
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Zhen Wang,
Huazhong University of Science and
Technology, China

REVIEWED BY

Hiroya Ohta,
Hokkaido University of Science, Japan
Yunzhao Yang,
Renmin Hospital of Wuhan University, China
Mohamed Hany,
Alexandria University, Egypt
Nawoda Hewage,
Queensland University of Technology,
Australia

*CORRESPONDENCE

Chao Shi

sc_bjmu@bjmu.edu.cn

†These authors have contributed
equally to this work

RECEIVED 04 March 2025
ACCEPTED 26 May 2025

PUBLISHED 11 June 2025

CITATION

Shi C, Cheng Y, Ma L, Wu L, Shi H, Liu Y,
Ma J and Tong H (2025) Using easy-to-
collect indices to develop and validate
models for identifying metabolic syndrome
and pre-metabolic syndrome.
Front. Endocrinol. 16:1587354.
doi: 10.3389/fendo.2025.1587354

COPYRIGHT

© 2025 Shi, Cheng, Ma, Wu, Shi, Liu, Ma and
Tong. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 11 June 2025

DOI 10.3389/fendo.2025.1587354
Using easy-to-collect indices to
develop and validate models for
identifying metabolic syndrome
and pre-metabolic syndrome
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Hongjuan Shi3, Yining Liu1,2, Jinyu Ma1,2 and Huitian Tong1,2

1People’s Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia
Hui Autonomous Region, China, 2Ningxia Institute of Clinical Medicine, People’s Hospital of Ningxia
Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China, 3School of Public
Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
Background: This study aimed to develop and validate models for identifying

individuals at high risk for metabolic syndrome (MetS) and pre-MetS using easily

collectible indices.

Methods: A cross-sectional analysis was conducted using data from the Ningxia

Cardiovascular Disorders Survey (NCDS) in China, collected between January

2020 and December 2021. The study population comprised 10,520 participants

with complete demographic, anthropometric, and laboratory data. The

diagnostic models for MetS were developed using five easily collectible

indicators. The performance of the models was compared with that of Lipid

Accumulation Product (LAP), Triglyceride-Glucose (TyG) Index, and Waist-to-

Height Ratio (WHtR). These samemodels were subsequently applied to pre-MetS

detection as a secondary analysis. Area under the receiver operating

characteristic curve (AUC), Hosmer and Lemeshow test, bootstrap method,

Brier score and Decision Curve Analysis were employed to evaluate the

performance of the models.

Results: Model 1 comprised factors such as WC, SBP, DBP and gender. In

contrast, Model 2 included all the variables from Model 1 while additionally

incorporating FPG. In the training set, the AUC for Model 1 and Model 2 were

0.914 and 0.924, respectively. The AUC for Model 1 and Model 2 in identifying the

presence of pre-MetS and MetS conditions were 0.883 and 0.902, respectively.

In the external validation set, the AUC for Model 1 and Model 2 in identifying the

presence of MetS were 0.929 and 0.934, respectively. For detecting pre-MetS

and MetS conditions, the AUC for Model 1 and Model 2 were 0.885 and 0.902,

respectively. Compared to TyG, LAP, and WHtR, model 1 and 2 exhibited a

superior ability to identify MetS as well as pre-MetS and MetS conditions in both

the training and validation sets.
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Conclusions: Our models offered an easy, accurate and efficient tool for

identifying MetS and pre-MetS, which might be used in large-scale population

screening or self-health management at home.
KEYWORDS

metabolic syndrome, pre-metabolic syndrome, easy-to-collect indices, diagnostic
model, identifying
Introduction

Metabolic syndrome (MetS) comprises a suite of metabolic

markers that significantly increases the risk of developing type 2

diabetes mellitus (T2DM) and cardiovascular diseases (CVD) (1–3).

The prevalence of MetS has risen globally over the past few decades

(1, 4, 5). Due to its complex and incompletely understood

pathogenesis of MetS, early screening in seemingly healthy

populations is clinically important for identifying at-risk

individuals and enabling timely intervention (6–11).

