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Methylation and gene expression
patterns in adamantinomatous
craniopharyngioma highlight a
panel of genes associated with
disease progression-free survival
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Introduction: Over the past decade, advancements in next-generation

sequencing have significantly enhanced our understanding of the molecular

pathogenesis of adamantinomatous craniopharyngiomas (ACP).

Objective: This study integrated methylome and transcriptome analyses in ACP

samples to explore the potential interplay between DNA methylation and RNA

expression signatures for diagnostic and prognostic applications in ACP patients.

Methods: This cross-sectional study evaluated clinicopathological features, DNA

methylation, and gene expression profiles in 15 patients with ACP (33% women,

age range: 3–55 years, 53% diagnosed before 18 years) treated at Ribeirao Preto

Medical School, University of São Paulo.

Results: Multidimensional scaling and principal component analysis identified

two distinct clusters (ACP-A: n=9, ACP-B: n=6) with consistent composition

across DNA methylation and gene expression profiles. While most clinical and

histopathological characteristics were similar between clusters, ACP-A exhibited

a longer median progression-free survival. ACP-B showed a higher prevalence of

hypomethylated probes in CGI sites, and 63% of differentially methylated

positions (DMPs) located in gene body regions. Differential methylation

patterns were categorized into Methyl-Set1 (hypomethylated in ACP-A and

hypermethylated in ACP-B) and Methyl-Set2 (hypermethylated in ACP-A and

hypomethylated in ACP-B). Clustering analyses based on the methylation levels
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of probes and expression levels of the stringently filtered 212- and 37-gene sets

further confirmed these two distinct ACP subgroups. Functional enrichment

analysis highlighted key roles in synaptic modulation, nervous system

development, cell adhesion, as well as pathways linked to RAS signaling,

GTPase activity, and membrane potential regulation.

Conclusion: Although clinical characteristics were largely comparable between

the clusters, ACP-B patients exhibited shorter median progression-free survival,

suggesting a more aggressive phenotype. The higher prevalence of

hypomethylation in ACP-B indicates increased transcriptional activation,

potentially driving tumor aggressiveness. The strong concordance between

methylation and transcriptomic data in the 212- and 37-gene sets underscores

their potential as a clinically relevant molecular biomarker panel. These gene sets

demonstrate robustness in distinguishing ACP clusters, making it a promising tool

for clinical sample classification.
KEYWORDS

transcriptome, molecular biomarker, progression-free survival, DNA methylation,
adamantinomatous craniopharyngioma
Introduction

Craniopharyngiomas (CPs) are rare intracranial neoplasms

located mainly at the sellar and supra-sellar regions, along the

anatomical developmental pathway of the craniopharyngeal duct

with no clear gender preference (1–4). CPs are classified into two

main subtypes: adamantinomatous (ACP) and papillary (PCP). While

both subtypes share characteristics such as anatomical location,

expression of adult pituitary stem cell markers, glial reaction

proteins, and cytokeratin, they differ in clinical, morphology,

histological features, epidemiology, and biological behavior (5, 6).

They also exhibit distinct epigenetic and molecular profiles, suggesting

they are biologically different entities (7–11).

Over the last decade with the development of next generation

sequencing methods, advancements on molecular pathogenesis of

CPs have been made, including the discovery of the BRAF p.V600E

mutation in the majority of PCPs. This mutation enhances MAPK/

ERK signaling, increasing the proliferative capacity of SOX2+ cells.

This prevents pituitary differentiation into hormone-producing

pituitary cells, resulting in cell transformation, tumor formation

and growth (10, 12, 13). In contrast, based on murine models, a

different mechanism is hypothesized for the development of ACPs.

Gain-of-function mutations in the CTNNB1 gene, present in most

ACPs, lead to the activation of the WNT/beta-catenin pathway,

which triggers SOX2-expressing cell clusters to promote the

proliferation and invasion of neighboring tissues (14–17).

Due to their proximity to critical structures such as the optic

nerve, third ventricle, hypothalamus, pituitary stalk, and internal

carotid artery and its branches, CPs are associated with significant

morbidity. This includes hypopituitarism, hypothalamic dysfunction,
02
hypothalamic obesity, visual and neurological deficits, and cognitive

impairments (5, 18, 19). Subtotal resection of CPs is linked to higher

recurrence rates, making adjuvant radiation therapy often necessary

(20). These conditions contribute to the lowest quality of life reported

among patients with pediatric and adult brain tumors (18, 21, 22),

including severe obesity (23).

Transcriptional profiling using microarrays or RNA sequencing

has underscored the importance of inflammatory, odontogenic, and

MAPK/ERK pathways in ACP growth and invasiveness. The role of

the MAPK/ERK pathway has also been demonstrated in pediatric

ACPs through proteomic data, suggesting potential therapeutic targets

(24–26). A comprehensive bioinformatic analysis of publicly data

identified hub genes that might serve as genetic markers of diagnosis,

treatment, and prognosis of ACP, confirming the involvement of

chemical synaptic transmission, cell adhesion, odontogenesis of the

dentin-containing tooth, cell junction, extracellular region,

extracellular space, structural molecule activity, and structural

constituent of cytoskeleton (27).

More recently, we conducted a comprehensive analysis of ACP

methylation data, identifying two distinct methylation signature clusters.

In this study, unsupervised hierarchical cluster analysis (UHCA)

revealed a significantly hypomethylated cluster enriched with

CTNNB1-mutated ACPs, which was associated with increased tumor

size. Gene enrichment analyses of both clusters highlighted pathways

described above involving mainly tumor proliferation and the tumor

microenvironment (28). We also showed that CTNNB1-mutated ACPs

have shorter telomeres, demonstrating a relationship between the Wnt/

b-catenin pathway and telomere biology in the pathogenesis of these

tumors (29). In another previous study, we showed that unsupervised

analysis of integrated methylome and transcriptome signatures was
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capable of classifying either functional pituitary tumors, such as

somatotrophinomas and corticotrophinomas, or non-functional

pituitary tumors. These signatures were associated with clinical

presentation and also with tumor invasiveness, which impacts the

management of the disease (30).

Common limitations in such studies include methodological

heterogeneity and reliance on publicly available cohort datasets.

