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Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers

worldwide, with a high recurrence rate and poor prognosis. Understanding the

molecular mechanisms driving HCC progression is crucial for improving

prognostic accuracy and developing targeted therapies. Bile acids (BAs), as

critical regulators of liver metabolism and inflammation, have recently been

implicated in tumorigenesis and cancer progression. In particular, bile acids

metabolism (BAM)-related genes play a pivotal role in the regulation of cellular

proliferation, apoptosis, and immune responses in HCC. In this study, we

explored the prognostic significance of BAM-related genes in HCC. Using a

comprehensive bioinformatics approach, we analyzed transcriptomic data from

public databases, identifying 111 differentially expressed BAM-related genes

associated with patient survival. We then constructed a prognostic model

based on these key genes, utilizing multivariate Cox regression analysis to

determine their independent predictive value for overall survival in HCC

patients. We identified four key BAM-related genes including AKR1D1, CYP7A1,

FABP6, and NPC1 as significant prognostic markers. Among these genes, only

NPC1 was the highly expressed gene and demonstrated statistically difference

between HCC and normal liver tissues. The downregulation of NPC1 inhibited

HepG2 cell proliferation, migration, and invasion. In conclusion, BAM-related

genes offer a promising avenue for improving prognosis assessment in HCC

patients. Our findings highlight the potential of NPC1 as a valuable tool for risk

stratification and personalized treatment strategies in HCC patients.
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1 Introduction

Liver cancer is the sixth most commonly diagnosed malignancy

and the third leading cause of cancer-related death globally (1).

Hepatocellular carcinoma (HCC) is the major form and accounts

for more than 80% of liver cancers (2). Although tremendous

progress has been achieved in the field of cancer therapy, the

prognosis and five-year survival rate of patients with HCC remain

unsatisfactory. Therefore, it is urgent to explore novel molecular

markers associated with the progression of HCC so as to

complement existing treatment regimens.

Bile acids (BAs), as critical regulators of liver metabolism and

inflammation, have recently been reported to participate in

tumorigenesis and cancer progression (3). Specifically, BAs are the

primary metabolic byproducts of cholesterol in the liver and play

crucial roles in regulating glucose, lipid, and energy metabolism.

Beyond their physiological activities, BAs also function as signaling

molecules and key regulators, modulating critical cellular processes

including proliferation, apoptotic pathways, and immune responses

in HCC (4). Simultaneously, previous clinical cohort studies have

demonstrated that aberrant alterations in BAs profiles are closely

related to HCC development (5, 6).

Mechanically, the diverse types of BAs have been demonstrated

to influence the composition and functionality of the gut microbiota,

and the bidirectional interaction between BAs and gut microbiota is

associated with HCC progression (7). A previous study have revealed

that chenodeoxycholic acid, a primary BA, contributes to HCC

progression by mediating inflammasome activation via targeting

mitochondrial reactive oxygen species overaccumulation (8).

Moreover, the study conducted by Qu et al. found that impaired

BAM is significantly associated with poor prognosis and advanced

disease progression in patients with HCC. Furthermore, they

proposed a novel molecular classification system, suggesting that

HCC can be stratified into proliferative and non-proliferative

subtypes based solely on the expression profiles of BAM-related

genes (9). All the above findings provided new directions for HCC

treatment by targeting dysregulated BAM-related genes in HCC.

The tumor microenvironment (TME) comprises diverse

cellular components such as fibroblasts, endothelial cells, immune

cells, and adipocytes, along with non-cellular elements such as

stromal proteins, extracellular matrix, and numerous growth

factors. These components collectively create a unique metabolic

landscape that supports tumor progression through promoting

cancer cell growth and inhibiting antitumor immunity (10–12).