Since the World Health Organization (WHO) first defined

MetS in 1998, multiple diagnostic criteria have emerged. The

WHO initially required insulin resistance (IR), impaired glucose

tolerance (IGT), or T2DM, as essential components (12). However,

in 2001, the National Cholesterol Education Program Adult

Treatment Panel III (ATP III) proposed a different set of criteria,

later revised by the American Heart Association/National Heart,

Lung, and Blood Institute (the revised ATP III) in 2005 (13, 14).

This version focused on waist circumference (WC), blood lipids,

blood pressure, and fasting plasma glucose (FPG) while removing

IR as a mandatory criterion. In 2006, the International Diabetes

Federation (IDF) introduced a new standard emphasizing central

obesity (15), followed by the Joint Committee for Developing

Chinese Guidelines (JCDCG) in 2007, which adapted the criteria

for the Chinese population (16).

Despite these developments, MetS diagnosis remains

challenging because inconsistent criteria may yield varying results

for the same individual. The complexity of these standards also

limits their use in large-scale screening or self-health management,

particularly among individuals with lower education levels.

Consequently, identifying simpler, more accessible screening tools
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to efficiently assess MetS risk in clinical settings remains a key

research priority.

Anthropometric measurements provide a convenient method

for detecting MetS and its constituent elements (17–20). Three well-

validated indicators have demonstrated particular diagnostic value.

Lipid Accumulation Product (LAP) is an innovative metric that

offers insights into individuals’ visceral fat content, leveraging both

serum triglyceride (TG) levels and WC (21, 22). The Triglyceride-

Glucose (TyG) index, composed of TG and FPG, is a novel

indicator that has been shown to be correlated with direct

markers of IR (23). While LAP and TyG show strong diagnostic

performance, their reliance on laboratory testing limits point-of-

care application. Waist-to-Height Ratio (WHtR) offers greater

accessibility but may lack sufficient sensitivity due to its simplified

parameters (24).

To tackle this issue, this study was designed to construct and

validate of a diagnostic model incorporating clinical parameters and

multiple anthropometric indicators for MetS using data from a large

population-based survey of cardiovascular disorders and associated

risk factors in Ningxia Hui Autonomous Region, China. This

approach enables effective family-based health monitoring, allowing

individuals to track their metabolic status in real-time and potentially

prevent MetS progression and related complications.
Methods

Study population

A cross-sectional investigation was conducted at Ningxia Hui

Autonomous Region from January 2020 to December 2021 to

examine the prevalence and risk factors associated with various

cardiovascular conditions, including hypertension, dyslipidemia,

obesity, diabetes mellitus, coronary heart disease, and

hyperuricemia. This survey, referred to as the Ningxia

Cardiovascular Disorders Survey (NCDS), provided the samples

utilized in the present study. Briefly, a district-representative sample

was selected from the general population aged 18 and above using a

four-phase stratified cluster sampling method. In the initial phase,

the nine districts in Ningxia Hui Autonomous Region were

classified by economic and administrative tiers. In the next stage,

two towns from each county were randomly selected using simple

random sampling (SRS) based on a roster provided by local Centers
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for Disease Control and Prevention. Three communities or villages

were chosen from each town during the third stage with SRS.

Sampling stratification was performed during the final stage with

age and gender distribution based on China census data in

2010. The survey was conducted from January 2020 to

December 2021, with a total of 10,803 participants. Before

initiating the survey, written informed consent was obtained from

all participants, which included consent for both their participation

in the study and the use of collected data for future scientific

research purposes.

In addition to the inclusion and exclusion criteria of the NCDS,

the present study required further exclusions: (a) individuals

lacking complete demographic, anthropometric, or laboratory

information; (b) individuals with significant outliers in the

collected data; (c) those diagnosed with cancer or end-stage renal

disease; (d) individuals who have undergone surgical treatment

within six months prior to sampling. Finally, our diagnostic models

were constructed and validated based on 10520 eligible participants

(Supplementary Figure 1).

