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Objective: High-density lipoprotein cholesterol (HDL-C), non-HDL-C, and the

ratio of non-HDL-C to HDL-C (NHHR) are closely correlated with multiple

metabolic diseases. This study aims to dissect their associations and

differences in relation to new-onset MASLD.

Methods:Data were collected from research subjects at the Health Management

Center of the Second Affiliated Hospital of Dalian Medical University between

2014 and 2023. Participants were stratified by quartiles of HDL-C, non-HDL-C,

and NHHR. Kaplan–Meier analysis, Cox proportional hazards models, restricted

cubic splines (RCS), sensitivity analyses, and receiver operating characteristic

(ROC) curves were employed to evaluate associations between NHHR, non-

HDL-C, HDL-C, and new-onset MASLD and compare predictive performance

across lipid parameters.

Results: A total of 36,897 participants (mean age 42.1 years; 56.5% female) were

followed for a mean of 3.19 years, with 20.3% developing new-onset MASLD. Cox

regression showed that compared to the Q1 group, the Q4 group of NHHR and

non-HDL-C had a 134% (HR=2.34, 95% CI: 2.13–2.56) and 22% (HR=1.22, 95% CI:

1.13–1.31) higher risk of MASLD, respectively, while HDL-C was associated with a

45% lower risk (HR=0.55, 95% CI: 0.50–0.60). RCS analysis demonstrated

nonlinear relationships for NHHR (threshold = 2.54) and HDL-C (threshold =

1.31 mmol/L), whereas non-HDL-C displayed a linear, positive association with

MASLD risk. Stratified analyses revealed that elevated non-HDL-C levels

conferred higher MASLD risk in men, whereas females, younger adults, and

individuals with lower cardiometabolic burden (BMI <24 kg/m², nonhypertensive,

and nonhyperuricemic status) showed steeper increases in MASLD risk with rising

NHHR quartiles. ROC analysis indicated NHHR was superior to other lipid

parameters in predicting MASLD risk.
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Conclusion: Decreases in HDL-C levels and increases in non-HDL-C and NHHR

levels may increase the risk of MASLD. The NHHR can be used as a new index that

is stronger than other lipoproteins for the prediction of MASLD.
KEYWORDS

non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio,
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Introduction

Metabolic dysfunction-associated steatotic liver disease

(MASLD), formerly known as nonalcoholic fatty liver disease

(NAFLD) or metabolism-associated fatty liver disease (MAFLD),

has become a global public health problem (1). Characterized by

cardiometabolic risk factors such as obesity, type 2 diabetes,

hypertension, and dyslipidemia, MASLD is a chronic disease

involving multiple systems and is closely associated with insulin

resistance and genetic predisposition; and is linked to higher rates of

illness and death due to cardiovascular disease, chronic kidney

disease, and various cancers (2, 3). However, there are no approved

drugs for the specific treatment of MASLD, and with a current

global prevalence reaching 38%, it is becoming the most common

cause of chronic liver disease (4). Moreover, China is expected to

have the fastest growing total number of MASLD cases in the

future (5).

Some traditional and nontraditional lipid parameters, such as

triglyceride-glucose (TyG), non-high-density lipoprotein

cholesterol (non-HDL-C), low-density lipoprotein cholesterol

(LDL-C), high-density lipoprotein cholesterol (HDL-C), remnant

cholesterol (RC), and related composites, have good predictive

value for MASLD (6–8), allowing early identification of high-risk

patients and avoiding the risks associated with liver biopsy. In

recent years, an increasing number of new composite atherogenic

lipid indicators have been used to assess various metabolic diseases.

One such indicator is the non-HDL-C/HDL-C ratio (NHHR). Low

serum HDL-C levels, a component of the NHHR, have historically

been linked to MASLD, yet recent studies have shown that high

HDL-C levels may increase atherosclerosis and the incidence of

cardiovascular disease (9, 10). Similar to HDL-C, a prospective

study from the National Health and Nutrition Examination Survey

reported a U-shaped correlation between non-HDL-C and both all-

cause mortality and cardiovascular mortality in men (11). Thus, the

relationships between NHHR components and MASLD still need

further investigation. The NHHR has been proposed to be a

stronger predictor than non-HDL-C of a variety of metabolic

diseases, including adverse cardiovascular events, thyroid

hormones, hyperuricemia, diabetes, and periodontitis (12–16).

Furthermore, it is considered a crucial prognostic factor for

cardiovascular disease (CVD), the leading cause of death in
02
individuals with MASLD (17). Most existing studies linking

NHHR to MASLD are cross-sectional (18–20), highlighting the

need for longitudinal analyses to confirm these associations.