The functional differentiation and phenotypic plasticity of immune

cells within the TME are usually affected by BAM. Aberrant BAM

was demonstrated to inhibit the recruitment of natural killer T cells

into the TME and promote M2-like tumor-associated macrophage

polarization, thereby facilitating tumor immune evasion and HCC

progression (13). The accumulation of both primary conjugated

and secondary BAs represents a distinct metabolic hallmark in

human HCC. Inhibition of conjugated BAs synthesis in hepatocytes

significantly potentiated tumor-specific T cell immunity,

suppressed hepatocarcinogenesis, and enhanced tumor

susceptibility to anti-PD-1 therapy (14).
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In the present study, we developed a polygenic prognostic

signature utilizing TCGA cohort for HCC, followed by integrative

bioinformatics analysis to assess the correlation between the prognostic

model and tumor immune microenvironment characteristics along

with clinical parameters. Subsequently, we constructed a prognostic

model using LASSO regression and identified a four-gene signature

comprising AKR1D1, CYP7A1, FABP6, and NPC1. Moreover, we also

conducted in vitro functional studies to experimentally validate the role

of NPC1 gene in HCC progression, with the aim to provide novel

biomarkers for HCC detection and treatment.
2 Methods

2.1 Data acquisition

We retrieved RNA-sequencing data, normalized as fragments per

kilobase of transcript per million mapped reads, along with the

corresponding clinical and prognostic information from The Cancer

Genome Atlas (TCGA) portal (http://cancergenome.nih.gov). The

dataset was consist of 374 tumor samples and 50 adjacent normal

tissue samples. Furthermore, we obtained the HCC dataset

GSE14520 from the Gene Expression Omnibus (GEO) database

for external validation, including 247 tumor samples and 241

adjacent normal tissue samples. To identify gene sets associated

with bile acid and BAM, we utilized three gene sets of the Molecular

Signatures Database (MsigDB, https://www.gsea-msigdb.org/gsea/

ms i gdb ) , i n c l uded the “HALLMARK_BILE_ACID_

METABOLISM”, “REACTOME_BILE_ACID_AND_BILE_

SALT_METABOLISM”, and “BILE_ACID_AND_BILE_SALT_

METABOLISM”. A total of 139 genes are primarily involved in

BAs and BAM.
2.2 Differential expression analysis and
construction of consensus clustering

Differentially expressed genes (DEGs) analysis was conducted

by the “limma” package of R language on transcriptomic data

obtained from the TCGA database. The statistical significance

threshold was set at p-value < 0.05 and |log2FC| > 0.5. Through

this rigorous analytical approach, a total of 111 DEGs of BAM

meeting these criteria were identified and selected for further

investigation. In addition, the expression data of 111 BAM-related

genes were extracted from TCGA cohort. The R package of

ConsensusClusterPlus was used to perform subsequent consensus

unsupervised sample clustering (15). To improve the reliability and

stability of the Clustering results, an iterative clustering approach

was implemented with 50 independent replicates.
2.3 GSEA and mutation analysis

Gene Set EnrichmentAnalysis (GSEA)was performed to quantify

the enrichment of specific pathways or functional features across
frontiersin.org
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different clusters. The analysis was conducted using the R packages

“limma”, “org.Hs.eg.db”, “clusterProfiler”, and “enrichplot”. Two gene

set collections (c5.go.symbols.gmt and c2.cp.kegg.symbols.gmt) were

utilized in the GSEA analysis. Statistical significance was determined

using a threshold of p-value < 0.05 and false discovery rate (FDR) <

0.05. And the top 5 were shown.

To classify somatic mutation profiles in Mutation Annotation

Format, Cluster group and risk score were conducted. Tumor

mutational burden (TMB) was calculated from somatic mutation

data for each patient. Comprehensive mutation analysis and

generation of waterfall plots were conducted by the “maftools” R

package. Moreover, Kaplan-Meier survival analysis and

visualization of survival curves were performed with the

“survival” and “survminer” R packages, respectively.
2.4 Immunity analysis of consensus
clustering

For tumor immune analysis, the immune score, stromal score,

and estimate score were computationally derived using the

ESTIMATE algorithm as previously used (16). The computational

analysis and visualization of ESTIMATE algorithm results derived

from TCGA database were performed using the following R

packages: “limma”, “estimate”, and “ggpubr”. The infiltration

profiles of 22 immune cell subtypes across different sample groups

were assessed using the CIBERSORT algorithm (17). To characterize

immune cell infiltration patterns, we employed seven established

algorithms: XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,

and CIBERSORT-ABS. The following essential R packages including

“limma”, “scales”, “ggplot2”, “ggtext”, “reshape2”, “tidyverse” and

“ggpubr” were used to conduct related analysis.
2.5 Construction of BAM-related genes
prognosis model

