suggestion made after hCG/LH receptors were found in fetal organs

that are not present in adult organs (37). Given the importance of

hCG, defects in expression of this hormone can have dire outcomes

like miscarriage and preeclampsia (50–52).
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hPL

Human placental lactogen (hPL) is a polypeptide hormone

primarily generated by the STB, but it can also be synthesized by

EVTs (25). This hormone is initially detected 5–10 days after

implantation and becomes visible in host plasma near the 6th week

of pregnancy. The levels of hPL increase consistently and reach a peak

at 30 weeks (Figure 2). Interestingly, hPL concentration is positively

correlated with the placental mass and number of growing fetuses,

suggesting a role for hPL on placental and fetal growth (53).

This hormone binds to the human prolactin receptor (PRLR) as

well as the human growth hormone receptor (GHR), although with

lower affinity to the latter (54). Prolactin receptors are widely

expressed across various tissues, including the mammary gland,

ovary, and pancreas (55, 56). The functions of hPL pertain mostly

to carbohydrate and lipid metabolism. It has been observed that hPL

reduces insulin sensitivity of the host during pregnancy, while

promoting glucose uptake, oxidation, and storage as glycogen (53).

Additionally, hPL increases the rates of lipolysis in vitro as well as the
TABLE 1 Continued

Hormone Placental origin Target receptor Functions Associated pathologies

GnRHs(e)

GnRH-I
STB
CTB
EVT

GnRH-II
CTB
EVT

Type 1 GnRHR
↑ hCG secretion

↑ FSH and LH secretion
↑ trophoblast invasion

Pregnancy loss
Still birth

Low fetal birth weight

Activin & Inhibin(f)
STB
CTB

ActRIIA & ActRIIB

Activin
↑ FSH secretion

↑ CTB differentiation
↑ trophoblast invasion

↑ GnRH activity
↑ hCG secretion

Inhibin
↓ FSH secretion

↓ CTB differentiation
↓ trophoblast invasion

↓ GnRH activity
↓ hCG secretion

Pre-term labor
Preeclampsia

Gestational diabetes

CRH(g)

STB CRH-R1 & CRH-R2

↑ POMC and ACTH synthesis
↑ prostaglandin secretion
↑ fetal steroidogenesis
↑ placental vasodilation

Pre-term labor
Hypertension

Impaired uterine artery blood flow
Preeclampsia

POMC STB – Precursor to ACTH –

IGFs(h)

IGF-I
STB
CTB
IGF-II
CTB
EVT

IGF-IR
IGF-IIR (IGF-II)

IR (IGF-II)

↑ trophoblast invasion
↑ CTB proliferation

↑ amino acid transport

Impaired placental growth
Fetal growth restriction

Preeclampsia
Gestational diabetes

VEGF(i)

STB KDR & FLT-1

↑ placental vasodilation
↑ vascular permeability
↓ epithelial cell apoptosis
↑ spiral artery remodeling

Preeclampsia
The 3D structure of each hormone has been included in the first column, according to the experimentally determined structures (PDBIDs): (a) 1HRP; (b) 1Z7C; (c) 1FZV; (d) 8K6Z; (e) 4D5M; (f)
2ARV (Activin A homodimer); (g) 1GO9; (h) 6PYH (IGF-I); and (i) 1VPF (VEGFA). Figures were created using ChimeraX 1.7 software (249).
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plasma concentrations of fatty acids, ketones, and glycerol in vivo, all

of which can support fetal development (53). Furthermore, hPL

contributes to the formation of pancreatic islets and upregulates

insulin secretion in the host (57, 58). Studies also suggest a role for

hPL in breast epithelial cell proliferation of the host, presumably in

preparation for lactation (59). With respect to the fetus, hPL is noted

to encourage fetal anabolism by stimulating DNA synthesis, amino

acid uptake, and IGF-I production (60). Despite its relatively lower

concentration in the fetal circulation compared to the host, hPL is

speculated to play a part in fetal pancreatic development, although it

is unknown whether this hormone regulates fetal islets similar to

maternal islets (53, 61, 62). Abnormalities in hPL secretion are

associated with low fetal birth weight, perinatal maternal mood,

and pregnancy loss (63–65). Molecules that stimulate hPL release

include cAMP, insulin, and growth hormone releasing hormone (66–

68). Somatostatin has been associated with inhibitory effects on hPL

secretion due to its expression levels during pregnancy that are

inverse to that of hPL (69).
hPGH

Human placental growth hormone (hPGH) is a polypeptide

made by the STB, however it can also be produced by EVTs (70).