Therefore, given the close associations of HDL-C, non-HDL-C,

and the NHHR with many metabolic diseases, this retrospective

study investigated their associations with new-onset MASLD and

differences in predictive ability for MASLD on the basis of a

large ongoing health screening cohort, with the aim of

providing a reference for the prevention of MASLD and other

metabolic diseases.
Materials and methods

Study population

The population was drawn from the Dalian Health

Management Cohort (DHMC) (ChiCTR2300073363) at the

Second Hospital of Dalian Medical University. This cohort

collected key longitudinal physical examination results of the

population, evaluated their health status, and provided further

health management. A total of 61,087 participants who had at

least 2 annual health exams between January 2014 and December

2023 were included in this dynamic cohort study, and the following

exclusion criteria were used: (a) age < 18 years (n=7); (b) excessive

alcoholic consumption, defined as consuming ≥210 g per week for

men or ≥140 g for women (n=30); (c) diagnosed with MASLD

(n=20,334), viral hepatitis, autoimmune hepatitis, cirrhosis or

cancer at baseline (n=521); (d) missing total cholesterol (TC) or

HDL-C data (n=1232), missing the diagnostic indicators of MASLD

(n=1,898); and (e) treatment with lipid-modifying drugs for at least

6 months before the baseline survey (n=167). Finally, 36897 subjects

who met the criteria were included in this study (Figure 1). Baseline

data were defined as the earliest physical examination data from

each participant. People were followed up to the time whenMASLD

was diagnosed or the time of the last visit, whichever was earlier.

The study received approval from the Ethics Committee of the

Second Hospital of Dalian Medical University (grant number:

2,022,064), which waived the requirement for patient informed

consent. The study was performed in accordance with the

Declaration of Helsinki.
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Clinical and laboratory variables

Demographic information, including gender, age, and medical

history, was collected using standardized self-management

questionnaires. The participants wore light clothing, and their

height and weight were measured while they were barefoot. Waist

circumference was measured by trained nurses at the midpoint

between the lower rib margin and the iliac crest. BMI was computed

as weight (kg) divided by height (m2). The Omron electronic blood

pressure monitor (HBP-9020, Japan) was employed to measure

blood pressure after a five-minute rest. After fasting for at least 8

hours, hematological samples were collected in the morning, and a

Roche Cobas C 501 Chemistry Analyzer was used to measure

gamma-glutamyl transpeptidase (GGT), triglyceride (TG), fasting

plasma glucose (FPG), HDL-C, LDL-C, alanine aminotransferase

(ALT), TC, aspartate aminotransferase (AST), albumin (ALB), uric

acid (UA), creatinine (Cr), total bilirubin (TBil), direct bilirubin

(DBil), and blood urea nitrogen (BUN) levels. Platelet count (PLT),

hemoglobin (Hb), and white blood cell count (WBC) were analyzed

using a Mindray BC-6900CRP automated hematology analyzer.

Non-HDL-C = TC-HDL-C. TyG index = ln (fasting

triglycerides (mmol/L) ×88.6×FPG (mmol/L) ×18/2). NHHR =

non-HDL-C/HDL-C.

Hypertension was defined as a systolic blood pressure

(SBP)≥140 mmHg and/or diastolic blood pressure (DBP)≥90

mmHg, the use of antihypertensive drugs, or self-reported

diagnosis (21). Diabetes mellitus was diagnosed based on insulin

or hypoglycemic medication use, a diabetes history, or FPG ≥7
Frontiers in Endocrinology 03
mmol/L (22). Hyperuricemia was defined as UA >417 mmol/L (7.0

mg/dL) in men and >357 mmol/L (6.0 mg/dL) in women (23).
Diagnostic criteria for MASLD

MASLD was diagnosed by experienced ultrasonographers using

a Siemens ACUSON Sequoia Silver ultrasound system. The

diagnostic criteria aligned with the modified Delphi approach of

the MASLD consensus (1), requiring ≥5% steatosis, excluding other

causes or excessive alcohol intake (≥20 g/d for women, ≥30 g/d for

men), with at least one cardiometabolic risk factor: (1) BMI ≥23 kg/

m2 or waist circumference ≥90/80 cm (men/women); (2) FPG ≥5.6

mmol/L, hemoglobin A1c ≥5.7%, or T2DM/treatment; (3) BP ≥130/

85 mmHg or antihypertensive treatment; (4) TG ≥1.70 mmol/L or

lipid-lowering therapy; (5) HDL-C <1.0 mmol/L (men) or <1.3

mmol/L (women) or lipid-lowering therapy.
Statistical analysis

We utilized the quartiles of HDL-C, non-HDL-C and NHHR to

describe the baseline characteristics of the participants. Continuous

variables that follow a normal distribution are shown as the mean

(standard deviation), while others are displayed as the median

(interquartile range). Categorical variables are represented by numbers

and percentages (n(%)). The chi-square test, one-way ANOVA, or the

Kruskal-Wallis H test was utilized for group comparisons.
FIGURE 1

Participant flow diagram.
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Variables with ≥20% missing data were excluded. For those

with <20% missing values, data were assumed missing at random

and imputed using multiple imputation methods to create the final

dataset. The variance inflation factor was further applied to detect

multicollinearity before regression analysis (Supplementary Tables

S1-S3).

The impacts of the quartiles of HDL-C, non-HDL-C and the

NHHR and the increase in each standard deviation on MASLD

were analyzed via a multivariable Cox regression model. Three

models were constructed: Model 1 was built without adjusting for

any covariates; Model 2 was adjusted only for sex and age; and

Model 3 was further adjusted for BMI, UA, LDL-C, TG, and AST/

ALT. The model was adjusted for covariates that resulted in a 10%

or greater change in the HR of the predictor variable. The

heterogeneity in the associations between NHHR and MASLD

within various subgroups was examined using interaction tests.

