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The expanding clinical utilization of immune checkpoint inhibitors (ICIs) in oncology

has brought increasing attention to thyroid dysfunction as a prominent immune-

related adverse event (irAE). Elucidating the pathophysiological mechanisms

underlying ICI-induced thyroiditis represents a critical step toward developing

evidence-based diagnostic protocols and targeted therapeutic interventions for

cancer patients undergoing immunotherapy. This comprehensive review

systematically examines current advances in understanding the etiopathogenesis

of ICI-induced thyroiditis. First, we described pharmacological characterization of

ICIs, then discussed multifactorial analysis of cellular and molecular contributors to

thyroid autoimmunity following ICI administration and finally analyzed critical

evaluation of emerging hypotheses regarding primary pathogenic drivers. Through

this review, we aim to establish mechanistic connections between ICI

pharmacodynamics and thyroid tissue immunopathology.
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Introduction

The therapeutic integration of immune checkpoint inhibitors (ICIs) in oncology has

transformed clinical outcomes for diverse malignancies through enhanced T-cell-mediated

antitumor immunity via blockade of inhibitory checkpoints including programmed cell death

protein-1 (PD-1)/PD-1 ligand (PD-L1) and cytotoxic T-lymphocyte-associated protein 4

(CTLA-4). Paradoxically, this immunomodulatory efficacy coincides with the breakdown of

peripheral tolerance mechanisms, manifesting as multi-organ immune-related adverse events

(irAEs) (1, 2). Current studies reveal differential irAE profiles demonstrating tumour-type

specificity, temporal dependency on treatment duration, and immune microenvironmental

modulation patterns (3). Clinically significant irAEs predominantly affect immune-privileged

organs including the integumentary system, endocrine axes, gastrointestinal tract, pulmonary

parenchyma, and hepatic tissue (4, 5). Particularly in patients treated with ICIs, the incidence

of thyroiditis ranges from 10% to 20% (6). The clinical features of ICI-induced thyroiditis are
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predominantly characterized by destructive thyroiditis, which can

lead to transient thyrotoxicosis, followed by the development of

hypothyroidism (5, 7). The pathogenesis of thyroiditis may be

related to the immune system’s attack on thyroid tissue, which is

often associated with the loss of immune tolerance induced by ICIs.

Thus, exploring the underlyingmechanism of ICI-induced thyroiditis

is of particular importance. Through analyzing the characteristics of

the effects of ICIs on the immune system, the mechanisms of the

autoimmune tendency of the thyroid gland, and the impacts of

immune cells, immune molecules, and genetic factors on

thyroiditis, we can provide a new theoretical basis and therapeutic

guidance for clinical practice. This will enable better management of

the side effects induced by ICIs. Clinically, ICI therapy should be

discontinued only when symptomatic thyrotoxicosis is present, and

long-term levothyroxine replacement therapy should be initiated for

persistent hypothyroidism (8) (Figure 1).
Characteristics of the ICIs and irAEs

Immune checkpoints play a crucial role in the immune system

by regulating antigen recognition by the T-cell receptor (TCR).

These checkpoints encompass both inhibitory and stimulatory

immune checkpoint molecules (9, 10). They modulate the

intensity of the immune response and uphold immune tolerance,

thereby safeguarding normal tissues from the detrimental effects of

the immune response (11). During the process of tumor immune

escape, inhibitory immune checkpoints have particularly emerged
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as the focal point of cancer immunotherapy research. Common

inhibitory immune checkpoints include PD-1, PD-L1, and CTLA-4

targets (12).

PD-1 is a type I transmembrane protein that belongs to the CD28

immunoglobulin superfamily. It is mainly expressed on tumor-

infiltrating activated T lymphocytes, B lymphocytes, natural killer

cells, and other immune cells (13). PD-L1 is broadly expressed on

tumor cells, antigen-presenting cells (APC), and stromal cells within

the tumor microenvironment, with its expression regulated by

Interferon-gamma (IFN-g). In contrast, PD-L2 is predominantly

expressed in dendritic cells (DCs) and pulmonary macrophages

(14). The interaction between PD-1 and PD-L1 effectively inhibits

T-cell activation and it can even induce apoptosis of T-cells and

reduce cytokine production, thereby enabling tumor cells to evade

immune surveillance (15). Through the use of PD-(L)1 blockers, the

anti-tumor function of immune cells can be restored, and the

immune escape of tumor cells can be circumvented (16).

