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Relationship between dietary
acid-base load and non-insulin-
based resistance measures
in patients with chronic
kidney disease
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Yue Niu2, Yayong Luo2, Junqian Wang2,3, Shuang Li2,
Zhengchun Tang2,3, Xueying Cao2, Xiaolong Wang2, Jian Yang2,
Sha Luo2, Weizhu Deng2, Weiguang Zhang2, Ying Zheng2,
Yong Wang2, Li Zhang2, Guangyan Cai2, Xiangmei Chen1,2,3*

and Zheyi Dong2*

1School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,
2Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key
Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key
Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for
Severe Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and
Treatment of Pan-vascular Disease, Key Disciplines of National Administration of Traditional Chinese
Medicine (zyyzdxk-2023310), Beijing, China, 3School of Clinical Medicine, Guangdong Pharmaceutical
University, Guangzhou, China
This study explored the associations between triglyceride glucose (TyG), TyG

with body mass index (TyG-BMI), triglyceride-to-high-density lipoprotein

cholesterol (TG/HDL-C) ratio, and metabolic score for insulin resistance

(METS-IR) and the effects of dietary acid-base load in patients with chronic

kidney disease (CKD).

Methods: A total of 288 patients with CKD were included in this study. Four non-

insulin-based insulin resistance (IR) markers were used to assess IR levels in

patients with CKD; dietary intake – 24-h dietary recall; and diet-based acidity –

potential renal acid load (PRAL), net endogenous acid production (NEAP), and

dietary acid load (DAL). Multiple linear regression analysis correlated dietary acid-

base load and non-insulin-based IR markers.

Results: Spearman’s correlation indicated DAL was significantly associated with

TyG-BMI (r = 0.251, P < 0.001) and METS-IR (r = 0.274, P < 0.001), but weakly

correlated with the TG/HDL-C ratio (r = 0.14, P = 0.018). After adjusting for sex,

age, energy, hypertension (HTN), diabetes, and estimated glomerular filtration

rate, multiple linear regression analysis showed that DAL was associated with

TyG-BMI (b = 0.336; P = 0.008) and METS-IR (b = 0.091; P = 0.007).
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Conclusions: Patients with the highest DAL scores had the highest TyG-BMI,

TyG, TG/HDL-C ratio, and METS-IR. After adjusting for confounders, there

was a significant positive association between DAL and TyG-BMI and

METS-IR.
KEYWORDS

chronic kidney disease, dietary acid-base load, triglyceride glucose-body mass index,
metabolic score for insulin resistance, insulin resistance
1 Introduction

The worldwide prevalence of chronic kidney disease (CKD) is

around 9.5%, or approximately 850 million cases (1), while that in

China is 8.2% (2). The high prevalence and long course of CKD

have caused a huge economic burden to patients and society, as well

as presented a great challenge to the medical profession. Moreover,

many patients do not undergo renal replacement therapy. Prompt

diagnosis and treatment are critical for patient outcomes in CKD,

and can even delay disease progression and reduce complications.

Studies have reported that CKD patients have many risk elements,

including type 2 diabetes mellitus (T2DM), metabolic syndrome,

obesity, hypertension (HTN), and dyslipidemia (2–4). These

conditions are intricately linked to insulin resistance (IR), which

exerts detrimental effects on the kidney by inducing inflammation,

oxidative stress, and endothelial dysfunction (5–7). Therefore, the

early recognition and effective management of IR can prevent or

delay the development of CKD and its associated complications.

The hyper insulinemic-euglycemic clamp technique is the

benchmark for evaluating IR. It does this by infusing insulin to

reach specific plasma levels and glucose to keep blood sugar at

fasting or post-meal concentrations (8). However, it is impractical

for clinical use because it requires insulin measurements and

invasive methods. Therefore, four non-insulin-based IR markers –

triglyceride and glucose index (TyG), triglyceride and glucose index

with body mass index (TyG-BMI), triglyceride-to-high-density

lipoprotein cholesterol (TG/HDL-C) ratio, and metabolic score

for insulin resistance (METS-IR) – were utilized to assess the IR

levels in patients with CKD, as in previous studies (9, 10).

Healthy dietary habits such as the HTN control and

Mediterranean diets protect against the development of CKD and
ype 2 Diabetes Mellitus;

ride and glucose index;

ass index; TG/HDL‐C,

tein cholesterol; METS‐

ntial Renal Acid Load;

ary Acid Load; eGFR,

Cell; BUN, Blood Urea

h-Density Lipoprotein

Cholesterol; MUFA,

tty Acid.