The participants were randomly allocated into two groups—a

training set and an external validation set—based on the nine study

locations of the NCDS. The training set included 56% of the

participants (N=5850) from Jinfeng, Pingluo, Yanchi, and

Shapotou to develop the models to identify the presence of MetS

from all participants. The external validation set included 44% of

the participants (N=4670) from Dawukou, Yongning, Litong,

Longde and Xiji to validate the diagnostic performance of these

models. Supplementary Figure 2 illustrates the sampling framework

and geographic distribution. The geographic cluster sampling

intentionally captured regional diversity, resulting in natural

variations between training and validation cohorts that enhance

the evaluation of model generalizability.
Measurements of anthropometric and
laboratory data

In the morning, participants had to go to a designated

community or village health center after fasting for at least 8

hours. Their anthropometric data, including WC, weight, and

height, were measured using standard techniques. After resting

for 5 minutes, their right-arm sitting blood pressure was measured

three times with an electronic blood pressure monitor (OMRON,

HBP-1120U) and then averaged.

Participants’ fasting blood samples (about 5 mL per person)

were placed into tubes with sodium heparin as an anticoagulant and

spun at 1500 rpm for 10 minutes. The clear liquid on top was then

transferred to a small freezer-safe container, kept at -80°C, and

shipped to the CICMedical Laboratory Center in Beijing for testing.

The lab used a Beckman Coulter AU5800 machine (from the USA)

and reagents from Biosino in Beijing to check levels of LDL-C, FPG,

TG, HDL-C, and TC. HbA1c was measured with a Tosoh H-LC-

723GX analyzer (from Japan). All tests followed proper guidelines

and rules.
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Definitions of MetS and pre-MetS

As per the IDF, MetS was identified by central obesity (WC of at

least 90 cm for Chinese men and 80 cm for Chinese women), along

with any two of the following four risk factors: (1) High TG of 1.7

mmol/L or more, or being treated for this lipid issue; (2) Low HDL-

C, below 1.29 mmol/L for women and below 1.03 mmol/L for men,

or receiving treatment for this lipid condition; (3) Blood pressure

with systolic (SBP) of 130 mmHg or more, or diastolic (DBP) of 85

mmHg or more, or being treated for previously diagnosed high

blood pressure; (4) FPG of 5.6 mmol/L or more, or having a prior

diagnosis of T2DM.

In line with this widely accepted research practice (25, 26), pre-

MetS refers to individuals who exhibited at least two of the

aforementioned five metabolic abnormalities, yet do not fulfill the

diagnostic criteria for MetS as set by the IDF.
Anthropometric indexes calculation

In this study, the diagnostic model would also be compared with

LAP, TyG and WHtR regarding their capacity to detect the

occurrence of MetS and pre-MetS. The calculations for these

three indices are as follows:

LAP (female) = [WC (cm) - 58] × TG (mmol/L);

LAP (male) = [WC (cm) - 65] × TG (mmol/L) (27);

TyG Index = ln½TG (mg=dL)  × FPG (mg/dL)/2] (28);

WHtR = WC (cm)/height (cm) (29).
Statistical analyses

All statistical analyses were conducted using STATA MP17

(StataCorp, USA). Descriptive statistics summarized the

participants’ physical and metabolic traits, with continuous

variables presented as mean ± standard deviation (SD) for near-

normal distributions and as median for skewed distributions.

Normality was assessed using the Kolmogorov-Smirnov test.

Differences between the non-MetS and MetS groups were

evaluated using the Chi-square test for categorical variables and

one-way analysis of variance for continuous variables.

Variable selection criteria
Variables were selected based on clinical relevance and

established MetS diagnostic criteria. WC, SBP, DBP, and gender

were chosen for their fundamental role in MetS definitions, while

FPG was included due to its widespread availability. These variables

were assessed using univariate logistic regression, and those with P

< 0.05 were included in the multivariate models.

Handling of missing data
Missing data were managed through complete case analysis,

including only participants with complete data for all variables. This

approach leveraged the large sample size to ensure sufficient
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statistical power. Sensitivity analysis using multiple imputation

confirmed the models’ robustness.

Model calibration techniques
Model calibration was assessed using the Hosmer-Lemeshow (H-L)

test and calibration curves. The H-L test evaluated the agreement

between observed and predicted outcomes (P < 0.001 indicating

potential calibration errors). Calibration curves visually confirmed that

the models were well-calibrated overall. Bootstrap resampling (500

iterations) was used to assess model stability and internal validation.