CTLA-4 (CD152), a homologue of CD28, mainly exerts its

function during T-cell activation (17, 18). CTLA-4 participates in

the regulation of immune responses by downregulating the activity

of CD4+ T effector cells and enhancing the function of regulatory T

(Treg) cells (19). In the initial phase of T-cell activation, naive T cells

bind to major histocompatibility complex (MHC) molecules on

APC via the TCR. Meanwhile, CTLA-4 binds to CD80 and CD86

ligands on APC with a higher affinity than CD28 does, thereby

inhibiting the activation signal of T cells (20). Blocking CTLA-4 in

the tumor microenvironment potentiates T-cell activation, leading

to stronger anti-tumor responses driven by CD8+ T cells (19, 21).
FIGURE 1

Clinical features and incidence of immune checkpoint inhibitor (ICI)-induced thyroiditis. The clinical features of ICI-induced thyroiditis are
thyrotoxicosis caused by destruction of thyroid follicular cells (TFC), followed by a decline in thyroid hormones and development of hypothyroidism.
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The blockade of PD-1 and CTLA-4 demonstrates significant

differences in the autoimmune phenotype. CTLA-4 inhibitors

primarily act in the early stage of the immune response,

influencing the initiation phase of T cells in the lymph nodes. In

contrast, PD-(L)1 inhibitors function in the effector phase (22).

Inhibition of the PD-1 pathway typically leads to alterations in

effector cell properties, presenting as a mild and chronic

autoimmune phenotype. Conversely, inhibition of the CTLA-4

pathway triggers both intrinsic changes in effector cells and

extrinsic changes in Foxp3+ T cells, resulting in a more severe non-

specific autoimmune phenotype (23). This variability has been

validated in irAEs generated by ICI treatment of tumors.

Thyroiditis can be induced by both combination therapies (PD-1

inhibitors combined with CTLA-4 inhibitors) and monotherapies

(PD-(L)1 inhibitors). The incidence rate is highest with combination

therapy and lowest with CTLA-4 inhibitors (5, 6, 24), This suggests

that differences in the mechanism of action of ICIs are associated with

the varied incidence of ICI-induced thyroiditis. This raises an

important question: why does the thyroid gland demonstrate

particular vulnerability to immune checkpoint blockade? While the

preceding discussion outlines the pharmacological basis of ICIs, the

following analysis would elucidate the unique immunological

characteristics of thyroid tissue that make it susceptible to

autoimmune attack during checkpoint inhibition.
Common mechanisms of thyroid
initiating autoimmune tendency

As a crucial endocrine organ, the thyroid gland exhibits a high

incidence in irAEs and autoimmune diseases, including

Hashimoto’s thyroiditis (HT) and Graves’ disease (GD). While

there is no single definitive explanatory mechanism for its

susceptibility, multiple factors interact to contribute to the

development of thyroid autoimmunity. The following section

examines three intrinsic characteristics of thyroid tissue that

predispose it to autoimmune dysregulation during ICI therapy.
Thyroid-specific proteins as autoantigens

Functionally specific proteins in thyroid tissues, such as the

thyroid-stimulating hormone receptor (TSHR), thyroid peroxidase

(TPO), and thyroglobulin (Tg), possess unique biological

characteristics, such as size, abundance, membrane-binding

properties, glycosylation patterns, and polymorphisms, which may

disrupt immunological tolerance (25). Clinical observations indicate

that when the thyroid’s physiological structural barriers are disrupted

by physicochemical factors or infection, function-specific proteins may

be released in an “ectopic” manner. This abnormal release can then

trigger the autoimmune response. Although the inherently limited

central tolerance mechanisms typically eliminate most autoreactive

cells, peripheral tolerance remains critical for maintaining immune

protection in these organs, as evidenced by studies in animal models

and humans with autoimmune disorders (26).
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Immunological sensitivity and tertiary
lymphoid structures