To identify prognostic BAM-related genes, univariate Cox

regression analysis was initially performed in conjunction with

survival analysis. And then, the TCGA cohort served as the training

dataset, while the GSE14520 cohort was utilized as the validation

dataset. Based on the identified prognostic BAM-related genes,

LASSO-Cox regression analysis was implemented to select optimal

genes and construct a risk prediction model, thereby reducing the risk

of overfitting. In the risk score calculation, Exp (Gene) represents the

expression level of BAM-related genes, and Coef (Gene) denotes the

corresponding regression coefficients. Survival analysis and

visualization were conducted using the “survival” and “survminer”

R packages to generate Kaplan-Meier survival curves.
2.6 Nomogram and calibration of
prognosis model

The predictive nomogram was developed using R statistical

software. Besides, the following packages were also used including
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“survival”, “regplot” and “rms”. Furthermore, the calibration curve

was used to evaluate and quantify the concordance between

predicted probabilities and observed outcomes across three

clinically relevant time points (1-, 3-, and 5-year overall survival).
2.7 Survival analysis and clinical correlation
analysis of prognosis model

The prognostic significance of four BAM-related genes was

evaluated through survival analysis, with survival curves generated

using R-based packages. The association between methylation

status of four BAM-related genes and patient survival outcomes

was analyzed using R statistical software. Survival curves were

generated utilizing the “survival” and “survminer” package.
2.8 Cell culture and transfection

The HCC cell line HepG2 was purchased from ATCC

(American Type Culture Collection) and was cultured in DMEM

(Dulbecco’s Modified Eagle Medium) with 10% FBS (Fetal Bovine

Serum) and 1% penicillin-streptomycin at 37°C in 5% CO2.

Transfection of HepG2 cells was initiated at a confluence of

approximately 30%. Lipofectamine 2000 (Lip2000) was employed

as the transfection reagent following the manufacturer’s protocol.

Briefly, OPTI-MEM (Optimized Minimum Essential Medium) was

individually mixed with siRNA and Lip2000, followed by a 5-

minute incubation at room temperature. The two mixtures were

then combined and allowed to incubate for an additional 15

minutes to form transfection complexes. The resulting mixture

was subsequently added to complete DMEM medium without

antibiotics. After 6~8 hours, the medium was replaced. The

knockdown efficiency of NPC1 was evaluated after 24 hours

of transfection.
2.9 RNA extraction and quantitative real-
time PCR

According to manufacturer’s instructions, total RNA was

extracted using the RNA isolation kit (Foregene, Chengdu,

China). The RNA was reverse-transcribed into cDNA by the

PrimeScript RT reagent kit (TaKaRa, Japan). And then qPCR was

performed to assess relative mRNA expression. Data were analyzed

using the 2-DDCt method. The primer sequences were listed in

Supplementary Table S2.
2.10 CCK8 and colony formation assay

After successful transfection of HepG2 cells, approximately

3×103 cells from both the control and knockdown groups were

seeded in 96-well plates for CCK8 assay. Cell viability was detected

by incubating the cells for 0, 24 and 48 hours respectively. After
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incubation, 10 ml CCK-8 solution together with 90 ml fresh medium

were added into each well and the culture plate underwent

incubation for 1~4 hours at 37°C. The OD (Optical Density) at

450 nm was detected by a microplate reader.

After successful transfection of HepG2 cells, approximately 500

cells from both the control and knockdown groups were seeded into

6-well plates for colony formation assay. Then, the medium was

replaced every 3 days. After the incubation for 14 days, the plates

were washed with PBS (Phosphate Buffered Saline) for 3 times, fixed

with 4% polyoxymethylene and stained with 0.5% crystal violet.