Diagnostic models for MetS were established using multivariate

logistic regression. The cutoff value for diagnosing MetS was

determined by the threshold corresponding to the maximum

Youden index. Model performance was also evaluated using

metrics such as the area under the receiver operating

characteristic curve (AUC) and Decision Curve Analysis (DCA).
Ethics statement

This study strictly adhered to international ethical guidelines,

including the Declaration of Helsinki (2013 revision). The study

protocol was reviewed and approved by the Institutional Review

Board of People’s Hospital of Ningxia Hui Autonomous Region and

obtained ethical approval (Approval No. 2020-YC-002) prior

to implementation.
Results

Characteristics of the study population

Table 1 displays the characteristics of the participants. This

study encompassed a total of 10520 participants, with 5850

(56.00%) in the training set and 4670 (44.00%) in the validation

set. While significant differences (P<0.05) were observed in some

characteristics (age, education, WC, HbA1c, FPG, HDL-C) between

training and validation sets, these variations reflect expected

geographic and demographic heterogeneity across Ningxia’s

regions due to our cluster sampling design. Such differences do

not indicate selection bias but rather enhance the robustness of

external validation by testing model performance across diverse

subpopulations. The participants in the training set demonstrated a

higher prevalence of individuals with a high school education or

higher, along with elevated levels of WC and FPG, as well as lower

HbA1c levels compared to those in the validation set. The

comparison of characteristics between MetS and Non-MetS in the

training and validation sets is shown in Supplementary Table 1.
Development of diagnostic models for
MetS

Table 2 shows that univariate logistic regression analysis

indicated significant independent impacts of WC, SBP, DBP,
Frontiers in Endocrinology 04
gender, and FPG on the occurrence of MetS, with notable

correlations (P< 0.05). This indicated that each of these factors

individually contributes to the likelihood of developing MetS.

Referring to MetS as the outcome event, WC, SBP, DBP and

gender were integrated into the development of a multivariate

logistic regression model, designated as Model 1. Furthermore,

WC, SBP, DBP, gender, and FPG were included in the

formulation of an additional multivariate logistic regression

model to assess the extent to which incorporating FPG enhances

the performance of Model 1; this was referred to as Model 2.

Supplementary Table 2 shows that Model 1 has a sensitivity of

93.00% and specificity of 78.00%, with an optimal cutoff value of

0.254. Model 2 has a sensitivity of 91.00% and specificity of 80.00%,

with an optimal cutoff value of 0.267. The slight decrease in

sensitivity but increase in specificity in Model 2 indicates that

adding FPG improves the model’s ability to correctly identify

individuals without MetS. Both models had strong predictive

capabilities, with Model 2 slightly better in specificity.
Assessment of the diagnostic performance
of the models

In the training set, both models demonstrated excellent

diagnostic performance for MetS, with Model 1 achieving an

AUC of 0.914 (95% CI: 0.907-0.921) and Model 2 reaching 0.924

(95% CI: 0.917-0.930) (Figure 1A). For the combined pre-MetS and

MetS conditions, the AUC values were 0.883 (95% CI: 0.874-0.892)

and 0.902 (95% CI: 0.894-0.910) for Models 1 and 2, respectively

(Figure 1B). These results were consistently superior to existing

indices (all P<0.001 for comparisons with TyG, LAP, and WHtR).

The external validation confirmed these findings, with Model 1

(AUC=0.929, 95% CI: 0.918-0.940) and Model 2 (AUC=0.934, 95%

CI: 0.924-0.944) maintaining high discriminatory ability for MetS

(Figure 1C). Similar performance was observed for pre-MetS and

MetS detection (Model 1: AUC=0.885, 95% CI: 0.871-0.899; Model

2: AUC=0.902, 95% CI: 0.890-0.914) (Figure 1D), with both models

again significantly outperforming traditional indices (all P<0.001).

These results demonstrate that our models provide more

accurate risk stratification than conventional approaches,

suggesting substantial clinical and research utility for MetS

identification and prevention.
Evaluation of calibration degree and
clinical practicality of the models

The calibration of the models was comprehensively evaluated

using multiple approaches. The H-L test showed statistically

significant results (P< 0.001) for both models in training and

validation sets, which in isolation might suggest calibration issues.