Thyroid tissue demonstrates a high level of immunological

sensitivity. The observed effects may partly stem from antigen-

driven tertiary lymphoid structures (TLSs) that emerge and sustain

within pathological microenvironments (27, 28). TLSs are

lymphoid aggregates that form postnatally in inflamed, infected,

or neoplastic tissues (29). The formation of TLSs depends on the

presence of antigens, and their development and persistence are

driven by antigen exposure, with subsequent resolution upon

antigen clearance (30). Currently, TLSs have garnered significant

attention in tumor progression, immune therapy response (31) and

irAEs (32). Studies have shown that ICIs can induce and enhance

TLSs functionality (33). Although this intervention may improve

tumor progression, it could simultaneously heighten immune

sensitivity in thyroid tissue.
Role of thyroid cells in innate immunity

Thyroid follicular cells (TFC) function not only as key effectors

of endocrine activity but also as active participants in innate

immunity. TFC recognize and react to pathogen-associated

molecular patterns (PAMPs) via pattern recognition receptors

(PRRs) and also respond to damage-associated molecular patterns

(DAMPs) resulting from cellular injury. In an autoimmune context,

the response of thyroid cells to these patterns can trigger an

up-regulation of inflammatory cytokines such as tumor necrosis

factor-alpha (TNF-a), Interleukin(IL)-1, and IL-6, which promote

specific immune responses (34). Moreover, TFC which are common

targets of autoimmune attacks, also exhibit APC-like cell

functionality (35, 36). In the study of autoimmune thyroid disease

(AITD), cytokines such as IFN-g induce TFC to express MHC-II

molecules, which present thyroid autoantigens to CD4+ T cells,

thereby breaking the immune tolerance of the host (37). Recent

single-cell transcriptomic studies of GD have revealed that TFC

abnormally express a full set of human leukocyte antigen (HLA)

molecules, along with elevated expression of CD40 (36). CD40

expression is a characteristic feature of APC (38). However, TFC

lack expression of the key costimulatory molecules CD80 and

CD86, which are required for T cell activation (36).
Mechanisms of ICI-induced immune-
associated thyroiditis

Although cancer immunotherapy has become a major focus of

research, the underlying mechanisms responsible for ICI-induced

thyroiditis remain inadequately elucidated (39). The cytopathology of

ICI-induced thyroiditis exhibits distinct characteristics, such as large

clusters of necrotic cells, lymphocytes, and CD163+ histiocytes (40).

The rapid onset of ICI-induced thyroiditis, which differs markedly

from typical cases like HT, suggests that the mechanism underlying

ICI-induced thyroiditis is multifaceted and intricate. It involves
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multiple components of the immune system, including antigenic

cross-reactivity, T-cell subsets and B cell activation, cytokine and

chemokine activity and genetic susceptibility (Figure 2).
Targeted antigens

The initiation of specific autoimmune responses in irAEs is

mediated by T-cell clones that recognize cross-antigens present in

both normal and tumor tissues (41, 42). For instance, the existence of

cross-antigens encoded by the MYH6 gene between cardiomyocytes

and tumor cells serves as an autoantigen targeted by CD8+ T cells in

ICI-induced myocarditis (43). Berner et al. (44) compared peripheral

blood mononuclear cells (PBMCs), tumor biopsy specimens, and

biopsies from sites of immune-associated skin toxicity in non-small

cell lung cancer patients treated with anti-PD-1 through T-cell

receptor sequencing (TCRseq). They identified nine identical T-cell

antigens shared by tumor tissues and skin, which were capable of

stimulating CD8+ and CD4+ T cells in vitro (44). In tissue TCRseq

studies of colitis and pneumonia irAEs, identical T-cell clones were
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detected at the lesion site of the irAEs and at the site of tumor origin

(45, 46). However, there are few reports on ICI-induced thyroiditis-

related antigens. One study found that in non-small cell lung cancer

(NSCLC) patients treated with anti-PD-1 therapy, the expression of

thyroid transcription factor-1 (TTF-1) in tumor tissue has been

significantly correlated with both the incidence of ICI-induced

thyroiditis and the clinical efficacy of ICI therapy (47). TTF-1 is a

protein that is widely expressed in the lung and thyroid (48). The

findings suggest that TTF-1 may function as a shared antigen

between thyroid and lung cancer tissues, potentially contributing to

the dual regulation of antitumor immune responses and thyroid

autoimmunity. However, the observed association between TTF-1

expression and the incidence of ICI-induced thyroiditis has not yet

been definitively attributed to antigenic cross-reactivity. Therefore,

further investigation is needed to validate TTF-1 as a potential cross-

reactive antigen.

Cancer neoantigens are aberrant peptide fragments arising from

tumor-specificmutations that can be recognized by the immune system,

thereby eliciting antigen-specific T cell responses directed against early-

stage tumors. These neoantigens are detected by the immune system,
FIGURE 2

Possible pathogenic mechanisms of ICI-induced thyroiditis. Potential mechanisms include shared antigens, activation and expansion of memory T
cells and effector T cells, B cells and autoantibodies, cytokine and chemokine activity, and genetic susceptibility.
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initiating a tumor-specific immune response, and serve as pivotal targets

in the development of cancer immunotherapeutic strategies (48–50).