02
albuminuria (11). Additionally, a healthy acid-base balance is

essential for maintaining metabolic health. Potential renal acid

load (PRAL) (12), net endogenous acid production (NEAP) (13),

and dietary acid load (DAL) (14) are commonly used measures to

assess the potential acid load produced by the diet. Both the PRAL

and NEAP scores are based on the intake of protein and

micronutrients, and the DAL score is calculated using the PRAL

score and body surface area. There is evidence that a high dietary

acid load is linked to a high prevalence of CKD and impaired renal

function (15–17).Researches have shown that a diet characterized

by a high acid load correlates with metabolic abnormalities,

predisposing individuals to IR (18), T2DM (19, 20), HTN (21),

and metabolic syndrome (22).

The purpose of this study was to investigate the relationship

between dietary acid and base load and four non-insulin-based IR

markers in patients with CKD.
2 Materials and methods

2.1 Study population

Data were collected from patients with CKD who were

hospitalized at the Chinese People’s Liberation Army general

Hospital (PLAGH) from March 2022 to July 2023. Inclusion

criteria: (1) age ≥ 18 years, and (2) diagnosis of CKD according to

the 2024 Kidney Disease Improving Global Outcomes Clinical

Practice Guidelines (23). Exclusion criteria: (1) history of severe

infection, (2) acute and severe diseases, (3) pregnancy or lactation,

(4) malignant tumors, (5) missing data of medical history or clinical

examination results, and (6) incomplete dietary intake data and/or

extreme energy intake reporting (> 4000 kcal or < 600 kcal).

Ultimately, 288 non-dialysis patients with CKD were included.
2.2 Clinical data

The patients’ demographic and clinical characteristics (sex, height,

weight, and age) and medical history (present illness, nephropathy,

HTN, and diabetes) were recorded. Laboratory parameters evaluated

including: white blood cell count (WBC), hemoglobin, total protein,
frontiersin.org
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albumin, haptoglobin, prealbumin, blood urea nitrogen (BUN), serum

creatinine, estimated glomerular filtration rate (eGFR) (calculated using

the CKD Epidemiology Collaboration formula), serum cystatin C, 24-h

urinary protein, serum uric acid, total cholesterol, triglycerides, fasting

blood glucose (FBG), serum calcium, potassium, phosphorus, high-

density lipoprotein cholesterol(HDL-C), and low-density lipoprotein

cholesterol (LDL-C).
2.3 Non-insulin-based IR indices

The non-insulin-based IR measures utilized were the TyG,

TyG-BMI, TG/HDL-C, and METS-IR, calculated using the

following formulas (10):

TyG = ln½TG(mg=dL)� FBG(mg=dL)=2�;

TyG − BMI = TyG index � BMI;

TG=HDL − C = TG(mg=dL)=HDL − C(mg=dL);

and METS − IR = (ln½2� FBG(mg=dL) + TG(mg=dL)�

� BMI(kg=m2)=ln½HDL − C(mg=dL)�) :
2.4 Dietary assessment

During the 24-h dietary review, the researchers directly asked

the patients about their food consumption on the preceding day,

evaluating the variety and quantities of food using tools such as food

pictures or models. Nutrient intake was calculated according to the

Chinese Dietary Guidelines (2022 edition) (24) and Chinese Dietary

Reference Intakes (2013 edition) (25). Food and nutrient intake

were then adjusted using the residual energy method (26).

Common indicators of dietary acid-base load include the NEAP,

PRAL, calculated based on the dietary intake of proteins and

minerals, and DAL, calculated using dietary protein, phosphorus,

potassium, calcium, magnesium, height, and weight, as follows:
Fron
PRAL (mmol/d) (12) = 0.49 × protein (g/day) + 0.037 ×

phosphorus (mg/day) - 0.021 × potassium (mg/day) −

0.026 × magnesium (mg/day) - 0.013 × calcium (mg/day);