This hormone is distinguished from its pituitary human growth

hormone (hGH) counterpart (secreted by the somatotropic cells of

the anterior pituitary gland) based on a difference of 13 amino acids

(71). It appears that hPGH emerges in host circulation around the

second half of pregnancy and begins to dominate over pituitary

growth hormone, continuing to rise until term (72) (Figure 2).

This hormone binds to the hGH receptor (GHR), abundantly

expressed in liver cells, as well as the prolactin receptor (54, 73). The

function of hPGH has been linked to promoting maternal IGF-I

synthesis and insulin resistance (74, 75). Moreover, hPGH exerts

metabolic effects through enhancing gluconeogenesis and lipolysis,

thus allowing for higher nutrient availability to the fetoplacental

unit (71). The combined effects of hPGH on IGF-I production and

host metabolism are correlated with fetal development (76).

Additionally, hPGH increases the invasion of EVTs, directly

contributing to the growth of the placenta (70). Reductions in

hPGH expression may hinder IGF-I production and indirectly

cause low fetal birth weight, whereas association of hPGH levels

to preeclampsia is conflicting (77). The secretion of the hPGH

hormone is promoted by cAMP and inhibited by glucose, leptin,

and insulin (71, 78).
Leptin

Leptin is a peptide hormone largely produced by the STB and

EVTs (79, 80). The concentration of leptin increases dramatically

during the first and second trimester, peaking near week 28, and

then declines rapidly after parturition (81, 82) (Figure 2).

Leptin binds to the long-form Leptin receptor LepRb, highly

expressed in cells of the hypothalamus and placenta, and activates
Frontiers in Endocrinology 06
the ERK and JAK2-STAT5 pathways (83, 84). This hormone

increases the secretion of hCG and simultaneously inhibits the

synthesis of progesterone and hPGH (41, 78). Leptin also enhances

CTB proliferation through upregulating cyclin-D1 and inhibiting

apoptosis to advance cell cycle progression to the G2/M stage (85).

Furthermore, leptin promotes trophoblast invasion by inducing the

expression of MMP-2 and MMP-9 (80). Leptin function has also

been linked to placental angiogenesis, leading to the formation of

capillary-like tubes in vitro (86). Additionally, leptin was found to

have catabolic effects on the host, including lipolysis and the

reduction of placental triglyceride and cholesterol levels (87). It

has also been demonstrated that leptin increases host-derived

amino acid transport, thereby contributing to the growth of the

fetus (88). Dysregulation of leptin expression is related to

pathologies such as gestational diabetes, recurrent miscarriage,

preeclampsia, and intrauterine fetal growth restriction (89–94)

Leptin production is enhanced by the cAMP, ERK, and PKA/

PKC pathways (95, 96). Molecules such as hCG and insulin also

promote leptin secretion (97, 98). Hormones such as hPL and

progesterone antagonize the release of leptin (99).
GnRH

Gonadotropin hormone-releasing hormone (GnRH) is secreted

in two forms by the placenta, GnRH-I and GnRH-II. Placental

peptide GnRH-I is immunologically and biochemically equivalent

to that of the hypothalamus, with the exception of differences in the

5’-untranslated region of the gene (100, 101). GnRH-I is produced

by all the trophoblasts in the placenta. On the other hand, GnRH-II

is expressed by CTBs and EVTs. GnRH-I and GnRH-II are both

identified in first trimester placentas, although only GnRH-I is

detected at term (102) (Figure 2).

The mechanisms of chorionic GnRH are yet to be clearly defined.