Current state of genomic findings reinforces the importance of

integrating methylome and transcriptome analyses in ACPs. Here,

we addressed these issues by using a well-characterized subset of

ACP samples from a Brazilian cohort. This approach allowed us to

combine methylome and transcriptome analyses on the same

samples, with the aim of uncovering insights into the potential

integration of DNAmethylation and RNA expression signatures for

diagnostic and prognostic applications in ACP patients.
Materials and methods

Patients and biological specimens

This study was conducted in accordance with ethical guidelines,

including the Declaration of Helsinki, and received approval from

the Ethics Committee of the University Hospital at Ribeirao Preto

Medical School, University of São Paulo (FMRP-USP; approval

#7534/2010). Written informed consent was obtained from all

patients or their legal guardians.

In this cross-sectional study, we evaluated 15 subjects with

clinically diagnosed and pathologically confirmed ACP, followed at

FMRP-USP (n = 8, with data on endocrine and clinical

manifestations) or at the Federal University of Rio de Janeiro

(UFRJ, n = 7), both in Brazil. These subjects represent a subset of a

larger cohort in which the methylation profile of ACP samples was

recently analyzed (28). In the current study, additional molecular

analyses focusing on the transcriptome profile of these samples were

conducted. Demographic, clinical, biochemical, and outcome data

were collected from the patients’ medical records. The clinical

diagnosis of ACP was established following a comprehensive clinical

assessment and laboratory testing, as recommended (19).

Hypopituitarism was diagnosed in accordance with international

guidelines (31), and obesity was identified using the body mass

index (BMI) z-score (32). Data on radiological findings, treatment,

and outcomes were collected for all patients. Surgical procedures were

performed by the respective neurosurgical teams. Tumor progression

was defined as recurrence after total resection or an increase in the size

of a residual lesion requiring reoperation. Total resection was

confirmed when no residual tissue was detected, whereas partial

resection was defined by the presence of remaining tumor tissue on

postoperative imaging. All patients underwent ophthalmologic

evaluations and imaging via magnetic resonance imaging (MRI)

and/or computed tomography (CT). Lesion size was measured

along its largest axis, and tumor volume (cm³) was calculated using

the formula width × height × length × 0.5 (33). Pre- and postoperative

MRI and CT scans were analyzed by a single neuroradiologist (ACS).

Hypothalamic invasion was assessed according to Puget et al. (34).
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Histopathological diagnosis included the presence of ACP featured

characteristics, such as peripheral palisading of epithelial cells; central

stellate reticulum-like cells; nodules of “wet keratin” (anucleate,

eosinophilic material); calcifications; cystic areas containing

cholesterol-rich, brownish fluid; reactive gliosis, often accompanied

by Rosenthal fibers, and chronic inflammation in surrounding tissue.

The samples were also tested for the presence of CTNNB1

activating mutations.
Nucleic acid extraction

DNA and RNA were extracted from microdissected, fresh

frozen ACP samples using QIAamp DNA Mini Kit (QIAGEN,

Hilden, Germany) and RNeasy kit (QIAGEN, Hilden, Germany),

respectively, according to the manufacturers’ instructions.

Quantification was performed by fluorometry using Qubit

dsDNA BR and Qubit RNA BR Assays (Qubit Fluorometer,

Thermo Fisher Scientific, Waltham, MA). Integrity was assessed

by electrophoresis using the TapeStation 4200 System (Agilent,

Santa Clara, CA). We considered adequate DNA integrity number

(DIN) ≥6, and RNA integrity number (RIN) ≥7.
Molecular profiling analyses

Methylome profiling analysis
DNA methylation analysis was commissioned by the University

of Southern California Keck Genomics Platform (USC-KCP, Los

Angeles, CA, USA) using the Infinium Methylation EPIC BeadChip

Array (Illumina, San Diego, CA, USA). Raw intensity files provided

by the facility were then processed through a standard quality control

pipeline established by our team, as previously described (28). The

minfi R package (v1.30.0) was used for data preprocessing and to

report methylation levels as M-values [log2(methylated/

unmethylated)] (35, 36). Bias correction was performed using the

preprocessQuantile function (37). Data filtering was applied to

remove probes with a detection P-value greater than 0.01, probes

located on sex chromosomes, probes containing single nucleotide

polymorphisms at CpG sites, and cross-reactive probes (38). The

genomic annotation of the CpG sites was assessed according to

Illumina’s manifest file version 0.3.0. Their localization relative to

gene sub-regions was categorized as TSS1500 and TSS200 (1,500 and

200 bp upstream transcription star sites, respectively), and 5’UTR

(5’ untranslated region, between TSS and the ATG start site)—which

comprehended the gene’s TRR; the gene’s first exon; body (between

the ATG and stop codon); exon boundary, and 3’UTR (between the

stop codon and poly A signal). DMPs localization relative to CpG

islands (CGIs) was categorized as Shore - up to 2 kb upstream (N)

and downstream (S) of the CGI, Shelf - 2–4 kb upstream (N) and

downstream (S) of the CGI, and Open Sea.

In addition, we submitted our methylation raw data files (.IDATs)

to the Heidelberg EpiGnostix platform (CNS Tumor Methylation

Classifier v12.8) (39), which enables robust epigenetic comparison

against central nervous system (CNS) tumor profiles, as defined by the
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latest World Health Organization guidelines. This analysis classifies

samples as matching to a defined DNA methylation class (“match”:

scores ≥ 0.9), or “no match” (scores < 0.9) which is still relevant for

cases with low tumor content or poor DNA quality, being scores > 0.3

relevant only for superfamily matching prediction (39).

Methylation data are publicly available in the NCBI’s Gene

Expression Omnibus (GEO) under accession number GSE239695 (40).

Transcriptome profiling analysis
RNAseq analysis of ACP was also commissioned to the USC-

KGP. Briefly, total RNA was used in ribosomal RNA (rRNA)

depletion (NEB E6310), which was subsequently fragmented to a

target size of 180 bp by heat fragmentation. RNA library

preparation, cDNA conversion and polyA selection were

performed using the NEBNext® Ultra™ II Directional RNA

Library Prep Kit for Illumina (E7765, New England Biolabs)

according to the manufacturer’s instructions. Each library was

normalized and pooled the same day of sequencing. The 101*101

paired-end sequencing was performed on Illumina’s NovaSeq 6000,

using the NovaSeq S4–200 cycles flow cell (Illumina, San Diego,

CA) V1 chemistry. All sequencing reads were converted to industry

standard FASTQ files using BCL2FASTQ v1.8.4, and provided by

the facility. The FASTQ files were merged and aligned to the human

genome version GRCh38 using STAR v2.5.3a (40). Duplicate reads

in the aligned BAM files were identified using Picard Mark

Duplicates (v1.128). Counting reads for the genomic features was

obtained with featureCounts (v1.6.0) (41). We applied variance-

stabilizing transformation (VST) to the read counts for downstream

analysis (42). Transcriptome data are publicly available in the

NCBI’s GEO under accession number GSE294056 (43).