Notably, the potent anti-tumor immunity driven byneoantigensmay be

accompanied by the risk of autoimmune damage. Vita et al. (51)

reported a case involving a 32-year-old female patient with synovial

sarcomawho developedGD following administration of theNY-ESO-1

cancer vaccine. This case revealed that multiple epitope regions of the

tumor neoantigen NY-ESO-1 exhibit sequence homology with thyroid

autoantigens, includingTSHR, Tg andTPO, suggesting amechanismof

cross-reactivity (51). Such cross-reactive immune responses may result

in T cells targeting both tumor and thyroid tissues. Moreover, following

the release of T cell inhibition by ICIs, neoantigen-activated T cells may

initiate recognition of additional sequestered thyroid antigens through

epitope spreading (49). Thus, the overlap between tumor neoantigens

and thyroid autoantigens, coupled with ICI-driven immune activation,

provides a plausible mechanism underlying immune-related thyroid

dysfunction in cancer immunotherapy.

Emerging evidence indicates that dysregulation of the gut

microbiota plays a pivotal role in the development of autoimmune

diseases (52). ICI changes immune microenvironment of gut,

consequently disrupt the gut microbial community, which can lead

to the overactivation of both innate and adaptive immune responses in

local tissues, ultimately resulting in systemic immune imbalance (53).

Several mechanisms have been proposed to explain the gut

microbiota–thyroid axis dysregulation, including molecular mimicry,

microbial translocation due to compromised gut barrier integrity, and

immune modulation triggered by microbial metabolites (53). Among

these, molecular mimicry is increasingly recognized as a critical factor

linking gut microbiota to autoimmune dysregulation (53). This

mechanism involves structural similarities between microbial

peptides and host antigens, which may lead to cross-reactive

immune responses. Studies have suggested that vaccines and

commensal microbes may influence the development of irAEs

through molecular mimicry and related pathways (54). Associations

between molecular mimicry and irAEs have been reported in multiple

organ systems, including the heart and gastrointestinal tract (55). In a

study exploring the mechanisms of gut microbiota’s effects on lung

cancer, it was discovered that molecular mimicry might contribute to

the development of irAEs and the efficacy of ICIs (54). Notably, certain

strains of Lactobacillus and Bifidobacterium have been shown to induce

the production of antibodies that cross-react with thyroid-specific

antigens such as TPO and Tg, implicating microbial mimicry in

thyroid autoimmunity (56, 57). Similarly, Yersinia enterocolitica in

small intestinal colitis also exhibits molecular mimicry and may

promote the generation and maturation of antibodies against the

TSHR (58). Collectively, these findings suggest the overlap between

gut microbiota and abundant autoimmune antigenic epitopes may play

a part in the onset of irAEs.

The mechanisms of cross-antigenicity and molecular mimicry

are involved in ICI-induced thyroiditis remains unclear. Antigens

shared between tumors and healthy tissues are marked by high

specificity and strong immunogenicity. Identifying cross-antigens

not only aids in predicting autoimmune toxic effects but also

uncovers potential targets for novel tumor antigens. Therefore, a

key challenge lies in distinguishing neoantigens capable of eliciting
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potent tumor-specific immune responses from those that avoid

inducing immune toxicity. Optimizing this balance is essential for

improving the efficacy and safety of ICI therapies.
T-cell subsets

The over-stimulation of TCR signaling associated with ICIs can

disrupt the maintenance of peripheral immune tolerance and

trigger the activation of potentially autoreactive T-cell clones (59).

The loss of T-cell tolerance and the subsequent expansion of

autoreactive T-cell clones are among the mechanisms underlying

irAEs (60). Given that ICIs exert their effects by enhancing T-cell

activity through modulation of T-cell immune checkpoints, T-cell-

mediated mechanisms are considered the principal drivers of irAEs.

These mechanisms have been shown to involve the activation of

targeted memory T cells, the clonal expansion and effector

functions of CD8+ T cells, the proliferation of T helper (TH)17

cells, and the dysregulation of Treg cells.
Activation of CD4+ memory T cells

Memory T cells (TM) can be broadly categorized into three

subsets: central memory T (TCM) cells, effector memory T (TEM)

cells, and tissue-resident memory T (TRM) cells (61). Despite their

significance in immune responses, the role of memory T cells in

ICI-induced thyroiditis remains poorly understood, primarily due

to the limitations inherent in diagnostic biopsies (62). TRM cells,

particularly in mucosal barrier organs such as the colon and skin,

can be reactivated upon ICIs, leading to inflammation (62). In a

study by Lozano et al. (63), multi-omics analysis of early blood

samples frommelanoma patients revealed a correlation between the

abundance of activated CD4+ TM cells and increased TCR diversity

with the development of severe irAE. Moreover, PD-1, a checkpoint

molecule highly expressed on resting TM cells, appears to play a

crucial role in regulating TM cell activation (64). This suggests that

ICIs may directly affect TM cells during the early stages of irAEs.