NEAP (mEq/d) (13) = 54.5 × [protein(g/day) / potassium

intake (mEq/day)] - 10.2;

and DAL (mmol/d) (14) = PRAL + (body surface area [m2] ×

41[mEq/d] / 1.73 m²), with body surface area (27, 28) =

0.007184 × height (cm) ^ 0.725 × weight (kg) ^ 0.425.
2.5 Statistical analysis

SPSS 26.0 statistical software was used for data analysis (SPSS

Inc., Chicago, IL, USA). Normally distributed data were expressed
tiers in Endocrinology 03
as mean ± standard, while non-normally distributed data were

expressed as medians with interquartile ranges. Differences between

DAL tertiles were compared, and measurement data with a normal

distribution and homogeneity of variance were compared between

the groups using one-way analysis of variance. A non-parametric

test was used to compare groups if the homogeneity of variance was

not satisfied. Count variables were expressed as frequencies and

percentages, and were analyzed using chi-squared or Fisher’s exact

tests. Spearman’s correlation analysis was used to analyze the

correlation between dietary acid and base load (including PRAL,

NEAP, and DAL) and the non-insulin-based IR predictor indices,

and multiple linear regression was used to assess the adjusted effects

of variables affecting the non-insulin-based IR predictor indices. All

P (or P-trends) were two-tailed, and statistical significance was set at

P (or p-trend) < 0.05.
3 Results

Initially, 306 patients with CKD were eligible for inclusion.

After excluding 7 patients due to incomplete dietary information

and 11 patients with extreme energy intake (< 600 or > 4000 kcal/

day), a sum of 288 patients were qualified for participation. Figure 1

shows the participant inclusion flowchart.

Among the DAL tertiles, PRAL, NEAP, DAL, TyG-BMI, TyG,

TG/HDL-C, METS-IR, and BMI showed upward trends, and the

differences were statistically significant (P < 0.001). Among the

study participants, 141 (49%) had T2DM, and the difference across

the tertiles was statistically significant (P = 0.008). The distributions

of age, CKD course, and HTN among the DAL tertiles were not

statistically significant (P or P-trend > 0.05). Table 1 presents the

characteristics of the patients.

Among the DAL tertiles, patients with the highest DAL

scores had significantly higher BUN, serum creatinine, serum

cystatin C, uric acid, and FBG levels, all showing significant

upward trends (P-trend < 0.05), while those assigned to the

highest DAL category had significantly lower HDL-C levels

(P = 0.006). However, there were no significant correlations

between the DAL tertiles and WBC count, hemoglobin, total

protein, haptoglobin, prealbumin, eGFR, 24-h urinary protein,

total cholesterol, triglyceride, serum calcium, serum potassium,

serum phosphorus, or LDL-C (P > 0.05). The clinical features are

shown in Table 2.

Among the food groups, the DAL tertile was significantly

positively correlated with meat and eggs (P < 0.05), while

displaying a negative correlation with fruits and vegetables (P <

0.001). No significant statistical relationship was found between the

consumption of grain or dairy product and the DAL tertile (P >

0.05). In terms of energy and macronutrient consumption, the DAL

tertile was positively associated with protein, animal protein,

monounsaturated fatty acids (MUFAs), saturated fatty acids, and

fat intake (P < 0.05). Conversely, there was an inverse relationship

with the intake of carbohydrate, plant protein, and fiber (P < 0.05).

No significant association was found for polyunsaturated fatty acid

(PUFA) or energy intakes across the DAL tertiles. Regarding dietary
frontiersin.org
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micronutrient intake, the DAL tertile was positively associated with

phosphorus intake (P-trend < 0.05), but negatively associated with

potassium, calcium, magnesium, and copper intake (P-trend <0.05).

There was no significant correlation between the DAL tertile and
Frontiers in Endocrinology 04
sodium, iron, or zinc levels (P > 0.05). Table 3 presents the

nutritional intake data for the participants.

There were no significant correlations between PRAL, NEAP,

and the four non-insulin-based IR indices (P > 0.05). The DAL
TABLE 1 Baseline characteristics of study participants by categories of DAL.

Characteristics N=288 Q1 (N=96) Q2 (N=96) Q3 (N=96) P P-trend

PRAL (mEq/day) 14.21 (5.60,21.25) 0.92 (-5.95,6.37)
14.40

(10.67,17.75)
23.99 (19.76,28.73) <0.001 <0.001

NEAP (mEq/day) 66.37 (51.64,81.33) 44.88 (37.01,53.29)
66.85

(59.43,76.34)
84.64

(76.73,100.76)
<0.001 <0.001

DAL (mEq/day) 55.74 ± 14.50 40.45 ± 8.91 55.86 ± 3.45 70.94 ± 8.62 <0.001 <0.001

Age (years) 54 (41,61) 54.5 (43,61) 53 (38,62) 54 (42,60) 0.666 0.652

Gender

Male, n (%) 185 (64.2%) 49 (51%) 52 (54.2%) 84 (87.6%)
<0.001

–

Female, n (%) 103 (35.8%) 47 (49%) 44 (45.8%) 12 (12.5%)