Unsupervised clustering analyses
Multiple unsupervised approaches were employed independently

in each dataset (Methyl- and Transcript-datasets) to cluster ACP

samples. In Methyl-dataset analysis, we employed post-quality control

M-values. In Transcript-dataset analysis, we counted matrix read-

counts after VST. For both datasets, we conducted multidimensional

scaling (MDS) analysis using Euclidean distance as the dissimilarity

metric to visualize the results, and performed a principal component

analysis (PCA). The procedures were implemented using the packages

“stats” (44), “Pvclust” (45), and “FactoMineR” (46).

Methylation and differential gene expression
analyses

In order to identify the differentially methylated probes (DMPs)

between the clusters obtained by the Methyl-dataset analysis —

ACP-A and ACP-B —, we followed our previously described

pipeline (40). Briefly, the median probes’ M-values were

compared between the clusters using the Mann-Whitney U test

and the Benjamini-Hochberg method to adjust the false discovery

rate (Padj), and considering DMPs those with Padj ≤ 0.05. After

annotating the DMPs according to the Illumina’s B4 v1.0 manifest,

we categorized them based on their relative location in CpG islands

(CGIs) and genetic subregions. We next evaluated the association of

these categories with cluster formation using the chi-square test.
Frontiers in Endocrinology 04
Finally, the most informative DMPs were selected, namely: (i)

Methyl-Set1, those hypomethylated in all ACP-A samples and

hypermethylated in all ACP-B samples (M-values ACP-A < 0 <

M-values ACP-B); and (ii) Methyl-Set2, those hypermethylated in

all ACP-A samples and hypomethylated in all ACP-B samples (M-

values ACP-A > 0 > M-values ACP-B).

In order to evaluate differentially expressed genes (DEGs)

between the clusters obtained by the Transcript-dataset analysis

— ACP-A and ACP-B— we used the DESeq2 package (47). We set

the significance threshold for differential expression at a Padj ≤ 0.01

and an absolute value of log2 fold-change (FC) ≥ 2. We chose to

employ rigorous criteria when assessing changes in gene expression

fold differences between the two ACP clusters.

Correlation between methylation and gene
expression

We examined whether differences in median methylation in

probes overall and transcriptional regulatory regions (TRRs) among

clusters corresponded to the expression patterns of the genes they

regulate. To explore the correlation between methylation and gene

expression, we accomplished two distinct approaches. Approach I:

focus on methylation dynamics by correlating the M-values of the

probes within Methyl-Set1 and Methyl-Set2 with the matrix reads

of the respectively queried genes. Then, we distinguished the subset

of probes targeting the genes’ TRRs, estimated the median genes’

M-values and, subsequently, correlated them with the respective

genes’ expression values. Approach II: focus on gene expression

dynamics by correlating the matrix reads of the DEGs within

clusters with their corresponding targeted methylation probes.

We identified TRR-related probes, calculated their median M-

values, and performed correlation analyses, evaluating the

expression of a gene regulated by the methylation of its promoter.

In addition, we narrowed down this approach by considering only

the genes whose probes were within Methyl-Set1 or Methyl-Set2.

We employed the Pearson correlation coefficient (r) for all

correlation calculations and considered values with r ≤ -0.7 or r ≥

0.7 and Padj ≤ 0.05 as statistically significant. These calculations

were implemented using the “Hmisc” package in R (48).

Enrichment analysis
We performed Gene Ontology (GO) enrichment analysis for

biological processes of methylation data, taking into consideration

two distinct sources of bias: the number of DMPs per gene and

DMPs annotated across multiple genes. We employed the “gometh”

function from the missMethyl Bioconductor package (49) selecting

terms exhibiting over-representation with a significance threshold

of P ≤ 0.05. Furthermore, we conducted GO enrichment analyses

using the relevant gene-sets identified in each approach of our

analyses (P ≤ 0.05) using the “enrichGO” function from the

clusterProfiler package (50).

Statistical analysis
Continuous or discrete variables were reported individually,

collapsed (mean and median) or as percentage, as informed in

figure legends and tables. The association with statistically
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significant categorical variables distribution between groups was

calculated using the chi-square test. Differences of continuous

variable distribution between groups were calculated using the

Mann Whitney-U test. Progression-free survivals (PFS) was

analyzed using Kaplan–Meier curves and was defined as the time

elapsed from diagnosis until the last follow-up, considering

metastasis/recurrence as unfavorable events. Patients who were

lost to follow-up were censored considering their last follow-up

visit. Log-rank test was used for the comparison of survival rates

between groups. The minimum level of statistical significance was

set at P-value ≤ 0.05, but more stringent options are also presented

when appropriate. All analyses were implemented in R statistical

language (version 4.3.0) (44).
Results

Patients and clinical presentation

Table 1 summarizes the demographic, clinical, and molecular

features of the patients with ACPs. Amongst the 15 patients with

ACP, 33% were women. Based on self-reported skin color, 53%

declared to be brown, 40% white, and 7% black. The median age at

diagnosis was 15 years [range: 3 – 55], being 53% of the patients

diagnosed before 18 years of age. At baseline – time of the first

surgical procedure – among those with clinical and endocrine data

available, 50% were overweight or obese, and we observed

neurological [headache (89%), visual field alteration (75%), and

convulsive seizure (25%)], hypothalamic (vomiting (33%), no

hyperphagia nor hypersomnia), and pituitary deficiency findings

(hypopituitarism in 64%, being at least one hormone deficiency in

67% and 33% presented with two deficiencies). Only 22% of the

patients presented AVP deficiency at diagnosis. All tumors

evaluated presented calcified lesions (100%), and most were solid-

cystic (92%). The tumors’ median size was 2.8 cm (1 - 3.4), and the

median volume 9.8 cm3 (3 - 38.6). Regarding hypothalamic

involvement, most of the tumors - 79% - were classified as type 2,

14% as type 1, and 7% with no invasion (type 0).

All patients underwent surgical treatment. Transcranial

approach was more frequent than transsphenoidal (86 vs 14%).