The cumulative incidence rates of MASLD in different quartile

groups are presented as Kaplan–Meier curves, and the log-rank test

was used to compare the groups. We used restricted cubic spline

(RCS) fitting Cox regression models to explore the dose–response

relationships between NHHR, HDL-C, non-HDL-C and MASLD

after adjusting for the confounding factors as in Model 3, with

restricted cubic spline nodes set at the 25th, 50th, 70th, and 95th

percentiles of each variable. Once a nonlinear relationship is

confirmed, we use a recursive algorithm of the maximum

likelihood method to estimate the threshold value. To further

investigate the links between NHHR, HDL-C, non-HDL-C, and

MASLD, a two-segment Cox proportional hazards model is

implemented on both sides of the inflection point. Next, we

created a receiver operating characteristic (ROC) curve to

evaluate the predictive ability of NHHR, HDL-C, non-HDL-C,

and other lipid parameters for new-onset MASLD. The difference

in the area under the curve under different parameters was

compared via the Delong test.

This study also conducted two sensitivity analyses. To avoid

possible causal effects, the first sensitivity analysis excluded the

population with a follow-up time of less than 1 year from the study;

second, to verify the stability and reliability of the association, the

second sensitivity analysis removed any observations with

hypercholesteremia (non-HDL-C≥4.1 mmol/L or LDL-C≥3.4

mmol/L) (24). The data were analyzed via Stata 18.0 and R 4.4.1

software, with a P value of <0.05 (two-sided) considered

statistically significant.
Results

Clinical and laboratory variables

The study included 36,897 participants, with an average age of

42.1 years, and 56.5% were women. The occurrence of MASLD

among them was 20.3%. Table 1 provides a summary of the
Frontiers in Endocrinology 04
participants’ baseline characteristics according to the NHHR

quartiles. The prevalence of MASLD increased with increasing

NHHR. Moreover, individuals in these higher-NHHR groups

were often male, older, and more prone to diabetes mellitus,

hypertension, and hyperuricemia; and have higher measures of

BMI, SBP, DBP, WC, Hb, WBC, ALT, AST, GGT, UA, Cr, BUN,

FBG, TG, TC, LDL-C, non-HDL-C, and TyG. (all P < 0.001).

However, there was no statistically significant difference in TBIL

levels among the different groups (P > 0.05). Similar patterns were

noted for the non-HDL-C quartiles (Supplementary Table S4). For

the HDL-C quartiles, with the exception of the increase in AST/ALT

with increasing quartiles, other measures decreased, and the higher

HDL-C groups were more likely to be female, younger, and less

prone to diabetes, hypertension, and hyperuricemia (all P < 0.001)

(Supplementary Table S5).
Associations of HDL-C, non-HDL-C and
NHHR with MASLD

The patients were followed up for a total of 117,852.67 person-

years, with a mean follow-up of 3.19 years. The MASLD incidence

per 1,000 person-years rose with non-HDL-C and NHHR quartiles

but declined with HDL-C quartiles. With each one standard

deviation increase in NHHR, non-HDL-C and HDL-C, the HRs

(95% CIs) for the incidence of MASLD were 1.16 (1.12, 1.20), 1.07

(1.05, 1.1) and 0.80 (0.77, 0.82), respectively. We observed a gradual

increase in the HR for MASLD as the NHHR and non-HDL-C

quartile increased in both the adjusted and unadjusted models,

suggesting a positive trend, whereas HDL-C had the opposite trend

(all P values < 0.001) (Table 2). The findings indicated that the

NHHR was more closely linked to MASLD in all the models than

the non-HDL-C was. Subgroup analysis results are shown in

Supplementary Table S6. Significant interactions (P < 0.05)

between baseline NHHR and sex, age, BMI, hypertension, and

hyperuricemia suggest these factors notably influenced the NHHR-

MASLD risk association across subgroups. The cumulative

incidence of MASLD tended to increase as the NHHR, non-HDL-

C level groups increased and the HDL-C level group decreased, and

the log-rank test revealed significant differences among them

(c²=503.29, P < 0.001). (Figure 2).
Dose–response relationship between the
NHHR and risk of MASLD

Dose-response relationships between NHHR, HDL-C, non-

HDL-C, and MASLD risk were analyzed using RCS, with

adjustments for age, sex, BMI, UA, LDL-C, TG, and AST/ALT.

Results (Figure 3) revealed a nonlinear relationship for NHHR and

HDL-C (P for nonlinearity <0.001) and a positive linear association

for non-HDL-C (P for nonlinearity = 0.075). Additionally, the
frontiersin.o
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infection points for MASLD of NHHR and HDL-C were identified

as 2.54 and 1.31, respectively (both P values for log-likelihood ratio

< 0.05) (Table 3). After adjusting for various factors, each unit

increase in the NHHR below the threshold increased the risk of
Frontiers in Endocrinology 05
MASLD by 81% (HR: 1.81, 95% CI: 1.64–1.99, P<0.001). Above the

threshold, a unit increase in the NHHR increased the risk by 8%

(HR: 1.08, 95% CI: 1.03–1.13, P = 0.001). For HDL-C, on the left

side of the infection point, the HR was 0.60 (95% CI: 0.50–0.73); on
TABLE 1 Baseline characteristics of patients based on the quartiles of the NHHR.