However, it is well-documented that the H-L test is particularly

sensitive to large sample sizes, where even clinically insignificant

deviations can appear statistically significant. The calibration plots

(Figure 2) demonstrated excellent agreement between predicted and
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observed probabilities across all risk deciles. Both models showed

points closely aligned with the ideal 45-degree line in both training

(Figures 2A, B) and validation sets (Figures 2C, D), with narrow

confidence intervals indicating precise calibration. This visual
Frontiers in Endocrinology 05
evidence strongly supports good model calibration despite the

significant H-L test results.

Further supporting the models’ accuracy, bootstrap validation (500

iterations) demonstrated stable performance (Figure 3), while Brier
TABLE 1 Selected characteristics of participants in the training set and validation sets.

Variables Overall Training set External validation set P value a

Total, n (%) 10520 (100.00) 5850 (56.00) 4670 (44.00)

Age, Median (years) 46 (33,59) 46 (33,59) 46 (34,59) <0.05b

Gender, n (%) 0.145c

Male 4841 (46.02) 2655 (45.38) 2186 (46.81)

Female 5679 (53.98) 3195 (54.62) 2484 (53.19)

Smoking, n (%) 0.151c

No 8002 (76.07) 4419 (75.54) 3584 (76.75)

Yes 2517 (23.93) 1431 (24.46) 1086 (23.25)

Drinking, n (%) 0.425c

No 8293 (78.83) 4595 (78.55) 3698 (79.19)

Yes 2227 (21.17) 1255 (21.45) 972 (20.81)

Education, n (%) <0.05c

Primary school or below 3707 (35.24) 1927 (32.94) 1780 (38.12)

Middle school 3016 (28.67) 1674 (28.62) 1342 (28.74)

High school or above 3797 (36.09) 2249 (38.44) 1548 (33.15)

Anthropometry Data, Mean ± SD

Height (cm) 162.65 ± 8.74 162.53 ± 8.79 162.80 ± 8.68 0.113d

Weight (kg) 66.46 ± 12.58 66.31 ± 12.57 66.64 ± 12.59 0.192d

WC (cm) 83.65 ± 11.70 84.16 ± 12.23 83.01 ± 10.96 <0.001d

SBP (mmHg) 130.32 ± 19.96 130.05 ± 20.07 130.65 ± 19.82 0.127d

DBP (mmHg) 81.03 ± 11.16 80.96 ± 11.44 81.12 ± 10.81 0.453d

Laboratory data,
Mean ± SD

HbA1c (%) 5.64 ± 0.78 5.66 ± 0.77 5.61 ± 0.80 <0.05d

FPG (mmol/L) 5.71 ± 1.46 5.73 ± 1.44 5.67 ± 1.48 <0.05d

TG (mmol/L) 1.50 ± 1.33 1.50 ± 1.39 1.50 ± 1.25 0.796d

TC (mmol/L) 4.27 ± 0.97 4.26 ± 1.00 4.29 ± 0.94 0.163d

HDL-C (mmol/L) 1.26 ± 0.28 1.28 ± 0.28 1.24 ± 0.27 <0.001d

LDL-C (mmol/L) 2.59 ± 0.78 2.58 ± 0.79 2.60 ± 0.75 0.191d
WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1c, glycated hemoglobin; FPG, fasting plasma glucose; TG, triglycerides; TC, total cholesterol; HDL-C,
high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol.
a P values were calculated to compare the characteristics of the training set and validation set.
b P values were obtained from Kolmogorov-Smirnov test.
c P values were obtained from chi-square test.
d P values were obtained from ANOVA.
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scores showed excellent predictive accuracy for both Model 1 (training:

0.116; validation: 0.106) andModel 2 (training: 0.108; validation: 0.102).

These scores, all well below the 0.25 threshold indicating useful models,

confirm strong calibration. Model 2’s slightly superior performance

aligns with its inclusion of fasting plasma glucose. The clinical utility of
Frontiers in Endocrinology 06
both models was further validated by Decision Curve Analysis, which

demonstrated net benefit across a wide range of probability thresholds

in both training (Supplementary Figures 3A, B) and validation sets

(Supplementary Figures 3C, D), supporting their practical application

for metabolic syndrome risk assessment.
TABLE 2 Results of univariate and multivariate logistic regression analysis based on 5850 participants in training set.