Partial tumor resection occurred in 87% of the patients. One surgery

was performed in 6 (40%) patients, whereas 7 (47%) underwent two

surgeries, and 2 (13%) more than two surgeries. Recurrence

occurred in 69% of the patients; median time to tumor

progression was 31 months (4 – 148), and 7 (47%) received

adjuvant radiotherapy. Only one patient (7%) died, as a result of

infection after surgical procedure. From available data on the

clinical outcomes, we observed increasing frequency of hormone

deficiencies during the follow-up after treatments (median: 60.2

months, range: 18 - 437): AVP (22 vs 73%), LH/FSH (22 vs 53%),

GH (44 vs 53%), TSH (11 vs 73%), and ACTH (0 vs 73%). The

number of patients with at least one affected axis increased after

treatment from 89 to 100%. Hypersomnia (0 vs 12.5%) and

hyperphagia (0 vs 62.5%) also increased, as well obesity (25 vs 75%).
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These data obtained from the current subset of patients with

methylome and transcriptome data were similar with data obtained

from the entire cohort (28).

Molecular profiling analyses
In order to illustrated and summarize the studies of ACP’s

methylation (Approach I) and transcriptome (Approach II)

profiling analyses, a flowchart is presented in Figure 1.

Methylation and gene expression profiles yield
the same clustering of ACP samples

Methyl-dataset was composed by 772,531 probes filtered in after

the quality control step [available at reference (40)], whereas

Transcript-dataset consisted of 61,860 genes annotated into reference

genome GRCh38 (Supplementary Table S1). The multidimensional

scaling (MDS) analysis performed using both datasets from the ACP

samples individually rendered two well defined clusters. Interestingly,

the composition of the clusters for both DNA methylation and gene

expression profiles contained the same ACP samples, and were named

ACP-A (n = 9) and ACP-B (n = 6) (Figures 2A, C). PCA analyses

conducted with these datasets also confirmed the existence of two

clusters with the same composition of ACP samples (Figures 2B, D).

With exception of higher incidence of convulsive seizures in patients

from cluster ACP-B, most demographic, clinical, histopathological,

neuro-ophthalmological, and radiological characteristics of ACP

patients at baseline did not differ in the clusters. Throughout the

follow-up, there were no differences in the frequencies of tumor

progression (62% and 80%, P > 0.9), in of patients submitted to

more than one surgical proceeding (55 vs 67%, P = 0.67), nor

submitted to adjuvant radiotherapy (56% vs 33%, P = 0.61).

However, even considering the small sample size, the median disease

PFS tended to be higher in subjects from cluster ACP-A than from

ACP-B (140.1 vs 25.1 months; P = 0.1, Figure 3).

The EpiGnostix analyses demonstrated that samples from cluster

ACP-A (ACP_002, ACP_003, ACP_008, ACP_015, and ACP_023)

were characterized as typical of midline tumors, particularly CPs.

Samples ACP_002 and ACP_023 presented matching classification

scores (≥ 0.9) confirming canonical methylation signature associated

with CPs, whereas samples ACP_003 and ACP_008, even

exhibiting not matching classifier scores (0.6 and 0.8, respectively),

were also predicted to CP family. Notably, ACP_015, predicted to be a

benign meningioma (score 0.93), was also included in the

cluster ACP-A. All tumors in Cluster A were MGMT promoter

unmethylated. Cluster ACP-B included samples ACP_004,

ACP_010, ACP_012, ACP_019, and ACP_024. Samples ACP_004

(score 0.94) and ACP_012 (score 0.4) matched with

reactive microenvironmental tissue family, which likely represent

samples with low tumor cellularity and predominance of stromal or

inflammatory glial elements. ACP_010 yielded a non-

informative result (score <0.3), suggesting possible DNA

degradation. Samples ACP_019 and ACP_024 (both scores >0.9)

corresponded to low-grade glial or glioneuronal tumors. Only

ACP_019 exhibited MGMT promoter methylation across cluster

ACP-B.
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TABLE 1 Demographic, clinical, histopathological, and molecular features of patients with adamantinomatous craniopharyngioma (ACP) at baseline
and according to the molecular clusters.

Features All ACP ACP-A ACP-B P-value ACP-A vs ACP-B

Demographic

Patients, n (%) 15 (100) 9 (60) 6 (40) –

Reference center, n (%)

FMRP-USP 8 (53) 4 (44) 4 (67) 0.60

UFRJ 7 (47) 5 (56) 2 (33)

Sex, n (%)

Men 10 (67) 8 (89) 2 (20) 0.09

Women 5 (33) 1 (11) 4 (80)

Age at diagnosis (years)

Mean 20.7 21.2 20 0.67

Median 15 12 17

Range 3 - 55 3 - 55 7 - 49

< 18 8 (53) 5 (56) 3 (50) 0.83

18 – 60 7 (47) 4 (44) 3 (50)

Self-reported skin color, n (%)

Brown 8 (53) 3 (33) 5 (83) 0.16

White 6 (40) 5 (56) 1 (17)

Black 1 (7) 1 (11) 0 (0)

Endocrine and clinical manifestations *

Time interval between the appearance of signs and symptoms and the diagnosis (months)

Mean 19.1 13 27.3 0.68

Median 18 15 18

Range 1 – 60 1 – 21 4 – 60

Time interval between the diagnosis and the initial surgical treatment (months)

Mean 16.7 5.4 33.7 0.86

Median 5.1 5.1 4.3

Range 0.3 – 176.2 0.3 – 10.9 0.7 – 176.2

Hypopituitarism, n (%)

Present 7 (48) 5 (46) 2 (33.3) >0.99‡

Absent 4 (26) 2 (27) 2 (33.3)

Not available 4 (26) 2 (27) 2 (33.3)

Pituitary hormone deficiencies - per axis**, n (%)

ACTH 0 0 0 0.81

GH 4 (22) 3 (33) 1 (11)

LH/FSH 2 (11) 1 (11) 1 (11)

TSH 1 (6) 0 1 (11)

AVP 2 (11) 1 (11) 1 (11)

None 1 (6) 0 1 (11)

(Continued)
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TABLE 1 Continued

Features All ACP ACP-A ACP-B P-value ACP-A vs ACP-B

Endocrine and clinical manifestations *

Not available 8 (44) 4 (45) 4 (45)

Body mass index classification***

Underweight, n (%) 1 (7) 0 1 (17) 0.66

Healthy weight, n (%) 3 (20) 1 (11) 2 (33)

Overweight, n (%) 2 (13) 2 (22) 0

Obesity, n (%) 2 (13) 1 (11) 1 (17)

Not available 7 (47) 5 (56) 2 (33)

Nonspecific symptoms of increased intracranial pressure, n (%)

Headache, n (%)