Characteristics All NHHR quartiles

Q1 (<1.87) Q2 (1.87-2.39) Q3 (2.4-3.02) Q4 (>3.02) P value

N 36,897 8,772 9,577 9,581 8,967

Age, years 42.0 (13.5) 37.8 (12.7) 40.9 (13.2) 43.8 (13.6) 45.4 (13.4) <0.001

Female, % 20830 (56.5) 6817 (77.7) 6271 (65.5) 4760 (49.7) 2982 (33.3) <0.001

BMI, kg/m2 23.1 (2.7) 21.6 (2.5) 22.6 (2.6) 23.6 (2.6) 24.4 (2.5) <0.001

SBP, mmHg 124.1 (15.6) 120.2 (14.3) 122.6 (15.3) 125.7 (15.7) 127.7 (16.0) <0.001

DBP, mmHg 74.6 (10.1) 72.1 (9.3) 73.6 (9.8) 75.5 (10.1) 77.2 (10.3) <0.001

WC, cm 80.4 (9.0) 75.4 (8.1) 78.6 (8.4) 82.1 (8.3) 85.4 (8.1) <0.001

PLT, 109/L 239.0 (51.3) 238.5 (50.8) 240.8 (51.7) 238.6 (51.9) 237.9 (50.7) <0.001

Hb, g/L 141.8(15.5) 135.5 (14.4) 139.1(14.9) 143.7 (15.2) 148.8 (14.3) <0.001

WBC, 109/L 5.9 (1.5) 5.6 (1.4) 5.8 (1.4) 6.0 (1.4) 6.3 (1.5) <0.001

ALT, U/L 16.3 (12.5, 22.2) 14.0 (11.0, 18.5) 15.3 (12.0, 20.2) 17.1 (13.2, 23.1) 19.8 (15.0, 26.7) <0.001

AST, U/L 18.9 (16.1, 22.0) 18.0 (15.6, 21.0) 18.4 (16.0, 21.7) 19.0 (16.5, 22.5) 19.9 (17.0, 23.0) <0.001

AST/ALT 1.18 (0.36) 1.31 (0.36) 1.24 (0.36) 1.14 (0.34) 1.04 (0.33) <0.001

ALB, g/L 46.5 (2.5) 46.4 (2.5) 46.4 (2.5) 46.5 (2.6) 46.6 (2.5) <0.001

GGT, U/L 14.5 (10.8, 21.2) 11.6 (9.1, 15.9) 13.0 (10.0, 18.4) 15.7 (11.7, 22.6) 19.0 (14.0, 28.0) <0.001

TyG 7.0 (0.5) 6.7 (0.4) 6.8 (0.4) 7.0 (0.4) 7.3 (0.4) <0.001

TBIL, mmol/L 13.5 (10.8, 17.2) 13.4 (10.8, 17.0) 13.4 (10.8, 17.2) 13.4 (10.8, 17.4) 13.6 (10.8, 17.2) 0.791

DBIL, mmol/L 4.3 (3.4, 5.6) 4.5 (3.5, 5.8) 4.4 (3.4, 5.7) 4.2 (3.3, 5.5) 4.1 (3.3, 5.3) <0.001

BUN, mmol/L 4.8 (4.0, 5.6) 4.5 (3.8, 5.3) 4.6 (3.9, 5.5) 4.9 (4.1, 5.7) 5.0 (4.2, 5.8) <0.001

UA, mmol/L 314.7(263.7, 377.0) 279.1 (240.1, 327.8) 299.0 (253.8, 354.5) 327.7 (276.4, 386.1) 361.0 (304.4, 417.9) <0.001

Cr, mmol/L 63.2 (54.4, 75.6) 58.0 (52.0, 66.4) 60.4 (53.2, 72.3) 65.8 (55.6, 77.0) 71.5 (60.1, 81.0) <0.001

FPG, mmol/L 5.3 (5.1, 5.7) 5.2 (5.0, 5.5) 5.3 (5.1, 5.6) 5.4 (5.2, 5.7) 5.5 (5.2, 5.8) <0.001

TC, mmol/L 4.8 (0.8) 4.3 (0.7) 4.6 (0.7) 4.9 (0.8) 5.3 (0.8) <0.001

TG, mmol/L 1.2 (0.9, 1.6) 0.9 (0.7, 1.2) 1.1 (0.8, 1.4) 1.3 (1.0, 1.6) 1.6 (1.2, 2.1) <0.001