Previous studies report that placental GnRH stimulates hCG

secretion from the STB after binding to the type 1 GnRH receptor

localized to the STB and CTBs (103, 104). It has been proposed that

GnRH-stimulated hCG secretion is a receptor-mediated process

(105). Parallel to hCG levels, placental GnRH receptors were

observed to peak at week 9 of gestation, prior to declining between

weeks 12–20 and later becoming undetectable at term (106). In

addition, chorionic GnRH contributes to trophoblast invasion

through regulation of MMP-2 and MMP-9 in primary EVTs (107,

108). Evidently, GnRH function corresponds to the establishment

and maintenance of pregnancy and disruption of placental GnRH

expression or receptor activity can lead to unfavorable pregnancy

outcomes including pregnancy loss, stillbirth, and low fetal birth

weight (109–111). The secretion of chorionic GnRH is upregulated by

molecules such as cAMP and activin (112).
Activin/Inhibin

Activins and inhibins are dimeric glycoproteins that are

characterized for their regulatory nature. More specifically,
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inhibins are heterodimers with a and b subunits, and prevent the

release of FSH from the pituitary system (113). Activins can be

homo or heterodimers of b-inhibin and exhibit opposing effects for

that of inhibin by functioning as a stimulant for the release of FSH

(113, 114). Activin A and Inhibins A and B are predominantly

synthesized by the STB, although they can also be generated by the

CTB (115, 116). These molecules are observed to have rising

concentrations during pregnancy (117) (Figure 2).

Activin A binds to type II activin receptors, ActRIIA and

ActRIIB, located mainly on the STB of the placenta, among other

cells in the pituitary, hypothalamus, or gonads (118–121). Activins

facilitate CTB differentiation into the STB and EVT and also

promote trophoblast invasion (122–124). With its shared b-
subunit, inhibins competitively bind to activin receptors and serve

as regulators for activin (125). Inhibin reverses the effects of activin

by suppressing GnRH activity, which then results in a decrease in

hCG production (42). Disruptions in the secretion of activins and

inhibins have been linked to pathologies such as spontaneous or

pre-term labor as well as preeclampsia and gestational diabetes

(126–129).

Inhibin secretion is promoted by molecules such as GnRH,

hCG, and cAMP (130). The production of inhibin is downregulated

by Activin A through a feedback loop (131). The release of activin is

upregulated by CRH (132).
CRH

Corticotropin-releasing hormone (CRH) is a peptide generated

mainly by the STB (133, 134). Chorionic CRH is identical to CRH

produced in the hypothalamus and is detected in low levels between

weeks 7-19, with rising concentrations during weeks 35–40 of

gestation (135–138) (Figure 2). Placental CRH binds to receptors

CRH-R1 and CRH-R2, located primarily in the pituitary and central

nervous system as well as placental and fetal membranes (139, 140).

Competition with CRH binding protein (CRH-BP), which has

greater affinity to the CRH receptor, renders CRH in host

circulation as inactive for most of gestation. CRH-BP levels

decrease in the final weeks of pregnancy and coincides with the

increase in CRH bioavailability and activity, marking CRH as a

signal for parturition (141). The functions of CRH encompass

increasing intracellular cAMP and enhancing the synthesis of

both proopiomelanocortin (POMC) and its derivative

adrenocorticotropic hormone (ACTH) in the placenta (142, 143).

Additionally, CRH stimulates placental secretion of prostaglandins,

possibly contributing to myometrial contractions at term (144).

Moreover, CRH facilitates steroid production by fetal adrenals,

which may further incite parturition (145).

Urocortins are a subclass of CRH peptides that are primarily

made by the STB and, to a lesser extent, CTBs (146). Urocortins

bind to CRH receptors and play a role in placental vasodilation in

addition to shared effects of increasing cAMP concentrations and

promoting POMC (see below) and ACTH secretion by trophoblast

cells (147–149).
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Improper release of CRH has been associated with adverse

pregnancy outcomes such as pre-term labor, hypertension,

impaired uterine artery blood flow, and preeclampsia (150–153).

CRH secretion is upregulated by glucocorticoids and prostaglandins

and obstructed by progesterone (144, 154).
POMC

Proopiomelanocortin (POMC) is a glycoprotein precursor to

ACTH with proposed synthesis by the STB (155, 156). Although

undetected in normal subjects, POMC is readily identified by the

third month of gestation for pregnant individuals (Figure 2). This is

attributed to differences in the processing of POMC between the

pituitary and the placenta, as the latter secretes bulk quantities of

the intact, uncleaved hormone (157). POMC levels gradually

increase throughout pregnancy and are positively correlated with

CRH concentration, however demonstrate no relationship with

ACTH or cortisol levels (157). The functional significance of

placental ACTH and other POMC-derivatives remains

largely unspecified.
IGF-I and IGF-II

Insulin-like growth factors IGF-I and IGF-II are produced by

the placenta and play a critical role in fetal development (158). IGF-

I is secreted by the STB and CTBs throughout pregnancy (Figure 2).