Present 8 (53) 4 (44.5) 4 (67) 0.34‡

Absent 1 (7) 1 (11) 0

Not available 6 (40) 4 (44.5) 2 (33.3)

Nausea, n (%)

Present 3 (20) 1 (11) 2 (33.3) 0.52‡

Absent 6 (40) 4 (44.5) 2 (33.3)

Not available 6 (40) 4 (44.5) 2 (33.3)

Convulsive seizures, n (%)

Present 2 (13) 0 2 (33) 0.03‡

Absent 6 (40) 5 (56) 1 (17)

Not available 7 (47) 4 (44) 3 (50)

Visual impairment, n (%)

Present 9 (60) 5 (56) 4 (67) >0.99‡

Absent 3 (20) 2 (22) 1 (16.5)

Not available 3 (20) 2 (22) 1 (16.5)

Primary lesion features

Size (cm)

Mean 2.4 2.2 2.5 0.74

Median 2.7 2.3 2.7

Range 1– 3.4 1 – 3.2 1.2 – 3.4

Volume (cm3)

Mean 13.4 13 13.5 0.43

Median 9.8 9.9 6.4

Range 3 – 38.1 8 – 26.7 3 – 38.6

Macroscopic classification, n (%)

Solid 1 (7) 1 (11) 0 0.99‡

Solid-cystic 12 (80) 6 (67) 6 (100)

Not available 2 (13) 2 (22) 0

(Continued)
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TABLE 1 Continued

Features All ACP ACP-A ACP-B P-value ACP-A vs ACP-B

Primary lesion features

Hypothalamic invasion

Type 0 1 (7) 1 (11) 0 0.47‡

Type 1 2 (13) 2 (22) 0

Type 2 11 (73) 5 (56) 6 (100)

Not available 1 (7) 1 (11) 0

Primary lesion – treatment features****

Surgical approach, n (%)

Transcranial 12 (80) 7 (78) 5 (83) 0.99‡

Transsphenoidal 2 (13) 1 (11) 1 (17)

Not available 1 (7) 1 (11) 0

Resection, n (%)

Total 2 (13) 2 (22) 0 0.48

Partial 13 (87) 7 (78) 6 (100)

Tumor progression, n (%)

Present 9 (60) 5 (56) 4 (66) >0.99‡

Absent 4 (27) 3 (33) 1 (17)

Not available 2 (13) 1 (11) 1 (17)

Radiotherapy throughout follow-up, n (%)

Present 9 (60) 5 (56) 2 (33) 0.61

Absent 8 (40) 4 (44) 4 (67)

Follow-up (years)

Mean 105.2 127 72.5 0.22

Median 60 72.6 44.4

Range 18 - 437 18.4 - 418 18 – 210.1

Outcome, n (%)

Alive 14 (93) 8 (89) 6 (100) > 0.9

Deceased 1 (7) 1 (11) 0 (0)

Somatic CTNNB1 genotype, n (%)

Wild type 3 (20) 1 (11) 2 (33.3) 0.2‡

Mutant 10 (67) 8 (89) 2 (33.3)

Not evaluated 2 (13) 0 2 (33.3)
F
rontiers in Endocrinology
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‡Patients whose data were unavailable, or those who were lost to follow-up, were not included in the analyses.
*Endocrine and clinical manifestations data are available only for patients from FMRP-USP.
**Some ACP patients present with more than one pituitary hormone deficiency.
***Body mass index was classified according to age and sex percentiles in patients younger than 20 years at diagnosis (CDC) or according to WHO in patients older than 20 years at diagnosis.
****Therapeutic approach consisted of surgical resection of primary-naïve lesions for radiotherapy, chemotherapy or local immunotherapy followed by radiotherapy after the initial surgery or
during follow-up.
Differences between the variables in the groups were assessed using chi-square or Fisher’s exact tests (discrete), and t test or Mann-Whitney test (continuous).
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FIGURE 1

Summary of methylation and transcriptome profiling analyses flowchart and the main findings of the study. (A) Unsupervised clustering analyzes
from the tumor samples from 15 patients with adamantinomatous craniopharyngiomas (ACPs) were performed using multidimensional scaling (MDS)
and principal component analysis (PCA) considering the methylation (M-values) and expression (read-counts) values. (B) Identification of differentially
methylated probes (DMPs) and differentially expressed genes (DEGs) between the clusters. (C) Integrating methylation and expression data using
Pearsons’ correlation analyses. Approach I: focus on methylation dynamics by correlating the M-values of the probes within Methyl-Set1 and Methyl-
Set2 with the matrix reads of the respectively queried genes. Approach II: focus on gene expression dynamics by correlating the matrix reads of the
DEGs within clusters with their corresponding targeted methylation probes.
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FIGURE 2

Unsupervised clustering of tumor samples from 15 patients with adamantinomatous craniopharyngiomas (ACPs) according to methylation and gene
expression data independently supported the existence two well defined clusters with the same sample composition: ACP-A (gray circles) and ACP-
B (black triangles). Two analyses were applied: multidimensional scaling (MDS) and principal component analysis (PCA). (A, B) Methylation values (M-
values) from all 772,531 eligible methylation probes. (C, D) Expression values (read-counts matrix applied to the variance stabilizing transformation)
from 61,860 genes. (E, F) Methylation and expression values from a panel of 37 genes whose transcription regulating regions (TRR) methylation state
were strongly and significantly correlated with their expression levels (list presented in Figure 1).
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Differential methylation and expression analysis
between ACP clusters

A total of 50,465 probes were differentially methylated between

the clusters ACP-A and ACP-B (Supplementary Table S2). ACP-B

had a greater number of hypomethylated probes (18,936 probes vs

15,130 in ACP-A), while ACP-A had the highest number of

hypermethylated probes (35,335 probes vs 31,528 in ACP-B)

(Figure 4A). In both clusters, CGI sites were hypomethylated;

however, ACP-B maintained the lowest methylation status of

CGI. Hypermethylation was a feature of non-CGI sites and

globally. Considering the DMPs distribution according to CpG

island location, we observed that 69% are situated in the OpenSea.

Both the Shelf-N and Shore-N, as well as the Shelf-S, Shore-S

regions, exhibited a significant association with the methylation

status of the clusters (chi-square test P≤ 0.05; Supplementary Table

S3), with ACP-B displaying the greatest hypomethylation

(Supplementary Figure S1). The same was observed when

considering the DMPs location in the genes sub-regions (1stExon,

3 ’UTR, 5 ’UTR, Body , ExonBnd , TSS1500 , TSS200) :

hypomethylation in ACP-B and hypermethylation in ACP-A

(Supplementary Figure S2). Of note, most DMPs (63%) were

found in the genes’ body region. The analysis of the differential

gene expression between the clusters revealed 2,253 DEGs

(Supplementary Table S4): 1,850 were up-regulated and 403 were

down-regulated in ACP-B compared to ACP-A (Figure 4B).