HDL-C, mmol/L 1.4 (0.3) 1.7 (0.3) 1.5 (0.2) 1.3 (0.2) 1.1 (0.2) <0.001

LDL-C, mmol/L 2.6 (0.7) 2.0 (0.4) 2.4 (0.5) 2.8 (0.5) 3.2 (0.6) <0.001

Non-HDL-C, mmol/L 3.4 (0.8) 2.6 (0.5) 3.2 (0.5) 3.6 (0.6) 4.2 (0.6) <0.001

NHHR 2.4 (1.9, 3.0) 1.6 (1.4, 1.7) 2.1 (2.0, 2.2) 2.7 (2.5, 2.8) 3.6 (3.3, 4.0) <0.001

Diabetes, % 1324 (3.6) 189 (2.2) 270 (2.8) 387 (4.0) 478 (5.33) <0.001

Hypertension, % 6804 (18.4) 1135 (12.9) 1534 (16.0) 1928 (20.1) 2207 (24.6) <0.001

Hyperuricemia, % 6547 (17.7) 821 (9.4) 1231 (12.9) 1908 (19.9) 2587 (28.9) <0.001

MASLD, % 7487 (20.3) 677 (7.7) 1418 (14.8) 2214 (23.1) 3178 (35.4) <0.001
fr
Continuous variables are expressed as the mean (standard deviation, SD), median (interquartile range) or n (%). BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure;
DBP, diastolic blood pressure; FPG, fasting plasma glucose; TyG, index triglyceride–glucose index; TBil, total bilirubin; DBil, direct bilirubin; ALB, albumin; PLT, platelet; Hb, hemoglobin; WBC,
white blood cell; BUN, blood urea nitrogen; TC, total cholesterol; TG, triglyceride; HDL–C, high-density lipoprotein cholesterol; LDL–C, low-density lipoprotein cholesterol; Non-HDL–C, non-
high-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate transaminase; GGT, gamma–glutamyl transpeptidase; UA, uric acid; Cr, creatinine; NHHR, non-high-density
lipoprotein cholesterol to high-density lipoprotein cholesterol ratio; MASLD, metabolic dysfunction-associated steatotic liver disease.
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the right side of the infection point, the HR was 0.40 (95% CI: 0.34–

0.47). In both cases, P < 0.001. The stratified analyses revealed a

greater risk of MASLD under equivalent non-HDL-C

concentrations among males.
Sensitivity analyses

The sensitivity analysis outcomes were shown in Figure 4. Upon

excluding the participants during the initial one-year period of
Frontiers in Endocrinology 06
follow-up, a total of 33,850 cases remained; the second sensitivity

analysis removed any observations with hypercholesteremia, and

29,548 participants remained. After adjusting for confounders, the

estimated effects of the associations of HDL-C, non-HDL-C and

NHHR with MASLD remained virtually unchanged.
ROC analysis

According to the ROC curve results, the areas under the curve

(AUCs) for the NHHR, HDL-C, TyG, TG, and non-HDL-C were
TABLE 2 Relationships between HDL-C, non-HDL-C, NHHR and MASLD.

Variables Per 1000
person-year

Model 1 HR (95%CI),
P value

Model 2 HR (95%Cl),
P value

Model 3 HR (95%CI),
P value

NHHR

Per SD increase
1.71(1.68, 1.75)

<0.001
1.57(1.53, 1.60)

<0.001
1.16(1.12, 1.20)

<0.001

Q1 (<1.87) 22.46 Reference Reference Reference

Q2 (1.87-2.39) 44.43
1.98(1.83, 2.15)

<0.001
1.83(1.69, 1.99)

<0.001
1.49(1.37, 1.62)

<0.001

Q3 (2.40-3.02) 73.52 3.36(3.11, 3.63) <0.001
2.80(2.58, 3.02)

<0.001
1.87(1.72, 2.04)

<0.001

Q4 (>3.02) 123.74 5.90(5.48, 6.36) <0.001
4.45(4.13, 4.81)

<0.001
2.34(2.13, 2.56)

<0.001

P for trend <0.001 <0.001 <0.001

Non-HDL-C

Per SD increase
1.42(1.39, 1.45)

<0.001
1.35(1.32, 1.38)

<0.001
1.07(1.05, 1.1)

<0.001

Q1 (<2.81) 36.90 Reference Reference Reference

Q2 (2.81-3.33) 53.27
1.47(1.37, 1.58)

<0.001
1.36(1.27, 1.46)

<0.001
1.11(1.03, 1.20)

<0.001

Q3 (3.34-3.91) 71.88
2.03(1.90, 2.17)

<0.001
1.75(1.64, 1.87)

<0.001
1.14(1.06, 1.23)

<0.001

Q4 (>3.91) 95.95
2.81(2.64, 3.00)

<0.001
2.34(2.19, 2.50)

<0.001
1.22(1.13, 1.31)

<0.001

P for trend <0.001 <0.001 <0.001

HDL-C

Per SD increase
0.54(0.53, 0.56)

<0.001
0.61(0.59, 0.62)

<0.001
0.80(0.77, 0.82)

<0.001

Q1 (<1.20) 115.65 Reference Reference Reference

Q2 (1.20-1.39) 72.04
0.59(0.56, 0.62)

<0.001
0.67(0.63, 0.70)