On the other hand, IGF-II is generated by CTBs and EVTs during

the first trimester (159).

These peptides bind to tyrosine kinase receptor IGF-IR present

in all placental cell types, while IGF-II can also bind to the IGF-II

and insulin receptors (160, 161). IGFs stimulate trophoblast

invasion and are also involved in the proliferation of CTBs via

the PI3K and MAPK pathways (162–164). Moreover, IGFs

contribute to fetal development by facilitating amino acid

transport across the placenta (165). These molecules are regulated

by IGF binding proteins that limit their availability to interact with

IGF receptors (166). Alterations to placental IGF expression

demonstrate consequences of restricted placental and fetal

growth, and are implicated to have a pathological role in

preeclampsia and gestational diabetes (158, 166, 167).
VEGF

Vascular endothelial growth factors (VEGFs) are a family of

proteins that are characterized for their angiogenic properties.

During gestation, VEGF-A and placental growth factor (PlGF) are

secreted from the STB (168) (Figure 2). These molecules bind to

placental tyrosine kinase receptors KDR and FLT-1, and are

downregulated by association with the soluble form of FLT-1

(sFLT-1) (169). The functions of VEGFs are strongly linked to

vascular endothelial cell proliferation and angiogenesis through
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effects of increased vasodilation and vascular permeability (170–

172). Angiogenesis is further promoted via the antiapoptotic

support VEGFs provide placental epithelial cells (173). VEGFs

also influence the remodeling of host spiral arteries that is critical

for gestational success (174, 175). Complications with VEGF/PlGF

secretion can be indicative of pathologies like preeclampsia (176).
How does secretion of placental
peptide hormones happen?

Transport of secreted proteins in eukaryote cells requires

specialized membrane and cytosolic machinery of the secretory and

endo-lysosomal pathways (8–10) (Figure 3). Most of the conventional

secretory proteins are synthesized in the endoplasmic reticulum (ER)

lumen via N-terminal signal sequence recruitment of ribosomes.

Here, proteins fold and some acquire complex glycans that are further

processed once the protein is exported to the Golgi apparatus. From

there, proteins are sorted and trafficked to the cell surface via
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membrane-bound vesicles or tubular carriers (177–179). This rapid

delivery of cargo to the extracellular space is described as constitutive

secretion and operates in all cell types (180). Specialized cells such as

lactotrophs of the anterior pituitary gland or b-cells in the pancreas,

for example, produce large amounts of specific proteins that are

stored in granules (secretory granules – SGs) at high concentration

before being exocytosed upon stimulation. The formation,

maturation, and release of these SGs require very specific

trafficking and signaling regulation (181–184). Regulated secretory

proteins contained in SGs include hormones, neuropeptides,

enzymes, and extracellular components of mucus.

Although presented as black-and-white alternative pathways,

both constitutive and regulated secretion are not mutually exclusive,

and a degree of overlapping could be observed in different systems

(185, 186). For example, studies in acinar cells of the salivary glands

(187) and pancreatic islets (188–191) have shown a constitutive-like

pathway through endosomes where minor regulated secretion from

immature SGs takes place under basal (i.e., no stimulus) conditions.

Most of secreted proteins from salivary cells follow an exocrine,
FIGURE 3

Schematic representation of the main secretion pathways in a cell. Active endocytosis and recycling through sorting endosomes allows the cell the
control of cargo internalization and the reutilization of certain receptors depending on the intracellular demands. Cargo and receptors no longer
required by the cell are degraded inside late endosomes and lysosomes, that receive lysosomal-specific degradative enzymes via direct trafficking
from the Golgi or indirectly from the plasma membrane. Constitutive secretion brings Golgi newly synthesized in secretory vesicles (SeV) or recycled
cargo directly back to the plasma membrane. In contrast, regulated secretion involves the packaging of cargo into highly-regulated secretory
granules (SGs). Sorting of specific cargo from immature secretory granules constitutes constitutive-like secretion pathways.
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regulated pathway into the saliva but constitutive secretion is also

observed (192, 193). Similarly, mucin secretion from goblet cells in

the airways utilizes both constitutively and regulated secretion

pathways (194). Additionally, lysosome-related organelles (LROs)

are found and used to store and secrete proteins in many specialized

cells different from exocrine cells (195–197). The biogenesis of

many LROs involves common components of the endolysosomal

and regulated secretory pathways, such as small GTPases, molecular

motors, and sorting adaptor proteins and complexes (198).