Finally, the images were taken after the plates dried using an

Olympus microscope.
2.11 Transwell assays and wound healing
assay

To detect the effect of the NPC1 gene on the migration and

invasion of HepG2 cells, transwell assays were conducted using the

8mm pore-size transwell plate. Briefly, approximately 4×104 HepG2

cells undergone successful transfection were mixed with 200 µL

serum-free medium on the upper chambers inserted into a 24-well

plate. The bottom chamber was contained with 600 µL complete

medium. For invasion assessment, the upper chamber was precoated

with 20% Matrigel and cells were seeded into the chamber as

previously. After incubation for 48 hours, the upper chamber was

removed, washed with PBS, fixed using 4% paraformaldehyde and

stained by 0.5% crystal violet. Finally, the migration or invasion cells

were imaged by an Olympus microscope. After successful

transfection, HepG2 cells were seeded in six-well plates and were

cultured until reached 100%. Then, a pipette tip was used to form a

linear wound in the confluent monolayer. Meanwhile, the cell debris

was removed by PBS.Wound healing images were photographed at 0,

24, and 48 hours, respectively.
2.12 Statistical analysis

All statistical analyses were performed with R Studio (Version

4.4.1) and GraphPad Prism (Version 10.1.0). In the present study,

p-value<0.05 was considered statistically significant difference.
3 Results

3.1 Construction and validation of
molecular subtyping of BAM

We first retrieved 138 BAM-related genes from the MSigDB

database (Supplementary Table S1) and performed differential

expression analysis using the TCGA cohort, identifying 111

differentially expressed genes(DEGs) (Figure 1A). Based on the

aforementioned genes, we employed an unsupervised clustering

methodology to construct molecular subtypes associated with BAM

(Figures 1B–E). Additionally, our analysis identified 4,438 DEGs
Frontiers in Endocrinology 04
based on the molecular subtype (Figure 1F). Kaplan-Meier survival

analysis demonstrated significantly reduced overall survival in

patients with low BAM-related gene expression compared to the

high counterparts (Figure 1G).
3.2 GSEA and mutation analysis

Through GSEA based GO, we observed that the BAM-high

group is closely associated with GOBP_ALPHA_AMINO_

ACID_CATABOLIC_PROCESS,GOBP_CELLULAR_AMINO_

ACID_CATABOLIC_PROCESS, GOBP_MONOCARBOXYLIC_

ACID_CATABOLIC_PROCESS, GOBP_XENOBIOTIC_

METABOLIC_PROCESS, and GOCC_MICROBODY_LUMEN;

BAM-low group is closely associated with GOBP_EXTERNAL_

ENCAPSULATING_STRUCTURE_ORGANIZATIO,GOBP_

K I DNEY _MORPHOGENE S I S , GOB P _ S K E L E TA L _

SYSTEM_MORPHOGENESIS,GOMF_EXTRACELLULAR_

MA T R I X _ S T R U C TU R A L _ C ON S T I T U E N T , a n d

GOMF_SIGNALING_RECEPTOR_REGULATOR_ACTIVITY

(Figures 2A, B). Through GSEA based KEGG, BAM-high group is

closely associated with KEGG_DRUG_METABOLISM_

CYTOCHROME_P450, KEGG_FATTY_ACID_METABOLISM,

KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM,

KEGG_PEROXISOME and KEGG_RETINOL_METABOLISM;

BAM-low group is closely associated with KEGG_BASAL_

CELL_CARCINOMA,KEGG_CYTOKINE_CYTOKINE_

RECEPTOR_INTERACTION, KEGG_ECM_RECEPTOR_

INTERACT ION , KEGG_FOCAL_ADHES ION an d

KEGG_HEDGEHOG_SIGNALING_PATHWAY (Figures 2C, D).

Through mutation analysis, we observed differences in gene

mutation frequencies between the high-risk and low-risk groups,

particularly in TP53 and CTNNB1. The mutation frequency of

TP53 was significantly lower in the high-risk group compared to the

low-risk group, while CTNNB1 showed a significantly higher

mutation frequency in the low-risk group compared to the high-

risk group (Figures 2E, F). This finding provides a valuable

therapeutic strategy.
3.3 Immune analysis based on molecular
subtyping

Through comprehensive analysis of microenvironment scores,

we observed a statistically significant difference in ImmuneScore,

suggesting distinct immune microenvironment profiles between the

two molecular subtypes (Figures 3A–D). Furthermore, we

investigated the disparities in immune cell composition between

the subtypes and identified memory B cells, monocytes, and M1

macrophages as the pivotal immune cell populations distinguishing

the two molecular subtypes (Figure 3E). Lastly, we assessed the

variations in HLA-related genes and immune checkpoint-related

genes across the different molecular subtypes. Our analysis revealed

several differentially expressed genes between the subtypes

(Figures 3F, G).
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3.4 Construction a prognosis signature
based on BAM-related genes