<0.001
0.92(0.87, 0.97)

0.004

Q3 (1.40-1.61) 46.78
0.38(0.36, 0.40)

<0.001
0.47(0.44, 0.50)

<0.001
0.76(0.71, 0.81)

<0.001

Q4 (>1.61) 25.53
0.21(0.20, 0.23)

<0.001
0.20(0.26, 0.31)

<0.001
0.55(0.50, 0.60)

<0.001

P for trend <0.001 <0.001 <0.001
Model 1: no covariates were adjusted. Model 2: Age and sex were adjusted. Model 3: Sex, age, BMI, UA, LDL-C, TG and AST/ALT were adjusted for. LDL-C could not be included in the same
model because of the collinearity between LDL-C and non-HDL-C. HR, hazard ratio; CI, confidence interval; BMI, body mass index; TG, triglyceride; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; UA, uric acid; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Non-HDL-C, non-high-density lipoprotein cholesterol;
NHHR, non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio; MASLD, metabolic dysfunction-associated steatotic liver disease.
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0.702, 0.672, 0.658, 0.649 and 0.611, respectively (Figure 5). Among

them, the AUC of the NHHR was the largest, with a sensitivity of

0.714 and specificity of 0.597 (Supplementary Table S7), suggesting

that the NHHR may be a better indicator of MASLD risk

assessment (all DeLong P < 0.05). The best cutoffs for the NHHR,

non-HDL-C and HDL-C were 2.536, 3.210 and 1.410, respectively,

with Youden indices of 0.279, 0.164, and 0.256, respectively. Time-

dependent ROC analysis was carried out to evaluate the predictive

capacity of the NHHR in the model for MASLD. The outcomes

demonstrated that the AUCs of the model’s predictive values for all-

cause mortality at 3, 5 and 8 years were 0.716, 0.694 and 0.699,

respectively. These results suggest that the model seems to possess

effective predictive value for MASLD in both the short and long

term (Supplementary Figure S1).
Discussion

In this population-based perspective cohort study, we examined

the associations among non-HDL-C, HDL-C, the NHHR and

MASLD. A higher NHHR is strongly associated with a greater

risk of developing MASLD, and the NHHR was better at

recognizing MASLD than other lipid indicators alone. This

relationship remained consistent across various subgroups and

sensitivity analyses. Additionally, the cutoff values for the

detection of MASLD were 1.410 for HDL-C, 3.210 for non-HDL-

C, and 2.536 for the NHHR.

In most of the previous studies from China, the prevalence of

MASLD among the general population ranged from 9.71% to

39.27%, whereas our prevalence was 20.3% (19, 25, 26). MASLD

stems from hepatic lipid overload, driven by upregulated de novo

lipogenesis and impaired fatty acid clearance (27). Recent studies
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have concluded that MASLD at all stages is linked to increased

cardiovascular event risk, independent of metabolic syndrome

factors, and that fibrosis worsens this risk (28, 29). The main

feature of dyslipidemia in patients with MASLD is an atherogenic

lipid profile, including high TG levels, increased concentrations of

small dense LDL particles and low HDL-C levels (30). The

alterations in hepatic lipid metabolism that lead to MASLD also

cause atherosclerotic dyslipidemia, particularly elevated TG and

RC, and the infiltration of small dense LDL particles into the arterial

wall, promoting the formation of atherosclerotic plaques (31). This

may be why these patients have a greater chance of developing

CVD. MASLD shares many risk factors with CVD, including

obesity, insulin resistance, type 2 diabetes, and atherogenic

dyslipidemia. Therefore, some of the risk factors used to predict

CVD have also been shown to have good predictive value

for MASLD.

LDL-C is a well-known causal risk factor for atherosclerosis and

CVD (32). However, LDL cholesterol levels alone may

underestimate the true cholesterol burden in MASLD patients, as

they do not fully capture lipoprotein particle quality. Non-HDL-C is

a composite measure that includes the mass of cholesterol in all

atherogenic conditions and reflects the extent of coronary artery

damage; it is a more detailed marker for atherosclerosis than one

type of lipoprotein cholesterol alone (33). Several previous studies

have also suggested that non-HDL-C levels are an important risk

factor for MASLD (6, 34, 35). In our study, the RCS analysis

revealed that there was no significant nonlinear association

between non-HDL-C and the risk of developing MASLD.

Moreover, men had a higher MASLD risk at the same non-HDL-

C level. Some studies have also shown that in the same non-HDL-C

concentration range, men have a greater risk of CVD events than

women do (36, 37). This may be due to estrogen-induced
FIGURE 2

Cumulative risk of MASLD incidence by NHHR (A), non-HDL-C (B), and HDL-C (C) quartiles. NHHR, non-high-density lipoprotein cholesterol to
high-density lipoprotein cholesterol ratio; Non-HDL-C, non-high-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol;
MASLD, metabolic dysfunction-associated steatotic liver disease.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1585811
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2025.1585811
cholesterol reduction and blood vessel protection in premenopausal

women (38). In addition, our study revealed that TG had a greater

AUC than non-HDL-C for the detection of MASLD, and the
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optimal cutoff value of 3.210 mmol/L for non-HDL-C in

identifying individuals with MASLD may be useful in screening

high-risk groups with MASLD. In conclusion, the detection and

treatment of dyslipidemia via non-HDL-C is still important in

patients with MASLD. HDL-C particles may be associated with

proteins with anti-inflammatory and antioxidant functions (39).