Evidence from murine models supports this hypothesis. In these

models, administration of PD-1 inhibitors following Tg

immunization resulted in the infiltration of granzyme B-

expressing CD4+ TEM cells within the thyroid, indicating their

cytotoxic role in thyroid inflammation (65). Clinically, patients

with ICI-induced thyroiditis were found to have significantly

elevated levels of CD27+ CD4+ TEM cells in their PBMCs,

compared to those without thyroid involvement (65). These

findings collectively highlight the pathogenic role of activated TM

cells in driving thyroid autoimmunity and suggest that they may

serve as early biomarkers for ICI-induced thyroiditis.
Cytotoxic activity of CD8+ T cells

CD8+ T cells are well recognized for their direct cytotoxic

activity against target cells, and their expansion and activation
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play pivotal roles in the development of irAEs, including ICI-

induced thyroiditis (66, 67). Recent studies have revealed distinct

immunological mechanisms underlying ICI-induced thyroiditis.

Single-cell RNA (scRNAseq) sequencing analysis of thyroid

specimens from patients with ICI-thyroiditis demonstrated a

predominant infiltration of clonally expanded cytotoxic CD8+ T

cells, particularly a subset characterized by CXCR6 expression (67).

These CXCR6+CD8+ effector T cells exhibited elevated production

of IFN-g and granzyme B, suggesting their crucial role in thyroid

tissue destruction (67). Importantly, IL-21, secreted by

intrathyroidal T follicular helper (TFH) and T peripheral helper

(TPH) cells, was identified as a key driver of this pathogenic CD8+ T

cell differentiation (67). In vitro experiments confirmed that IL-21

stimulation promoted CD8+ T cells to acquire an activated effector

phenotype, marked by increased CXCR6 expression, enhanced

IFN-g production, and elevated granzyme B levels, collectively

contributing to thyroid toxicity (66). Based on this, it can be

hypothesized that CXCR6+CD8+ T cells may constitute the main

subset of effector CD8+ T cells that respond to irAEs. Additionally,

Wu et al. (68) demonstrated in the in vitro experiment part, human

normal thyroid cells (NTHY) treated with nivolumab (NIVO) and

CD8+ T cells were cultured. Through a series of experiments, the

key protein AKT1 was screened out, and it was found that NIVO

could enhance the immune sensitivity of thyroid cells by

downregulating AKT1-SKP2 pathway, thereby promoting the

killing of thyroid cells by CD8+ T cells (68). However, within

the context of this study, the in vivo experiment did not verify the

killing effect of CD8+ T cells. In one of the previously mentioned

mouse experiments, pre-depletion of CD4+ T cells could completely

prevent thyroiditis, while depletion of CD8+ T cells could partially

prevent thyroiditis. The result indicates that CD4+ T cells may assist

CD8+ T cell activation, highlighting immune collaboration in ICI-

induced thyroiditis.
Pro-inflammatory effect of TH17 cells

Recent evidence highlights the critical role of TH17 cells and

their associated cellular and secreted components in the

pathogenesis and progression of AITD and irAEs (69, 70). TH17

cells, characterized by their production of IL-17A, are recognized

for their pro-inflammatory effects and have been implicated in

various autoimmune conditions (71). A scRNAseq analysis of

peripheral circulating T cells from patients with tumors treated

with ICIs revealed a significant increase in the abundance of CD4+

TH17 cells in those who developed ICI-induced thyroiditis

compared to control patients (70). This finding underscores the

association between TH17 cell expansion and the development of

thyroid autoimmune responses in the context of ICI therapies. In

addition to clinical findings, studies in tumor-bearing non-obese

diabetic (NOD) mouse models have further supported the

involvement of TH17 cells in ICI-induced thyroiditis (72).

Additionally, targeting the TH17 and gdT17 cell axis with

interleukin-17A (IL-17A) may reduce irAEs without diminishing

the antitumor efficacy of ICIs (72).
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Targeting the TH17 cell axis, particularly through the inhibition