We observed that processes such as synaptic modulation,

nervous system development (glial cell differentiation, gliogenesis,

learning, behavior), response to stimuli, and cell adhesion are

enriched in both, methylation and transcriptome levels

(Figures 4C, D).

The impact of DNA methylation on gene
expression regulation

We observed that 75% of the DMPs share the same methylation

state - either hypomethylated or hypermethylated - across both

clusters (Supplementary Figure S1). Therefore, we refined our

analysis to focus on the 1,105 DMPs that highlight differences in

methylation status between the clusters, referred to as Methyl-Set1

(n = 202; hypomethylated in all ACP-A samples and
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hypermethylated in all ACP-B samples) and Methyl-Set2 (n =

903; hypermethylated in ACP-A samples and hypomethylated in

all ACP-B samples) (Approach I; Figure 1C left panel;

Supplementary Table S5). Within these Methyl-Sets, we identified

339 probes annotated to genes’ transcriptional regulatory regions

(TRRs) distributed as follows: 27% targeting TSS1500, 15%

targeting TSS200, 49% targeting the 5’UTR, and 9% targeting the

1st Exon. These TRR-associated probes were annotated to 263

unique genes (Supplementary Table S6).

In order to evaluate the influence of DNA methylation on the

gene expression, we examined the overlap between genes with

differential TRR methylation and those showing differential

expression between the clusters. Amongst the 49 genes identified

from Methyl-Set1, only one hypomethylated gene (corresponding

to 2%), the NACC2, was also differentially expressed, but

interestingly, underexpressed. For the 234 genes represented by

the probes in Methyl-Set2, 50 genes overlapped with DEGs: 49

genes exhibited the typical pattern between methylation and

expression (hypomethylation in the TRR in Methyl-2 and

upregulation in ACP-B; Supplementary Table S7) with an

exception of the PRRX2 gene, which displayed an atypical pattern

of methylation and gene expression. We also evaluated the

correlation between the M-values and the expression levels of the

residual probes from the Methyl-Sets which overlapped with non-

DEGs: 48 genes from Methyl-Set1 and 184 from Methyl-Set2

(Supplementary Table S7). This approach rendered a total of 27

genes whose methylation levels were strong and significantly

correlated with their expression levels. Amongst these genes, 10

exhibited whole TRR methylation behavior akin to that of

individual probes, like the ZBTB18 gene, for example, whose TRR

was hypomethylated and negatively correlated with its expression

levels (Supplementary Figure S3).

We next evaluated whether the 2,253 DEGs between ACP-B

and ACP-A (Supplementary Table S4) were influenced by their own

promoter methylation (Approach II, Figure 1C right panel). Firstly,

we calculated the correlation between the M-values and the

expression values of 21,927 probe/DEG pairs (Supplementary

Table S8A). Among these, 1,639 (7.5%) probe/DEG pairs were

significantly correlated, being 1,416 (86.4%) negatively correlated:
FIGURE 3

Kaplan-Meier plot presenting the disease progression-free survival of 15 patients with adamantinomatous craniopharyngiomas (ACP) according to
the clustering resulted from DNA methylation and gene expression profiling.
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1,338 hypomethylated probes/up-regulated genes and 78

hypermethylated probes/downregulated genes in ACP-B; and 223

(13,6%) were positively correlated: 35 hypomethylated probes/

downregulated genes and 188 hypermethylated probes/up-

regulated genes (Figure 5A). We next narrowed down our

analysis by selecting only the probe/DEGs pairs whose probes had

different methylation states between clusters: those from Methyl-

Set1 or Methyl-Set2. We identified 67 probes from Methyl-Set1

interrogating 52 DEGs (41 up- and 11 downregulated) and 416

probes from Methyl-Set2 interrogating 203 DEGs (201 up- and 2

downregulated), yielding a total of 255 genes. Among these genes, a

set of 212 (84%) genes were strongly and significantly correlated

with their TRR methylation levels/status between clusters: 24

hypermethylated DMPs representing 11 down-DEGs and 408

hypomethylated DMPs associated with 201 up-DEGs (Figure 5B,
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Supplementary Table S8B). Further narrowing down the analysis,

we searched within these 212 gene-set for those that replicated the

methylation state of their entire TRR, and we identified 37 genes (36

upregulated and 1 downregulated: MEOX1; Figures 1, 5C,

Supplementary Table S8C). Among these, we found some key

genes previously reported to be involved in tumor invasion and

progression in other types of tumors, such as GPM6A, ABAT,

GFAP, and AQP4.

Interestingly and of clinical interest, we replicated the clustering

analyses (MDS and PCA) using the methylation levels of the probes

annotated to 212- and 37-gene sets, and their expression values.

Again, either for methylation or for gene expression, we observed

two well defined clusters with the same composition of ACP

samples using all the data generated by methylated and

transcriptome profiling (Figures 2E, F).
FIGURE 4

Analysis of differential DNA methylation and gene expression between the clusters ACP-A and ACP-B. (A) Distribution of differentially methylated
probes status between the clusters. (B) Volcano plot showing the differential gene expression between the clusters ACP-A and ACP-B (median
expression difference Padj ≤ 0.01 and an absolute value of log2). (C, D) Enriched biological processes from genes with differentially methylated
probes and with differential expression, respectively.
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FIGURE 5