Recent research has revealed a U-shaped curve between patients’

HDL-C levels and all-cause mortality, cardiovascular mortality or

stroke risk (10, 40), so it may be time to decrease the level of good

cholesterol. In MASLD, the lower number of HDL-C particles

observed in patients with MASLD may impair cholesterol

homeostasis, and MASLD has been shown to be associated with

an altered HDL proteome (41). More importantly, a complex set of

changes in LDL-C and HDL-C is thought to be the primary cause of

increased cardiovascular risk in patients with MASLD (42).

Previous studies have verified the correlation between low serum

HDL-C levels and MASLD occurrence in various populations (43,

44). A previous study reported a saturation effect on the link

between HDL-C and MASLD onset; when HDL-C > 2.19 mmol/

L, this protective relationship disappears, which also indicates that

higher HDL-C is not always good (44). We also found that higher

quartiles of HDL-C were associated with a lower incidence of

MASLD in adults, with sensitivity analyses further confirming the

relationship’s stability. Further analysis revealed a nonlinear

negative relationship between serum HDL-C levels and MASLD

risk, yet no saturation effect was detected. Notably, in the ROC

analysis, the optimal threshold for HDL-C to predict MASLD risk

was 1.410 mmol/L. The association between baseline lipid profiles

and MASLD has been further extended to longitudinal changes in

TG and HDL-C, which correlate independently with MASLD (45).

Overall, further research is needed to better understand the link

between HDL-C function and MASLD and its significance for
TABLE 3 Threshold effect analysis of the effects of the NHHR and HDL-
C level on the risk of MASLD.

Variables HR (95%CI) P value

NHHR

Fitting by the standard Cox
proportional risk model 1.19 (1.15, 1.24) <0.001

Fitting by the two-piecewise Cox proportional risk model

Inflection point 2.54

NHHR < 2.54 1.81 (1.64, 1.99) <0.001

NHHR ≥ 2.54 1.08 (1.03, 1.13) 0.001

P for Log-likelihood ratio <0.001

HDL-C

Fitting by the standard Cox
proportional risk model 0.48 (0.43, 0.53) <0.001

Fitting by the two-piecewise Cox proportional risk model

Inflection point 1.31

HDL-C < 1.31 0.60 (0.50, 0.73) <0.001

HDL-C ≥ 1.31 0.40 (0.34, 0.47) <0.001

P for Log-likelihood ratio 0.007
Adjusted for sex, age, BMI, UA, LDL-C, TG and AST/ALT. HR, hazard ratio; CI, confidence
interval; BMI, body mass index; TG, triglyceride; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; UA, uric acid; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; NHHR, non-high-density lipoprotein
cholesterol to high-density lipoprotein cholesterol ratio; MASLD, metabolic dysfunction-
associated steatotic liver disease.
FIGURE 3

Association between the NHHR (A), non-HDL-C (B), HDL-C (C) and MASLD stratified by sex. The covariates adjusted to the model were the same as
those previously described. NHHR, non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio; Non-HDL-C, non-high-
density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; MASLD, metabolic dysfunction-associated steatotic liver disease; HR,
hazard ratio; CI, confidence interval.
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disease progression. The NHHR was first used to assess the risk of

atherosclerosis (46). Wang et al. first demonstrated that the NHHR

is an independent predictor of MASLD and is more useful than

non-HDL-C (25). Our study revealed that in all the models,

compared with non-HDL-C, an increase in the NHHR was more

significantly associated with an increased risk of MASLD.

Furthermore, the subgroup analysis revealed that sex, age, BMI,

hypertension, and hyperuricemia were significantly associated with

the NHHR (P for interaction < 0.05). As the level of NHHR

exposure increased, the risk of MASLD increased more

significantly in low-risk groups, including females, younger age

groups, those with a BMI < 25 kg/m², nonhypertensive individuals,
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and nonhyperuricemic individuals. The mean age of the female

participants in the study was 40.1 ± 12.6 years, which was below the

typical age of menopause. Consequently, estrogen levels were higher

than those observed postmenopause. Research has demonstrated

that estrogen deficiency can exacerbate nonalcoholic steatohepatitis

(NASH) in a mouse model of MASLD (47). NHHR’s sensitivity in

low-risk populations may arise from heightened metabolic fragility

to lipid imbalance, sex-specific hormonal modulation of lipoprotein

dynamics, and overlooked subclinical metabolic tipping points. The

NHHR was associated with a more significant increase in the risk of

MASLD in those without hypertension and hyperuricemia, likely

reflecting enhanced biomarker sensitivity to occult metabolic
FIGURE 4

Sensitivity analysis of the associations between HDL-C, non-HDL-C and the NHHR with the MASLD score. Sensitivity 1: Patients with a follow-up
time of less than 1 year were excluded. Sensitivity 2: Subjects with hypercholesterolemia were excluded. The covariates adjusted to the model were
the same as those previously described. NHHR, non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio; Non-HDL-C,
non-high-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; MASLD, metabolic dysfunction-associated steatotic liver
disease; HR, hazard ratio; CI, confidence interval.
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dysfunction in healthier cohorts. In populations with hypertension

and hyperuricemia, the impact of the NHHR on the risk of MASLD

may be obscured by the use of medications, therapeutic

interventions, the presence of comorbidities and lifestyle choices.