of IL-17A, has emerged as a promising strategy to mitigate irAEs

without compromising the efficacy of ICIs in tumor control. In a

clinical trial involving stage IV melanoma patients who developed

multiple concurrent irAEs, including myocarditis, colitis, and rash,

the administration of anti-IL-17A therapy resulted in significant

regression of these adverse events, alongside an improvement in

patient symptoms (73). Importantly, the use of anti-IL-17A therapy

did not impair the antitumor effects of ICIs, demonstrating its

potential as an effective approach to managing immune-related

toxicities while preserving therapeutic efficacy.
Dysfunction of Treg cells

The activation and proliferation of autoreactive T cells are

considered crucial in the development of irAEs. Treg cells play a

central role in suppressing the activation of peripheral autoreactive

T cells. They maintain immune homeostasis by expressing immune

checkpoints that can inhibit the activation and function of other

leukocytes (74, 75). Grigoriou et al. (76) discovered that in the

peripheral blood of advanced melanoma patients who developed

irAEs (including those with ICI-induced thyroiditis) after anti-PD-

1 treatment, CD4+CD25+CD127+ Treg cells are expanded and

highly express PD-1 and CTLA-4. Moreover, the peripheral Treg

cells exhibit characteristic inflammatory transcriptional products,

such as IFNG, STAT1, RORC and STAT3. It is evident that Treg

cells exhibit an inflammatory-like phenotype in irAEs. Their

stability and immunosuppressive function can be maintained

through a feedback increase mechanism. This suggests that Treg

cells are intricately involved in the immune response related to

irAEs and may be a key factor in modulating the occurrence and

development of these adverse events.
B cells proliferation and autoantibodies
production

Beyond T cell-mediated mechanisms, emerging evidence

highlights the critical involvement of B cells and autoantibodies

in irAEs, positioning them as predictive biomarkers (77–79).

Studies have demonstrated that early reductions in circulating B

cells, alongside elevations in CD21lo B cells and plasma cells,

correlate with irAE development (80). Moreover, the severity of

the early decline in B cell counts following treatment is directly

correlated with both the duration of toxicity episodes and the

maximum toxicity grade (80). CD21lo subset, a unique memory B

cell population implicated in plasma cell differentiation, may serve

as an early predictor of ICI-induced thyroiditis (81). Consequently,

early changes in CD21lo B cells may be able to act as one of the

predictors of ICI-induced thyroiditis. The aforementioned scRNA-

seq analyses of thyroid tissues from ICI-induced thyroiditis patients

revealed infiltrating TFH and TPH cells driving thyroid cell

destruction (67). Given the established presence of ectopic GCs in

GD and HT (82, 83), it is plausible that similar GC-driven antibody
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production occurs in ICI-associated thyroid inflammation.

Furthermore, clinical trials combining B-cell-depleting agents

(e.g., rituximab) with ICIs reported reduced hypothyroidism

incidence compared to ICI monotherapy, likely attributable to

suppressed plasma cell differentiation and antibody synthesis (84).

Therefore, it is evident that B cells can be used as a monitoring

indicator for ICI-induced thyroiditis and may represent a novel

therapeutic strategy for preventing ICI-induced thyroiditis.

The progression of ICI-induced thyroiditis is often associated

with the presence of thyroid autoantibodies, which can manifest in

three patterns: pre-existing thyroid autoantibody positivity, the

emergence of new antibodies post-treatment, or an increase in

antibody levels during treatment. Previous studies have shown that

patients receiving PD-1 inhibitors are at higher risk for thyroid

disease, particularly when thyroid antibodies (TPOAb and TgAb)

are present either at baseline or develop during treatment (2). In a

study examining the relationship between antithyroid antibodies

and ICI-induced thyroiditis, the authors suggested that the presence

or increase in TPOAb and TgAb during treatment could serve as

reliable biomarkers for identifying patients at higher risk of

thyroiditis (85). Furthermore, Ghosh et al. (86) employed

autoantigen microarrays to detect 120 autoantibodies (including

thyroid antibodies) in patients with advanced melanoma. They

found that patients with fewer baseline autoantibodies experienced

earlier onset of irAEs (86). This study diverges from prior research

in that the authors suggest patients with higher baseline

autoantibodies possess a tolerance mechanism that “protects” the

body from ICI toxicity (86). These conflicting results underscore the

uncertainty surrounding the role of baseline antibodies in

predicting thyroid status. Consequently, further in-depth research

is required to clarify this issue.
Increased secretions of cytokines and
chemokines

The interplay between cytokines and chemokines in ICI-

induced thyroiditis involves complex signaling cascades that

amplify immune cell infiltration and thyroid tissue damage (87,

88). Given that organ-specific irAEs may exhibit distinct cytokine

profiles, investigating the cytokine signatures associated with ICI-

induced thyroiditis is crucial.