To construct a robust prognostic model for predicting patient

outcomes, we utilized the TCGA cohort as the training set and the

GSE14520 cohort from GEO as the validation set. Differential
Frontiers in Endocrinology 05
expression analysis was performed to identify common differentially

expressed genes (DEGs) between the TCGA and GSE14520 cohorts,

yielding a total of 5,069 DEGs (Figure 4A). Through univariate

regression analysis, we identified 13 survival-related genes associated

with BAM (Figure 4B). Subsequently, we constructed a prognostic

model using LASSO regression, which identified a four-gene signature
FIGURE 1

Identification of 111 BAM related-DEGs. (A) Identification of two subtypes based on Consensus clustering analysis. (B) Consensus clustering at k = 2.
(C) The empirical cumulative distribution functions plotted for each k value. (D) Delta area diagram at different k (E) Longitudinal trajectory
visualization for individual items across each k value. (F) The heatmap of 4,438 identified DEGs. (G) Survival analysis of HCC patients in two
molecular subtypes. *p < 0.05, **p < 0.01, ***p < 0.001.
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comprising AKR1D1, CYP7A1, FABP6, and NPC1 (Figures 4C, D).

Survival analysis demonstrated a statistically significant difference

between the high-risk and low-risk groups, with patients in the

high-risk group exhibiting significantly shorter survival times

compared to those in the low-risk group (Figures 4E, F).

For model evaluation, we employed heatmaps, survival time

curves, and survival status plots, which collectively demonstrated the
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stability and robust prognostic performance of the four-gene model in

both the TCGA cohort (Figure 5A) and the GSE14520 cohort

(Figure 5B). Univariate and multivariate independent prognostic

analyses demonstrated that the risk score can serve as an

independent prognostic factor to predict the outcome in HCC

patients within the TCGA cohort and the GSE14520 cohort. The

univariate (Figure 5C) and multivariate Cox regression analyses
FIGURE 2

(A) GSEA of GO analysis in the high risk group. (B) GSEA of GO analysis in the low risk group. (C) GSEA of KEGG analysis in the high risk group (D) GSEA
of KEGG analysis in the low risk group. (E–F) The mutation waterfall map of the high and low-risk group.
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(Figure 5D) in the TCGA cohort demonstrate that the risk score and

stage are independent prognostic factors in HCC patients. Clinical

correlation analysis revealed that riskscore is closely associated with

grade, stage and T stage of TNM classification (Figure 5E).
3.5 Immune analysis of prognosis signature
based BAM-related genes

We perform the immune cell infiltration analysis. As illustrated

in the bubble plot (Figure 6A), the quantitative assessment

incorporating seven distinct computational methodologies -

CIBERSORT, TIMER, QUANTISEQ, MCP-COUNTER, EPIC,
Frontiers in Endocrinology 07
xCell, and CIBERSORT-ABS - demonstrated statistically

significant associations between risk stratification and tumor

immune microenvironment composition. Our findings indicate a

strong correlation between elevated risk scores and increased

immune cell infiltration levels across multiple immune cell

subtypes. Moreover, we employed heatmap to visualize the

distribution profiles of various immune cell subsets across

samples with different risk scores (Figure 6B). Based on the

CIBERSORT analysis of the TCGA cohort, we observed that the

risk score is significantly associated with Macrophages M0 and

Monocytes (Figures 6C, D). Immune function analysis revealed

differences in multiple immune cell functions between the high-risk

and low-risk groups of the prognostic model (Figure 6E).
FIGURE 3

Immune cell infiltration in two molecular subtypes. (A) ESTIMATE Score in two subtypes. (B) Immune Score in two subtypes. (C) Stromal Score in
two subtypes. (D) Tumor Purity Score in two subtypes. (E) The violin plot based on the CIBERSORT in two subtypes. (F) Differential expression
patterns of HLA allelic variants between two molecular subtypes. (G) The difference between immune checkpoints in two subtypes. *p < 0.05**p <
0.01, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1588529
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2025.1588529
Immunogenic cell death (ICD) and immune checkpoint (ICP)

molecules play pivotal roles in predicting the efficacy of

immunotherapy in patients with malignancies (18, 19).