Therefore, these potential influencing factors should be accounted

for in clinical practice. In addition, the RCS analysis revealed a

nonlinear positive association between the NHHR and MASLD risk

after adjustment for confounders. At NHHR=2.54, MASLD risk

stabilized (HR approaching 1 at NHHR=2.39), aligning with a

NHANES cross-sectional study, whereas a separate NHANES

analysis revealed an S-shaped pattern where MASLD probability

decreased with rising NHHR below the threshold (18, 48).

Moreover, recent NHHR-MASLD cohort studies have revealed a

saturation effect or downward trend after the inflection point, and

the inflection points are 3.5 and 3.34, respectively (25, 26). These

findings indicate that the MASLD risk does not increase when the

NHHR exceeds a certain value. Our threshold of 2.54 differs from

that of the above study. This may be because our study uses the two-

piecewise Cox proportional risk model, whereas their study uses the

two-piecewise linear regression model, and we have a larger sample

size. Similarly, research by Xuan et al. revealed that elevated NHHR

is independently associated with an increased risk of MASLD and

liver fibrosis and is a better predictor of MASLD than non-HDL-C

or HDL-C alone (19). Our study revealed that, compared with

HDL-C, TyG, TG and non-HDL-Cmeasurements, the NHHR has a

superior diagnostic predictive value for the risk of developing

MASLD, and an NHHR value of 2.536 may be a potential
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intervention threshold for MASLD risk. Higher NHHR levels are

associated with increased non-HDL-C—particularly LDL-C and

very-low-density lipoprotein cholesterol (VLDL-C)—and decreased

HDL-C. These elevated LDL and VLDL levels raise the risk of fat

accumulation in the liver by directly promoting the buildup of

cholesterol and triglycerides. The ectopic accumulation of lipids in

hepatocytes generates reactive oxygen species, which lead to lipid

peroxidation, a state of oxidative stress and the release of several

cytokines (49). The inflammatory conditions described above lead

to hepatocellular apoptosis, the deposition of collagen and the

abnormal proliferation of surviving hepatocytes, resulting in

chronic liver cell damage, cirrhosis and ultimately liver cancer

(50). In contrast, HDL-C exerts protective effects by preventing

hepatic lipid accumulation via reverse cholesterol transport,

antioxidant, and anti-inflammatory mechanisms (51). This likely

explains the link between higher HDL-C levels and reduced

MASLD risk in our study, as well as the strong association

between NHHR and MASLD.

In our long-term study with a large sample, we analyzed HDL-C,

non-HDL-C and NHHR in relation to MASLD to make them more

comparable. We further confirmed that the NHHR is a novel

composite indicator better at predicting MASLD than other lipid

indicators in our study. Further sensitivity analysis suggested good

stability in the independent correlations between NHHR, HDL-C,

and non-HDL-C and MASLD. There are several limitations. First,

While liver biopsy remains the gold standard for diagnosingMASLD,

our study employed liver ultrasonography as the primary diagnostic

tool, potentially missing early-stage steatosis. Second, this study

focused only on baseline NHHR values and lacked analysis of

longitudinal NHHR changes and their association with MASLD

progression. Third, potential selection bias and unmeasured

confounding inherent to retrospective designs, compounded by the

lack of external validation limiting generalizability, require

verification through multi-center prospective cohorts.
Conclusion

This study demonstrates that elevated NHHR and non-HDL-C

levels predict increased MASLD risk, while higher HDL-C inversely

correlates with disease prevalence. MASLD risk is strongly linked to

NHHR < 2.54. It rises more notably in females, younger

groups, those with BMI < 25 kg/m², nonhypertensive and

nonhyperuricemic individuals. Also, elevated non-HDL-C raises

MASLD risk more in men than in women. This underscores the

need for sex-specific and metabolic profile-tailored screening

strategies. This study suggests that the NHHR may be a valuable,

novel predictor of MASLD, with greater predictive power than

other lipid parameters. Clinicians should integrate NHHR into

risk stratification protocols to enhance MASLD detection,

while researchers must address current evidence gaps through

multicenter validation cohorts.
FIGURE 5

Receiver operating characteristic curve analysis of MASLD-related
lipid parameters. NHHR, non-high-density lipoprotein cholesterol to
high-density lipoprotein cholesterol ratio; Non-HDL-C, non-high-
density lipoprotein cholesterol; HDL-C, high-density lipoprotein
cholesterol; TyG, index triglyceride–glucose index; TG, triglyceride;
MASLD, metabolic dysfunction-associated steatotic liver disease;
HR, hazard ratio; CI, confidence interval.
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