Variable

Univariate analysis Multivariate analysis (Model 1) a Multivariate analysis (Model 2) b

Coefficients
(95%CI)

OR (95%CI)
Coefficients

(95%CI)
OR (95%CI)

Coefficients
(95%CI)

OR (95%CI)

Gender

Female Reference Reference Reference Reference Reference Reference

Male
-0.207

(-0.317,-0.096)
0.813

(0.728,0.909)
-1.718

(-1.896,-1.539)
0.179

(0.150,0.214)
-1.838 (-2.025,-1.651)

0.159
(0.132,0.192)

WC 0.157 (0.148,0.165)
1.170

(1.160,1.180)
0.181

(0.170,0.191)
1.198

(1.186,1.209)
0.185 (0.173,0.196)

1.203
(1.189,1.217)

SBP
0.050

(0.047,0.054)
1.051

(1.048,1.055)
0.029

(0.023,0.034)
1.025

(1.018,1.031)
0.024 (0.019,0.030)

1.025
(1.019,1.030)

DBP
0.068

(0.062,0.073)
1.070

(1.064,1.076)
0.017

(0.008,0.026)
1.019

(1.009,1.030)
0.020 (0.010,0.030)

1.020
(1.011,1.030)

FPG
0.597

(0.537,0.657)
1.817

(1.710,1.929)
– – 0.500 (0.429,0.572)

1.649
(1.536,1.772)
WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, Fasting plasma glucose.
aThe model 1 incorporated WC, SBP, DBP and gender, with an intercept of -20.892.
bThe model 2 incorporated WC, SBP, DBP, gender and FPG, with an intercept of -23.825.
FIGURE 1

ROC curves of the WHtR, LAP, VAI, TyG index and our model to to identify the presence pre-MetS and MetS. (A) ROC curves of the Model1, Model
2, WHtR, LAP, VAI and TyG to identify the presence of MetS in training set. (B) ROC curves of the Model1, Model 2, WHtR, LAP, VAI and TyG to
identify the presence of pre-MetS and above lesion in training set. (C) ROC curves of the Model1, Model 2, WHtR, LAP, VAI and TyG to identify the
presence of MetS in validation set. (D) ROC curves of the Model1, Model 2, WHtR, LAP, VAI and TyG to identify the presence of pre-MetS and above
lesion in validation set. WHtR, waist-to-height ratio, LAP, lipid accumulation product, VAI, visceral adiposity index, TyG index, triglyceride-
glucose index.
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Nomogram construction for the models

To facilitate application, we constructed a nomogram based on

two risk prediction models. The scores of independent influencing

factors are ascertained based on the sample group data, and the sum

corresponding to the prediction probability represents the

individual’s MetS risk (Figure 4).
Frontiers in Endocrinology 07
Discussion

In this cross-sectional study, we developed two diagnostic

models for MetS using five easily collectible indicators. We then

conducted external validation and compared their diagnostic

performance with existing indicators, evaluating calibration

accuracy and clinical applicability. The models established in this
FIGURE 2

The Hosmer-Lemeshow test for model 1 and model 2 in training and validation sets. (A, B) The Hosmer-Lemeshow test for model 1 (A) and model 2
(B) to identify the presence of MetS in training set. (C, D) The Hosmer-Lemeshow test for model 1 (C) and model 2 (D) to identify the presence of
MetS in validation set.
FIGURE 3

Bootstrap method samples 500 times in the training set for model 1 (A) and model 2 (B).
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study demonstrated good discrimination, stability, and clinical

applicability in identifying the presence of MetS as well as its

precursor states, specifically pre-MetS, within the general

population. Notably, the diagnostic performance of our models

exceeded that of existing metrics such as WHtR, LAP, and TyG,

which have been reported to exhibit relatively high diagnostic

efficacy in detecting the presence of MetS (18, 20, 24, 30, 31). Our

models have been presented in the form of a nomogram, which

enables the easy, accurate, and rapid identification of individuals at

risk for MetS. These models offer a revolutionize approach to

managing MetS by providing innovative frameworks that enable

the development and implementation of targeted intervention

projects. These projects not only address the complex

components of MetS but also empower individuals through self-

management strategies, promoting long-term adherence to healthy

behaviors and enhancing overall health outcomes.