Consequently, we assessed the differences in ICD- and ICP-

related genes between the risk groups and identified statistically

significant variations in multiple genes associated with these

pathways. These findings suggest that ICP-based immunotherapy

may yield differential responses in patients from distinct risk

groups. Therefore, tailoring personalized immunotherapy

strategies to account for the varying responses of different risk
Frontiers in Endocrinology 08
groups could potentially enhance therapeutic outcomes for patients

with HCC (Figures 6F, G).
3.6 Construction and verification of the
prognostic nomogram

To further assess the predictive accuracy of the model for

survival outcomes, we developed a nomogram incorporating age,

gender, stage, and risk score using the TCGA cohort (Figure 7A)
FIGURE 4

Construction of the prognostic model for HCC based on the screened BAM-related genes. (A) The volcano map of DEGs. (B) The univariate cox
regression analysis of BAM-related genes. (C, D) The LASSO regression analysis and partial likelihood deviance on the prognostic genes signature.
(E) Survival curve of the two risk groups based on the four-gene prognostic signature in the TCGA dataset. (F) Survival curve of the two risk
subgroups defined by the four-gene signature in the GSE14520 cohort.
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and the GSE14520 cohort (Figure 7B). Additionally, calibration

plots were generated to evaluate the agreement between the

nomogram-predicted and observed 1-, 3-, and 5-year survival

rates (Figures 7C, D). The predicted survival curves demonstrated

close alignment with the reference lines, indicating the reliability

and accuracy of the constructed nomogram.
3.7 Validation of a four-gene prognostic
model

We analyzed the expression of four BAM-related genes

expression profiles across TCGA, GSE14520, and GSE76427

cohorts revealing distinct expression patterns between HCC

tissues and normal liver tissues. The comparative analysis
Frontiers in Endocrinology 09
demonstrated that AKR1D1 expression was downregulated in

HCC tissues compared to normal liver tissues. Conversely, three

other BAM-related genes CYP7A1, FABP6 and NPC1 showed

upregulation in HCC tissues relative to their expression levels in

normal hepatic tissues. Among the above four genes, only NPC1

was the highly expressed gene and demonstrated statistical

difference between HCC and normal liver tissues (Figures 8A–C).

Therefore, we employed siRNA to downregulate NPC1 expression

in HepG2 cells for further exploring its role in HCC pathogenesis.

Through qPCR assay, we found that NPC1 was significantly

downregulated following siRNA transfection (Figure 8D).

Through CCK-8 assay, we found that NPC1 knockdown could

inhibit cell proliferation and colony formation in HepG2 cells

(Figures 8E, F). NPC1 knockdown also attenuated the migratory

and invasive capacities of HepG2 cells by transwell assays
FIGURE 5

The risk model of four-gene signature. (A) The four-gene mRNA expression, risk score distribution, and the related survival data in the TCGA cohort.
(B) The four-gene mRNA expression, risk score distribution, and the related survival data in the GSE14520 cohort. (C, D) The univariate and
multivariate Cox regression analyses in the TCGA cohort and GSE14520 cohort. (E) The correlated heatmap of the risk score and clinical features.
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(Figure 8G). Analogously, wound healing assay revealed that NPC1

knockdown impaired the migratory potential of HepG2 cell

(Figure 8H). The above findings indicate that silencing NPC1

may suppress HCC progression, suggesting its potential utility as

a novel diagnostic biomarker and therapeutic target for HCC.
4 Discussion

Hepatocellular carcinoma persists as one of themost therapeutically

challenging malignancies, ranking as the sixth most prevalent cancer

and the third leading cause of cancer-related mortality worldwide (20).
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Therapeutic approaches for HCC include non-drug and drug treatment.

In early-stage HCC, the primary treatment strategies involve

interventional procedures, including surgical resection, liver

transplantation, and transarterial chemoembolization. For advanced

HCC, systemic therapy predominantly relies on pharmacological

interventions such as targeted agents and monoclonal antibody-based

therapies (21, 22). Despite the availability of diverse therapeutic

strategies for HCC, the clinical outcomes of patients remain

suboptimal. To enhance patient prognosis, there is an urgent need to

identify and validate novel prognostic biomarkers.