The placenta, as a unique endocrine organ of temporary

function, offers a particularly interesting system of study of

protein secretion. As presented above, the placenta secretes a

myriad of protein hormones and peptides. The most abundant

ones (hCG and hPL) have high homology to pituitary hormones

(hCG: 82% with LH (199); hPL: 85% with GH but 22% with hPRL

(200)) which are shown to be secreted in SGs. Structurally, both

hormones are very different from each other (Table 1), and they are

secreted at different rates during pregnancy (37, 201) (Figure 2).

How these two hormones are secreted by the placenta has been a

controversial topic of discussion during early placental research.

Contemporary to the revolutionary discoveries of George

Palade and colleagues by extensive use of ultrastructural

characterization of the intracellular membranous system in

specialized secretory cells (202), many researchers dug into

similar approaches to uncover the localization of placental

hormones. Initial studies using both first trimester and term

placenta in resin embedded sections (203–205) showed a wide

range of thin, smooth membrane-surrounded dense granules

within or near the Golgi apparatus that were different from lipid

droplets. Larger granules were observed near the apical face of the

STB while smaller ones more dispersed around the cytosol,

suggesting the former are originated from homotypic fusion

between the latter. Although sparse and initially mistakenly as

vesicles packed with steroid hormones, the existence of such SG-

like structures was very evident. It was even suggested that the small

SGs bud off the limiting membrane of the large vesicles in a

mechanism that we would associate nowadays with constitutive-

like biogenesis (206). A study using cryosections of human term

placentas and HRP-conjugated antibodies to improve detection of

hCG confirmed infrequent granules and a strong immunoreactivity

in the plasma membrane of the STB (207), a stain that could not be

observed later by others using similar approaches (208). The

simultaneous establishment of the first human hormone-

producing trophoblastic cell line (209), the choriocarcinoma

BeWo cell line, allowed the interrogation of SG production and

secretion in vitro. Results from investigations using this model were,

however, not consistent with regulated secretion of hCG: long

incubation times with secretagogues was required to stimulate

secretion (210), ionophore treatment did not trigger exocytosis

(211), incubation with high concentrations of K+ or cytoskeleton

drugs did not affect secretion (212, 213), and insignificant amounts

of the hormone was observed in stored form (214). Later, similar

results were obtained in other choriocarcinoma cell lines (JAR and

JEG-3) (215–217). However, more studies using intact chorionic

villi and different immunolabeling approaches (218–221) followed
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up and confirmed the presence of plentiful large bodies resembling

large SGs reactive for hCG. One study demonstrated that these

abundant granules in first trimester placentas are rich in iron (222)

suggesting the possibility of LRO-like characteristics.

Using the pioneer method of isolation of primary trophoblasts

from midterm and term placenta by Hall et al. (223), Hochberg,

Bick, and Perlman started exploring similar questions than the ones

described above but for the secretion of hPL (68, 224–226). These

studies agree with the previously mentioned reports for hCG

secretion where a constitutive type of secretion is favored.