Analysis of the methylation profile of differentially expressed genes (DEGs) between the clusters and identification of a gene panel of clinical interest
resulting from the approach II described in the manuscript and summarized in Figure 1. (A) Histogram showing the correlation between the
methylation levels (M-values) of probes and expression values (read-counts) of their respective annotated DEGs. Highlighted are the relationships
between probe methylation levels and expression, with ACP-B as reference. Hyper_Down: hypermethylated probe/downregulated gene Hyper_Up:
hypermethylated probe/upregulated gene. Hypo_Down: Hypomethylated probe/downregulated gene. Hypo_Up: hypomethylated probe/
upregulated gene. (B, C) Scatter plots of gene expression (log2 fold-change) and mean methylation difference. Each point represents a CpG-gene
pair (n = 212; B) or transcription regulatory region (TRR) methylation-gene pair (n = 37; C), emphasizing pairs with a strong and significant Pearson’s
correlation. (D, E) Enriched biological processes from gene-sets composed by the 212 CpG-gene and 37 TRR methylation-gene pairs, respectively.
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When studying the enriched biological processes in the genes

targeted by DMPs, as well as those obtained from differential

expression analyses (Supplementary Tables S9A-C), we observed

that the same processes such as synaptic modulation, nervous

system development - glial cell differentiation, gliogenesis,

learning, behavior, response to stimuli, and cell adhesion -

were also enriched when considering the genes composing the

212- and 37- gene sets. In addition, we also identified genes

belonging to the protein RAS and GTPase signaling transduction,

dicarboxylic acid transport, and membrane potential regulation

(Figures 5D, E).
Discussion

In this study, we analyzed the transcriptome of a subset of ACP

samples for which the methylation profile had been previously

characterized (28), integrating DNA methylation with RNA

signatures. The demographic, clinical, biochemical, imaging,

treatment, and outcome data from these patients closely matched

the data from our overall cohort (28) and the literature (5, 29).

Unsupervised analyses of methylation and gene expression profiles in

ACP samples revealed two distinct clusters (ACP-A and ACP-B), with

consistent grouping across both datasets, as confirmed by MDS and

PCA analyses. Considering that both groups consisted of ACP

samples and given the inherently unpredictable nature of these

tumors, as well as concerns about the small sample size, further

investigation is required to fully understand the clinical implications of

these clusters’ classification. Importantly, we would like to emphasize

that, although some important between-clusters differences did not

fulfill statistical significance, they may still be clinically relevant, and

may indicate an important trend that deserves to be explored.

To investigate cluster-specific differences, we identified

differentially methylated probes (DMPs) and differentially

expressed genes (DEGs) between them. Both clusters exhibited

hypomethylation at CpG island (CGI) sites, with ACP-B showing

the lowest levels in CGI sites and overall. In mammals, the inhibition

or activation of transcription by methylation is dependent on the

gene segment analyzed: methylation in the promoter is inversely

correlated with the expression, whereas methylation in the gene body

is positively correlated with expression (51). As a hallmark of

neoplasms development, global tumor DNA hypomethylation

increases as a lesion progresses from a benign proliferation of cells

to an invasive cancer, and it is associated with a higher transcriptional

activation (52, 53). In this sense, the ACP-B hypomethylation profile

suggests a more aggressive biological behavior, which is in line with

the tendency of lower PFS observed in the patients in this cluster.

Indeed, 63% of DMPs found in our study were annotated to gene

body regions and were also hypomethylated in ACP-B. The same

pattern was observed in OpenSea regions and nearby shores and

shelves. These regions are typically linked to gene silencing and the

modulation of regulatory environments, influencing chromatin

structure and transcriptional activity, highlighting the importance

of non-CGI methylation patterns in genomic stability and

transcriptional control (53).
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Since in our study, 75% of DMPs maintained the same

methylation state across both clusters, we analyzed the most

informative probes from Methyl-Set1 and Methyl-Set2, what

revealed distinct methylation patterns. We focused on DMPs linked

to TRRs, which regulate transcription initiation (TSS1500 and

TSS200), translation and mRNA stability (5’ UTR), and gene

expression (1st Exon). These probes were associated with unique

genes, suggesting that methylation at these sites may influence gene

expression and impact biological processes in both clusters (53, 54). In

Methyl-Set1, only one hypomethylated gene, NACC2 (2%), deviated

from the typical pattern where hypomethylation enhances gene

expression, suggesting that NACC2 may be regulated by additional

epigenetic mechanisms. NACC2 encodes a protein that acts by

protein-protein association functioning as a transcriptional

regulator, controlling the expression of genes involved in neural

development and differentiation, and in developmental signals,

potentially as a tumor suppression (55). In Methyl-Set2, 50 genes

overlapped with DEGs, mostly following the expected

hypomethylation-upregulation pattern, except for PRRX2 (Paired

Related Homeobox 2 gene), a transcription factor crucial for

embryonic development and mesodermal differentiation (56).

Inhibition of PRRX2 was previously correlated with lower

expression of genes controlling epithelial-mesenchymal transition, a

process linked to cancer progression (57), specially through

inactivation of Wnt/b-catenin pathway (58) — a hallmark of ACP.

The finding that such an important gene as PRRX2, hypomethylated

and downregulated in ACP_B, suggest that gene expression may be

influenced by alternative regulatory mechanisms beyond DNA

methylation. Correlation analysis, which has been extensively

utilized to explore the relationship between methylation and gene

expression (59, 60), revealed genes whose methylation levels strongly

correlated with their expression, even without differential expression

between clusters. Ten genes, including ZBTB18, exhibited consistent

TRR hypomethylation pattern linked to increased expression. This

suggests that although these genes might not exhibit differential

expression between the clusters they may still be regulated by

methylation or other mechanisms like miRNA interactions, which

can act alongside or against DNA methylation in gene regulation (59,

61, 62). ZBTB18 plays a crucial role in brain development, neural

progenitor cells differentiation, cell proliferation, and migration (59,

62). In these contexts, ZBTB18 expression regulates several pathways

in glioblastoma (63), which are also active in ACP microenvironment

and clearly related to tumor development.

Correlation analysis also identified 212 genes potentially regulated

by promoter methylation, with 37 genes (36 upregulated, 1

downregulated) showing consistent TRR methylation patterns.

Clustering analyses based on methylation and expression levels of

these 212- and 37-gene sets replicated the same composition of ACP

samples in ACP-A and ACP-B clusters, when using all the data

generated by the entire data from methylated and transcriptome,

reinforcing their biological relevance. Notably, this gene set could

serve as a clinically valuable biomarker panel to distinguish ACP

patient groups regarding disease PFS (ACP-A: 140.1 vs. ACP-B: 25.1

months). The observed consistency across both methylation and

transcriptomic data underscores the robustness of this gene-set as a
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marker for segregating clinical samples into these distinct

ACP clusters.

Within the 37-gene-set, we highlight GPM6A (Glycoprotein

M6A), ABAT (4-Aminobutyrate Aminotransferase), GFAP (Glial

Fibrillary Acidic Protein), and AQP4 (Aquaporin-4), known to play

roles in tumor invasion and progression within various cancers.

GPM6A is a membrane glycoprotein primarily involved in neuronal

development and plasticity. Recent studies suggest its role in cancer

progression, particularly in brain tumors, by influencing cell adhesion,

migration, and invasion. It may contribute to glioma and other neural-

origin cancers by affecting neural-like pathways in tumor cells (64).