A prospective study that evaluated peripheral blood cytokines

and chemokines in patients with advanced malignancies

undergoing ICI treatment demonstrated that elevated baseline

serum levels of IL-1b, IL-2, and granulocyte-macrophage colony-

stimulating factor (GM-CSF), along with early decreases in the

levels of IL-8, granulocyte colony-stimulating factor (G-CSF), and

monocyte chemoattractant protein-1 (MCP-1), were significantly

correlated with the development of ICI-induced thyroiditis (89). Liu

et al. (90) discovered that early IL-16, IL-12p70, IL-17, IL-1a and C-

C motif chemokine ligand 15 (CCL15) could potentially serve as

predictive biomarkers for anti-PD-1-induced thyroiditis. The

cytokines involved in these studies (IL-1b, IL-1a, IL-2, GM-CSF,

IL-16, IL-12p70, and IL-17) are known to have pro-inflammatory
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effects in autoimmune diseases (91–97). IL-2, primarily produced

by CD4+ T cells, plays a key role in promoting TH1 polarization

(93). IL-16 is a chemokine involved in the recruitment and

activation of CD4+ T cells at inflammatory sites (98). IL-16

enhances TH1 polarization and increases the production of the

TH1 effector cytokine IFN-g (99). IL-12p70 is a key cytokine that

responds to infection and induces TH1 responses (100). It can be

inferred that ICI-induced thyroiditis is associated with a TH1-

skewed immune phenotype, a hypothesis supported by recent

studies (90). In contrast, MCP-1, which regulates the polarization

of TH0 cells toward a TH2 phenotype, decreases in the context of

ICI-induced thyroiditis, further supporting the TH1/TH2 imbalance

(101). Moreover, IL-1b plays a vital role in the differentiation of

TH17 cells, which are known to drive inflammation, autoantibody

production, and immune tolerance disruption in autoimmune

thyroid diseases by secreting cytokines like IL-17 and IL-21 (102).

The presence of cytokines and chemokines promoting TH1/TH2

imbalance, a TH17-skewed phenotype and CD8+ T effect, may

contribute to the development of ICI-induced thyroiditis, as

reflected by the observed cytokine profile.

Cytokine inhibitors have transformed the treatment landscape

of various autoimmune diseases, underscoring their potential role

in suppressing irAEs. Among the most studied cytokine inhibitors

are those targeting IL-6, IL-1, IL-17, IL-23, and IL-27 (89). Recent

studies in animal models have demonstrated that inhibiting IL-17A

can reduce the severity of ICI-induced thyroiditis without

compromising the antitumor efficacy of ICIs (72). However,

further clinical trials are needed to evaluate the safety and

effectiveness of cytokine inhibitors in patients with ICI-induced

thyroiditis. It is important to note that the cytokine profile

associated with ICI-induced immunotoxicity may differ from that

of the tumor microenvironment (TME) (103). Consequently,

targeting cytokines involved in irAEs may not necessarily impair

ICI-mediated antitumor immunity, as the immune mechanisms

driving tumor progression differ from those involved in irAEs.
Genetic factors

The impact of genetic factors on ICI-induced thyroiditis is

complex and multifaceted. Research has shown that the HLA

system, a key genetic marker, is associated with the development

of irAEs (104–106). Both classical HLA-I and HLA-II genes are

frequently implicated as drivers of this association. These molecules

play a crucial role in presenting antigenic peptides to T cells,

enabling the immune system to differentiate between self and

non-self-antigens (107). Akturk et al. (105) conducted an HLA-

DR genetic analysis in 132 advanced melanoma patients receiving

ICIs and found that specific HLA-DR alleles were linked to the

development of certain irAEs. Notably, 50% of patients with

hypothyroidism carried the DR8 allele (105). Sasaki et al. (108)

performed HLA genotyping on 71 cancer patients treated with ICIs

and identified HLA alleles A*26:01, DPA1*01:03, and DPB1*02:01

as being associated with ICI-induced thyroiditis. Specifically,

A*26:01 and DPB1*02:01 were unique to the thyroid irAE group,
frontiersin.org

https://doi.org/10.3389/fendo.2025.1584675
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mao et al. 10.3389/fendo.2025.1584675
while DPA1*01:03 was common across multiple irAE groups. These

findings highlight specific HLA genotypes as key factors in the

development of ICI-induced thyroiditis. Although the precise

mechanisms by which HLA allele variations contribute to irAEs

remain unclear, it is known that certain alleles, such as HLA-DR3,

are associated with increased susceptibility to AITD like GD and

HT (109–111). The amino acid residues linked to disease risk are

typically located in the peptide-binding groove or functional

pockets of HLA molecules, suggesting their role in antigen

presentation and protein stability (109). Therefore, alleles such as

A*26:01, DPA1*01:03, and DPB1*02:01 may facilitate the binding

of self-proteins, particularly thyroid-derived peptides, leading to a

misperception of thyroid tissue as foreign. This misrecognition can

trigger immune responses, resulting in ICI-induced thyroiditis. It is

important to note that AITD, including HT and GD, have

established genetic susceptibilities, with several key loci involved,

including HLA, CTLA-4, PTPN22, TSHR, and FCRL3 (112–114).