Perhaps differently from the studies with hCG, these authors

explicitly recognized the presence of a small fraction of hPL that

could be secreted from a prestored pool (68). Using term placenta

explants, it was initially shown that hPL does not follow a regulated

secretion behavior when K+ and Ca2+ levels are manipulated (227),

but such results were contradicted later (228, 229) suggesting then

the possibility of a mixed mechanism of secretion. Not surprisingly,

immunoelectron microscopy experiments using human placenta

tissue showed robust hCG and hPL in small, medium, and large

granules in the STB (230, 231), highlighting the differences between

ex vivo tissue phenotypes and cells in culture. Conversely,

systematic studies by the group of Boime and colleagues,

demonstrated that although some of the hCG is stored in SGs

and secreted by regulated mechanisms, the vast majority of the

hormone is released constitutively (232). But similar studies for hPL

(and the many other secreted placental hormones) are still lacking

and extrapolation of these results might not be appropriate given

the different structural characteristics to hCG, leading to still a

larger open question: how is hormonal secretion truly regulated in

the placenta?
Conclusions and future directions

The placenta has the remarkable task of coordinating the

secretion of numerous substances using a very specialized and

unique cellular structure: the STB. Although poorly characterized at

the cellular level, the STB is constantly replenished with cytosol,

membranes, and nuclei from the underlying CTB layer, perhaps as a

mechanism to cope with this intense secretory duty in a local-specific

fashion. It is still a mystery how this giant multinucleated structure

manages to secrete, at different developmental milestones, different

hormones that control its own and both the maternal and fetal fates

during the entire pregnancy. The placenta undergoes continuous,

sex-specific changes throughout gestation in response to the dynamic

maternal-fetal environment to support healthy fetal development.

From implantation to parturition, the placenta continuously senses

and adapts to maternal and fetal signals, acting as a hormonally active

organ uniquely present during pregnancy.

Progress in understanding placental secretory pathways has

been limited by restricted access to early gestation tissue, species

differences between humans and model organisms, and the

limitations of in vitro systems in replicating key physiological

processes. We showed a clear example of the challenges faced by

the field to study the intracellular trafficking of the main placental
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hormones: hCG and hPL. Through the research highlighted here,

early and term placenta tissue are substantially different, not only in

developmental terms but also in secretory capacities. The early

placenta expresses high amounts of hCG while the term placenta

favors the production of hPL (Figure 2). Both hormones have been

found to be constitutively secreted, but a portion has been found in

SG-like structures that we still have not fully characterized. While

useful for research, trophoblast cell lines and primary cells often fail

to fully replicate hormone synthesis, glycosylation, and trafficking

due to limitations in their derivation and differentiation. Limited

focus on the secretory mechanisms of other protein hormones in

the literature has slowed progress in resolving key questions about

placental hormone secretion.

With the advent of novel trophoblast models in 2D and 3D

(233, 234) in combination with modern techniques for following

protein trafficking inside the cells (for example: combining vesicle

relocalization with spatial proteomics (235); photoactivation assays

(236); probabilistic density maps (237); RUSH trafficking assays

(238); transient CRISPR KO technology (239)) we have the

opportunity to enter a new chapter in the interrogation of

secretory pathways in the placenta. With these advancements, it

is essential to evaluate both the strengths and limitations of

emerging technologies in the study of placental hormone biology.

Human trophoblast organoid models have marked a significant step

forward, offering 3D systems that closely mimic placental

morphology and endocrine function in vitro (240–242). These

cultures can secrete physiologically relevant levels of hormones

and support long-term experimentation. However, they primarily

model early pregnancy, lack full in vivo architectural complexity,

including complete syncytialization and maternal–fetal interface

features, and current gene editing tools remain underdeveloped in

these systems. Notably, many of the hormones discussed in this

review have yet to be investigated in these model systems,

highlighting a critical gap in validation and mechanistic

understanding within the field. Similarly, advanced live-cell

imaging methods—such as confocal, super-resolution, and lattice

light-sheet microscopy—enable real-time tracking of vesicle

trafficking and hormone secretion at high resolution (243–246).

While these techniques are powerful, their application to placental

tissues will require extensive optimization and access to specialized

equipment, especially in thicker or more heterogeneous samples.

Taken together, each technology provides a unique perspective, but

a truly comprehensive understanding of placental cell biology will

require integrative approaches that combine spatial, temporal, and

functional data across multiple platforms.

Fields studying other secretory organs have faced similar challenges

of fitting all the phenotypes into one or another model of secretion

(193, 247, 248) and galvanized into mixed models that contemplate

intermediate or completely new alternatives. Nonetheless, whether in

SGs, vesicles, or both, many questions about placental hormone

trafficking remain open. What is the machinery that regulates sorting

and secretion in the morphologically complex syncytiotrophoblast?

Are all the peptide hormones sorted together to the plasma membrane
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or do they arrive in different carriers? Given the fetal-maternal interface

structure of the placenta, how is the polarized sorting controlled?What

about the rest of the neglected placental secretome? It is our wish that

the next generation of cell biology tools applied to the placenta and

trophoblast fields can stimulate the development of specialized

approaches and accelerate the discovery in this particularly

challenging but equally exciting organ.
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