ABAT encodes an enzyme responsible for GABA catabolism at the

mitochondrial matrix level. It plays an essential role in the nucleoside

salvage pathway and its deficiency leads to neurometabolic disorder

and loss of mitochondrial DNA copy number (65). Decreased ABAT

gene expression, including due to hypermethylation, was shown to be

associated with aggressive tumor behavior, resistance to adjuvant

chemotherapy, and poor prognosis in some primary non-CNS

cancers, such as breast, liver and adrenocortical carcinomas (66–68).

On the other hand, ABAT appears to play a tumor-promoting role in

certain metastatic settings, particularly those involving the nervous

system, such as disseminated medulloblastoma and breast cancer

brain metastases, suggesting that these tumors can utilize ABAT to

exploit neuronal GABA as a readily available energy source (69). In

line, our data showed that ABAT is not repressed by methylation, but

it is in fact hypomethylated throughout its entire TRR and

overexpressed in ACP samples from cluster ACP-B, what could

render mitochondrial metabolic advantages for tumor proliferation

and disease recurrence in these patients. GFAP is key intermediate

filament protein in astrocytes, used as a marker for gliomas and

astrocytomas. It plays a role in maintaining the integrity of the glial

network but is also implicated in glioblastoma progression. GFAP-

positive gliomas are known for their aggressive and invasive nature

(70). AQP4 is a water channel protein primarily found in the brain

and involved in maintaining fluid homeostasis. In glioblastomas and

other brain tumors, AQP4 has been linked to increased edema, tumor

cell migration, and invasion. Targeting AQP4 has been explored as a

potential strategy for reducing tumor-associated swelling and spread

in malignant gliomas (71). Therefore, each of these genes has

significant roles in cancers, particularly in gliomas, and now our

data also suggest their role in ACP, where they might contribute to

invasion, metabolic shifts, and tumor microenvironment changes.

Thus, a gene panel, including these genes, holds promise as a

predictive tool for patient outcomes in clinical settings. However,

further large-scale studies are necessary to validate these findings and

ensure their clinical reliability.

Functional analysis of methylome data revealed enriched

processes such as synaptic modulation, nervous system

development, glial cell differentiation, gliogenesis, learning,

behavior, and cell adhesion, which were also identified in gene

expression analysis. These processes are critical for neuronal

communication, synaptic plasticity, and tumor microenvironment

dynamics (72). Additional enriched pathways included RAS and

GTPase signaling, dicarboxylic acid transport, and membrane

potential regulation, suggesting that hypomethylation may
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enhance gene expression and optimize signaling and energy

metabolism (73). Notably, RAS and GTPase pathways showed

increased activity in ACP-B, potentially contributing to its

phenotype. A recent study analyzing public datasets supports

these findings, highlighting genes involved in synaptic

transmission, cell adhesion, extracellular matrix, and cytoskeletal

structure cytoskeleton (27).

DNA methylation-based classification of CNS tumors such as

EpiGnostix is usually used to increase diagnostic confidence and

precision, especially when histopathology is unclear (39). Although

it was not our case, once the histology and the molecular findings of

our samples were compatible with ACPs, this method enriched our

tumor grouping findings. Cluster ACP-A encompassed

epigenetically well-defined profile of samples, including benign

origin tumors such as CPs and meningioma. Despite its distinct

biological origin, meningioma may share partial epigenetic features

with CPs, such as low molecular aggressiveness, and epigenetic

dysregulation of WNT-related genes, endorsing its inclusion in

ACP-A. On the other, EpiGnostix recognized ACP-B as a more

heterogeneous cluster of samples, with inflammatory reactive tissue

and low-grade glial tumors and MGMT status variability.

In line with ACP heterogeneity, recent advances in scRNA-seq,

snRNA-seq, and spatial transcriptomics have highlighted

significant inter- and intra-tumoral heterogeneity, revealing

diverse cell populations, including epithelial, immune, and

stromal cells (74). A recent study identified six ACP tumor cell

subsets based on CTNNB1 mutation status. Among them, the

whorl-like cluster exhibited distinct molecular features with

activated WNT/b-catenin and SHH signaling. Palisading

epithelium cells contained a proliferating subset, while another

subpopulation expressed high cytokine levels and SASP factors.

Some cells showed elevated mitochondrial gene expression, and

certain ACPs had clonally expanded cytotoxic T cells. Additionally,

two novel subpopulations—senescent and germinal cells—were

identified, each with distinct molecular and morphological

characteristics (75). Another recent study using snRNA-seq and

spatial transcriptomics found that the ACP environment is

immunosuppressive, with tumor-associated macrophages (TAMs)

highly infiltrating the microenvironment. The study identified a

regulatory network facil itating RHCG+ epithelial cell

keratinization, contributing to tumor progression (76). TAMs and

cancer-associated fibroblasts (CAFs) may drive immune

suppression and tumor growth via AXL signaling. Further

analysis revealed that palisade-like, basaloid-like, and whorl-like

epithelium cells in ACPs express AXL, which activates signaling

pathways promoting proliferation, survival, adhesion, migration,

and invasion (77). Targeting senescent cells with senolytic agents or

inhibiting AXL receptors (e.g., with Bemcentinib) could be

promising strategies for ACP treatment as observed in various

epithelial malignancies (76, 77).

These studies utilizing scRNA-seq, snRNA-seq, and spatial

transcriptomics may highlight some apparent limitations of our

work. However, there remains significant value in studies

employing whole-tumor transcriptomics. This approach involves

simpler analytical pipelines compared to the computationally
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intensive workflows required for single-cell and spatial data, thereby

reducing the risk of errors and misinterpretations. Its simplicity

makes it particularly well-suited for hypothesis generation, large-

scale studies, and initial screening, especially in clinical or resource-

constrained settings. Ultimately, while single-cell and spatial

transcriptomics reveal previously inaccessible layers of complexity

in ACP pathogenesis, whole-tumor transcriptomics provides

complementary strengths in scalability, reproducibility, and

practicality . Together, these methodologies provide a

comprehensive and synergistic framework for advancing our

understanding of ACP biology and improving future

therapeutic strategies.
Conclusion

Overall, our data offer detailed insights into the dynamics of

methylation and gene expression in ACP, shedding light on key

regulatory mechanisms and identifying potential prognostic

biomarkers. The identification of distinct ACP clusters based on

methylation and transcriptomic profiles paves the way for

personalized treatment strategies and the development of

clinically relevant prognostic panels.
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