The overlap in genetic susceptibility between AITD and ICI-

induced thyroiditis suggests that the latter is not merely a “side

effect” of ICI treatment, but rather an exacerbation of pre-existing

autoimmune tendencies under conditions of immune activation.

Single nucleotide polymorphisms (SNPs) are DNA sequence

variations that arise from single-nucleotide changes at the genomic

level, contributing to individual differences (115). Groha et al. (116)

identified an IL-7 SNP associated with an increased risk of irAEs,

noting that patients with IL-7 germline variants exhibited greater

lymphocyte stability following ICI treatment. This suggests that

individuals harboring SNPs linked to abnormal autoimmune

activation or disrupted signal transduction pathways may be

more prone to localized hyperimmune responses, such as those in

the thyroid gland, which could lead to ICI-induced thyroiditis.

Khan et al. (117) summarized data from seven Phase III clinical

trials involving atezolizumab and chemotherapy, using a genome-

wide association study (GWAS) approach to identify shared genetic

factors for hypothyroidism. They constructed a polygenic risk score

(PRS) for validation, which revealed that risk loci in the intronic

region of the LPP gene and the PTPN22 rs2476601 (R620W)

missense variant were key contributors (117). According to

studies, LPP gene and PTPN22 are known to disrupt immune

tolerance by modulating T/B cell receptor signaling (117).

Additionally, the results highlighted other critical genes involved

in T cell initiation (CTLA4) and activation (CD69) (117). These

findings underscore the potential for genetic markers to optimize

immunotherapy risk assessment, paving the way for personalized

approaches in cancer immunotherapy. However, the molecular

mechanisms underlying susceptibility SNPs in ICI-induced

thyroiditis remain incompletely understood, necessitating further

research to clarify their role in the development of these

adverse events.
Conclusion

Among endocrine glands, the thyroid is the most commonly

affected by autoimmune disorders, and during ICI treatment, it is
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particularly susceptible to toxicity. ICI-induced thyroiditis is a

complex immunological process primarily driven by the activation

of memory T cells upon ICI exposure, which triggers a cascade of

downstream events. This leads to thyroid cell destruction through the

recruitment of cytotoxic inflammatory cells and the release of

inflammatory mediators. Consequently, the follicular structure of

the thyroid is disrupted, and the inflammatory response intensifies.

Importantly, ICI-induced thyroiditis is typically irreversible. While

levothyroxine replacement therapy can effectively restore thyroid

function during the hypothyroid phase, it does not address the

underlying immune-mediated thyroid tissue damage nor prevent

the thyrotoxic phase. Additionally, lifelong hormone replacement

therapy places a considerable burden on patients and does not

alleviate the potential severity of acute thyroiditis, such as

cardiovascular complications. Therefore, more effective treatment

strategies are needed to target the key immune mechanisms

underlying ICI-induced thyroiditis and prevent the onset of irAEs.

Based on current insights into the mechanisms underlying ICI-

induced thyroiditis, potential intervention strategies can be developed

at multiple levels. First, preventive monitoring, including regular testing

of thyroid function and autoantibody levels at baseline and during

treatment, can facilitate the early identification of high-risk patients.

Second, targeting key pathogenic pathways offers a foundation for

developing targeted therapies. For example, blocking the IL-17A

signaling pathway has been shown to alleviate thyroiditis in mouse

models while preserving the anti-tumor effects of ICIs, as demonstrated

by the use of anti-IL-17 monoclonal antibodies. Additionally, B-cell

depletion therapies, such as rituximab, have shown promise in

reducing the incidence of thyroiditis in clinical trials. Further

approaches include modulating the gut microbiota to inhibit cross-

immune reactions driven by molecular mimicry and utilizing HLA

genotype or SNP analysis to identify susceptible populations and

optimize ICI treatment regimens. The development of predictive

models such as cytokine and chemokine profiles offer a new avenue

for personalized interventions. Future research also should focus on

understanding microbiome-immune interactions, conducting single-

cell multi-omics analyses of dynamic changes in the thyroid

microenvironment, and developing novel immune modulators that

specifically block thyroid autoantigen presentation. These efforts may

lead to precise prevention and treatment strategies for ICI-related

thyroid toxicity.
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