Bile acids include a variety of lipid compounds and are

biosynthesized in the hepatic parenchyma and subsequently
FIGURE 6

Immune cell infiltration analysis of different risk groups. (A) Correlation between risk scores and immune cells. (B) The distribution profiles of various
immune cell subsets across samples with different risk scores. (C) The correlation between risk score M0 macrophages. (D) The correlation between
risk score monocytes. (E) Immune function analysis-related risk score has associations with potential functional immune cells. (F) Correlation
analysis between immune phenotypic clusters and ICD modulators. (G) Correlation analysis between immune phenotypic clusters and ICP
modulators. *p < 0.05**p < 0.01, ***p < 0.001.
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conjugated with sodium or potassium cations to form bile salts

prior to their secretion into the gallbladder lumen. These primary

BAs undergo microbial biotransformation into secondary BAs

through the enzymatic activities of specific commensal

microorganisms within the intestinal microbiota (23, 24). It is

generally accepted that BAs exert pleiotropic effects on cellular

physiology, modulating metabolic homeostasis, inflammatory

responses, and proliferative signaling pathways through their

interactions with specific nuclear and membrane-bound receptors.

Emerging evidence increasingly demonstrates that, beyond their

fundamental roles in metabolic homeostasis, specific BAs are

implicated in the pathogenesis and progression of HCC through

diverse molecular mechanisms such as promoting malignant cell

proliferation, affecting cell apoptosis, and inducing immune evasion

(25–27). Importantly, recent advances in metabolomic research

have established BAs profiling as a promising diagnostic tool for

the early detection and predicting the risk and of HCC. The

application of machine learning algorithms to comprehensive BAs

profiling has demonstrated significant diagnostic utility in

distinguishing between benign and malignant hepatobiliary

strictures with high accuracy (28). In addition, several
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investigations have demonstrated significant elevations in the

circulating concentrations of specific BAs species such as

glycocholic acid, taurodeoxycholic acid and taurocholic acid in

the serum/plasma of HCC patients compared to healthy control

cohorts (29–31). A study conducted by Wang et al. found that

elevated total serum BAs levels were an independent risk factor for

HCC development (32). The above studies underscore the pivotal

role of BAs profiling in both HCC screening and prognostic

prediction, highlighting its potential as a valuable biomarker in

clinical hepatology.

It has been recognized that neoplastic tissues constitute

complex ecosystems composed of malignant cells and their

associated TME. The dynamic interplay between diverse immune

cell populations within the TME plays a pivotal role in orchestrating

tumorigenesis and modulating cancer (12). The recent

advancements in immunotherapeut ic s trategies have

revolutionized the therapeutic landscape for HCC, enhancing

treatment efficacy and patient outcomes (33). Given that BAM in

the TME is dynamic, the prognostic model constructed based on

BAM-related genes involved in the dynamic process to discriminate

the risk level of HCC patients holds the promise for facilitating the
FIGURE 7

(A) The nomogram integrated the risk score and clinical features to predict the survival rate of the 1, 3, and 5 years in TCGA cohort. (B) The
nomogram integrated the risk score and clinical features to predict the survival rate of the 1, 3, and 5 years in GSE14520 cohort. (C) The 1, 3, and 5
years OS calibration curves in TCGA cohort. (D) The 1, 3, and 5 years OS calibration curves in GSE14520 cohort. ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1588529
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2025.1588529
formulation of personalized treatment strategies and enhancing

prognostic assessment in clinical practice. As such, in the present

study, we try to explore the influence of BAM-related genes on both

the immune-infiltrated TME and their prognostic implications in

patients with HCC.

In this study, we identified 111 BAM-related DEGs of HCC

from the MSigDB database. We then conducted consensus
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clustering analysis utilizing BAM-related gene signatures, which

enabled the identification of two distinct molecular subtypes. The

subtypes exhibited significantly divergent clinical outcomes and

immune features in HCC. In this section, we designated the TCGA

dataset as the training cohort and the GSE14520 dataset as the

validation cohort. While the consensus clustering approach may

lack sufficient precision to directly inform immunotherapy
FIGURE 8

Differential expression analysis of the four BAM-related genes and in vitro validation. (A) TCGA. (B) GSE14520. (C) GSE76427. (D) The expression of
NPC1 in HepG2 cell following siRNA transfection by assay. (E, F) Silencing NPC1 expression inhibited HepG2 cell proliferation and colony formation.
(G, H) Silencing NPC1 expression inhibited the invasive and migratory capacity of HepG2 cell. **p < 0.01, ***p < 0.001, ****P < 0.0001..
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strategies, the molecular subtypes derived from BAM-related genes

expression profiles demonstrate significant potential for guiding

clinical decision-making in HCC management. Survival analysis

revealed a statistically significant reduction in overall survival

among patients exhibiting low expression levels of BAM-related

genes compared to those with high expression profiles.