Disease risk prediction models are primarily used to identify

high-risk populations for targeted interventions or self-health

management (6). Consequently, simplicity and practicality emerge

as critical considerations in the development of these models,

particularly among populations with lower educational

attainment in resource-limited settings. In this study, our first

principle for selecting predictive factors was simplicity,

accessibility, and non-invasive. Therefore, we chose four

indicators—WC, SBP, DBP and gender that had been included in

various definitions of MetS to construct Model 1. At the same time,

considering that FPG is an indicator included in various definitions

of MetS and has become easily accessible with the widespread use of

home blood glucose meters (32), Model 2 was constructed by

adding FPG to Model 1. Our findings indicated that both Model

1 and Model 2 demonstrated strong diagnostic efficacy in

identifying MetS, with AUC exceeding 90% in both training and

validation set. Importantly, the indicators used in the models were

easily accessible, thereby enhancing their universality. Besides, the

AUC of Model 2 was slightly higher than that of Model 1. However,

the choice between these models should also consider the

application scenarios and subsequent cost-effectiveness studies.
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To develop effective disease prevention strategies, we need

models that can identify both healthy individuals and those with

pre-MetS or MetS. Our study combined pre-MetS and MetS into

one outcome and found that our models performed well, with AUC

values over 88% in both training and validation sets. This shows

that our models can identify MetS and high-risk populations for

early intervention. However, the clinical value of identifying pre-

MetS in a cross-sectional study needs more support. While it can

guide prevention and reduce the risk of progressing to MetS, our

study design doesn’t show how pre-MetS progresses over time.

Future longitudinal research is necessary to confirm the models’

predictive accuracy for the transition from pre-MetS to MetS, which

would provide a more solid foundation for their clinical application.

Previous studies have highlighted straightforward collection and

interpretation, standardized measuring, and non-invasive as the

advantages of anthropometric indexes in identifying MetS (24, 33).

Our previous study also indicated that among the eight

anthropometric and lipid-related indices (BMI, WHtR, weight-

adjusted waist index, Conicity index, a body shape index, LAP,

visceral obesity index, and TyG index), WHtR, LAP and TyG

index were the most effective for identifying the presence of MetS

in resource-limited areas (24). Importantly, our current Models 1 and

2 outperformed these individual indices in identifying both MetS and

pre-MetS conditions across training and validation datasets. Notably,

few previous studies have reported AUC values exceeding 90% for

anthropometric-based MetS detection (34), highlighting the superior

diagnostic performance of our models. However, the translation to

real-world self-screening may be limited by measurement variability

in self-administered anthropometrics (particularlyWC) and potential

calibration differences in consumer-grade monitoring devices.

Although higher WC and FPG levels in the training set could

theoretically affect model sensitivity, we observed consistent

performance across both datasets. Specifically, the training set had

higher mean values of WC (84.16 cm vs. 83.01 cm) and FPG (5.73

mmol/L vs. 5.67 mmol/L) compared to the validation set. Despite

these differences, the AUC values for Model 1 and Model 2 in the

training set were 0.914 and 0.924, respectively, while in the
FIGURE 4

Nomogram model 1 (A) and model 2 (B) for Metabolic Syndrome. Each indicator in the nomogram prediction model can can get its corresponding
score in the integral line in the middleof the graph, and then each corresponding score can be summed up one by one to obtain the total score.
which iscorresponding to the probability of the risk of MetS occurrence. WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood
pressure; FPG, fasting plasma glucose.
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validation set, they were 0.929 and 0.934, respectively. This

indicates that the models performed similarly well in both

datasets, suggesting that the differences in WC and FPG did not

significantly impact the overall performance.

While the H-L test showed statistically significant results (P <

0.001) for both models across training and validation sets, suggesting

potential calibration issues, this findingmust be interpreted in context.

The H-L test groups data by predicted probabilities and compares

observed vs. predicted positive rates. Significant differences suggest

poor model fit. This method makes results sensitive to sample size

changes. Typically, the sample is divided into 10 groups, each with

about 10% of the data. Small samples can lead to unreliable results in

some groups, while large samples like ours (n=10,520) may cause

some groups to have too few data points, affecting test accuracy. In

addition, the H-L test statistic is calculated using the average predicted

probability in each group, weighted by the number of samples. This

calculation method also increases sensitivity to sample size changes

(35, 36). More importantly, our bootstrap validation (500 iterations)

demonstrated excellent model stability, and the Brier scores confirmed

strong predictive accuracy (Model 1: 0.116 training, 0.106 validation;

Model 2: 0.108 training, 0.102 validation). These scores, all below the

0.25 threshold indicating useful models, along with calibration curves

showing close alignment between predicted and observed

probabilities, collectively suggest good calibration despite the H-L

test results. The clinical utility was further supported by Decision

Curve Analysis, which showed net benefit across wide probability

thresholds in both datasets. While we mitigated overfitting through

careful predictor selection and external validation, future studies could

explore regularization techniques. Together, these findings

demonstrate our models’ robust diagnostic performance and clinical

applicability for MetS identification.