Through univariate regression analysis, we identified 13

survival-related genes associated with BAM. Subsequently, we

constructed a prognostic model using LASSO regression, which

identified a four-gene signature comprising AKR1D1, CYP7A1,

FABP6, and NPC1. Meanwhile, the patients were divided into high

and low-risk groups. We also systematically investigated the

differential characteristics between two groups in terms of overall

survival, tumor immune infiltration and somatic mutation status.

Our findings demonstrate that the risk stratification score exhibits

significant correlations with OS and multiple clinical parameters

including gender, tumor stage, and T classification. The risk score

can serve as an independent prognostic indicator for HCC patients.

Moreover, the risk score is associated with immune cells based on

CIBERSORT, TIMER, QUANTISEQ, MCP-COUNTER, EPIC,

xCell, and CIBERSORT-ABS algorithms. Specifically, the

CIBERSORT algorithm analysis demonstrated a positive

correlation between the risk score and infiltration levels of

Macrophages M0 and Monocytes. Furthermore, GSEA analysis

showed that pathways enriched in the high-risk group were

mainly related to amino acid catabolic process, fatty acid

metabolism and drug metabolism, etc. Pathways enriched in the

low-risk group were primarily involved in cytokine-cytokine

receptor interaction, ECM-receptor interaction and Hedgehog

signaling pathway. In addition, we assessed the differences in

ICD- and ICP-related genes between the risk groups and

identified statistically significant variations in multiple genes and

found that ICP-based immunotherapy may yield differential

responses in patients from distinct risk groups.

The Niemann-Pick C1 (NPC1) protein is a 1278-amino acid

transmembrane glycoprotein that predominantly localizes to the

limiting membrane of late endosomes and lysosomes (34). The

NPC1 plays a crucial role in maintaining cellular cholesterol

homeostasis by promoting the export of cholesterol from

endolysosomes (35). Recently, emerging evidence has revealed

elevated NPC1 expression across various malignancies such as

breast cancer, gastric cancer, liver cancer etc (36–38). We

analyzed the expression of four BAM-related genes across the

TCGA, GSE14520, and GSE76427 cohorts and found that only

NPC1 was the high expressed gene and demonstrated statistically

difference between HCC and normal liver tissues. In light of these

discoveries, we performed a series of in vitro experimental

validations to substantiate the aforementioned findings. Our

functional studies demonstrated that NPC1 knockdown

suppressed cell proliferation, migration, and invasive capabilities

in HepG2 cells.

Our investigation evaluated the model’s predictive efficacy

across survival outcomes, clinical and molecular mechanisms,

tumor mutational burden as well as the immune landscape.
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Nonetheless, limitations within our research remain. Firstly, the

majority of our analyses were predicated on publicly accessible

databases, underscoring the imperative for enhanced clinical

validation to substantiate our findings. Secondly, the

predominance of bioinformatics-based analyses in our study

necessitates further corroboration through fundamental

experimental approaches. Furthermore, additional in vivo studies

and clinical investigations are warranted to elucidate the therapeutic

potential of NPC1 and delineate its precise molecular pathways in

HCC pathogenesis.

To summarize, through comprehensive bioinformatics analysis,

this study established a robust risk model incorporating four BAM-

associated genes, which demonstrates high predictive accuracy for

HCC patient survival and effectively characterizes the

immunological and mutational landscape of HCC. Moreover, we

found that silencing NPC1 gene could inhibit HCC cells

proliferation, migration, and invasion in vitro study. As such,

NPC1 can be regarded as a valuable tool for risk stratification and

personalized treatment strategies in HCC patients. Collectively,

these findings offer valuable perspectives for advancing

immunotherapeutic strategies in HCC management.
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