Last but not least, to broaden the practical utility of our research

insights, we have crafted a nomogram derived from the two models.

This innovative tool streamlined the process of identifying

individuals at risk for MetS, ensuring that the identification was

not only straightforward and precise but also swift. By enabling the

early detection of MetS, it paved the way for enhanced patient

outcomes through the prompt initiation of preventive strategies,

including lifestyle adjustments and targeted medical interventions.

Moreover, the nomogram’s capacity to support early detection was

in line with the increasing focus on preventive healthcare. It

facilitates the strategic allocation of resources towards early

intervention initiatives, which may markedly alleviate the burden

of chronic diseases related to MetS. This approach not only

improves individual health outcomes but also contributes to a

more efficient and effective healthcare system overall. However,

before this tool can be officially promoted and applied in clinical

practice, it still needs to undergo application evaluation studies in

different regions and among various populations.
Strengths, limitations and future directions

Our study was characterized by a multitude of strengths. Firstly,

according to our knowledge, this was the first diagnostic model for
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MetS based on the population in Northwest China and one of the

largest analyses in this field. Secondly, the samples in this study were

drawn from a rigorously designed epidemiological study that the

data were collected under a rigorous, standardized protocol. The

model development and validation conducted in independent

cohorts effectively minimized the influence of overfitting and

provided a robust assessment of generalizability, minimizing

potential bias in performance evaluation.

Several limitations should be acknowledged. First, our study

used a single diagnostic threshold for both MetS and pre-MetS.

While this approach simplifies large-scale screening and avoids

patient confusion, it may not be optimal for detecting pre-MetS

cases. A threshold optimized for MetS may result in lower

sensitivity for pre-MetS, potentially leading to missed

opportunities for early intervention. This limitation underscores

the need for future research to develop and validate separate cutoff

values for MetS and pre-MetS to enhance the sensitivity and

specificity of diagnostic models. Second, our external validation

was conducted solely in Ningxia, which may limit generalizability to

other regions with different geographic and socioeconomic

characteristics. For instance, variations in urbanization levels,

dietary habits, and healthcare infrastructure across regions could

influence both metabolic profiles and the accuracy of diagnostic

measurements. Future multicenter validation studies across diverse

Chinese and international populations are needed to confirm

broader applicability. Third, using only IDF criteria may affect

generalizability; adopting the harmonized IDF/AHA/NHLBI

definition would enhance consistency (37). Besides, the exclusion

of lipid profiles (TG and HDL-C), while intentional to prioritize

accessibility in resource-limited settings, may limit the model’s

ability to detect specific MetS phenotypes, particularly in

metabolically obese normal-weight (MONW) individuals. These

individuals often exhibit normal BMI but elevated visceral adiposity

and dyslipidemia, which are key drivers of metabolic risk. Our

models, reliant on WC, blood pressure, and FPG, might

underestimate MetS risk in MONW populations where lipid

abnormalities are the primary metabolic disturbance. Clinicians

should consider supplemental lipid testing when MONW is

suspected, even if model scores are normal.
Conclusions

Our study developed robust diagnostic models that effectively

identify both MetS and pre-MetS, demonstrating superior

performance to conventional indices (WHtR, LAP, and TyG).

The user-friendly nomogram format enables rapid risk

assessment in clinical settings. While these findings are

promising, future research should: (1) validate the models in

multi-ethnic populations using standardized MetS criteria, (2)

incorporate longitudinal data to assess predictive validity, and (3)

evaluate the added value of lipid biomarkers. Such refinements

could establish these tools as versatile solutions for population

screening and tailored prevention programs across diverse

healthcare settings.
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