BMI (kg/m²) 24.96 ± 3.63 24.3 ± 3.63 24.1 ± 3.62 26.47 ± 3.17 <0.001 <0.001

CKD
course (months)

25.5 (12,83.25) 23 (11,60) 29 (12,93) 26.5 (12,96) 0.211 0.167

T2DM, n (%) 141 (49%) 44 (45.8%) 38 (39.6%) 59 (61.5) 0.008 –

Hypertension, n (%) 217 (75.3%) 68 (70.8%) 71 (74%) 78 (81.3%) 0.228 –

TyG 5.92 (5.51,6.41) 5.91 (5.46,6.33) 5.76 (5.40,6.34) 6.02 (5.71,6,59) 0.011 0.028

TyG-BMI 150.32 ± 31.71 145.33 ± 31.78 142.8 ± 32.20 162.82 ± 27.41 <0.001 <0.001

TG/HDL-C 3.77 (2.31,5.55) 3.22 (2.21,5.63) 2.92 (1.86,5.05) 4.14 (3.19,6.40) 0.001 0.009

METS-IR 38.89 (33.4,44.98) 37.81 (31.74,42.35)
36.14

(31.36,41.95)
42.1 (38,47.44) <0.001 <0.001
PRAL, potential renal acid load; NEAP, net endogenous acid production; DAL, dietary acid load; BMI, body mass index; CKD, chronic kidney disease; T2DM, Type 2 Diabetes Mellitus. TyG,
triglyceride and glucose index; TyG‐BMI, triglyceride and glucose index with body mass index;TG/HDL‐C, the ratio of triglycerides divided by high‐density lipoprotein cholesterol; METS‐IR,
metabolic score for insulin resistance.
FIGURE 1

Flow chart of participant screening.
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TABLE 2 Comparison of clinical characteristics of study participants by categories of DAL.

Characteristics N=288 Q1 (N=96) Q2 (N=96) Q3 (N=96) P P-trend

6.36 (5.58,7.72) 0.914 0.676

5) 122 (106.5,137.5) 0.091 0.067

) 59.35 (52.33,65.73) 0.527 0.929

133.78 (98.1,164.5) 0.120 0.806

) 29.9 (24.85,34.28) 0.392 0.176

) 9.27 (6.34,11.48) 0.061 0.019

68) 147.6 (84.98,221.85) 0.054 0.032

4) 44.55 (27.92,83.61) 0.238 0.139

1.78 (1.36,2.12) 0.101 0.041

2.14 (0.87,4.68) 0.250 0.096

48) 388.65 (323.58,465.73) 0.021 0.005

4.6 (3.88,5.37) 0.935 0.904

1.92 (1.45,2.64) 0.012 0.079

4.89 (4.37,6.41) 0.074 0.023

2.16 (2.06,2.26) 0.424 0.191

3.88 (3.53,4.26) 0.401 0.180

1.26 (1.12,1.41) 0.913 0.779

1.04 (0.87,1.18) 0.003 0.006

2.71 (2.03,3.5) 0.874 0.859

ensity lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
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WBC (×10^9/L) 6.57 (5.19,8.03) 6.82 (4.95,8.65) 6.62 (5.23,8.07

Hemoglobin (g/L) 118 (103,131) 116 (100.25,129.75) 115.26 (102,128.

Total protein (g/L) 58.5 (51.33,64.8) 58.6 (50.55,65.08) 57.4 (51.33,63.3

Haptoglobin (mg/dl) 133.78 (85.58,160.75) 133.78 (92.53,164.5) 120.5 (69.5,154

Prealbumin (mg/dl) 29.79 (24.43,33) 29 (23.83,32.75) 29.79 (24.7,32.5

BUN (mmol/L) 8.11 (5.79,11.17) 7.46 (5.51,10.54) 8.05 (5.53,11.72

Serum creatinine (umol/L) 116.25 (81.5,187.65) 109 (77.48,173.18) 105.55 (79.38,155

eGFR (ml/min/1.73) 55.7 (30.66,88.08) 58.77 (36.64,90.55) 59.98 (33.22,89.3

Cystatin C (mg/L) 1.78 (1.21,1.98) 1.65 (1.11,1.87) 1.68 (1.2,2)

24-hour urinary protein
(g/24h)

2.01 (0.63,4.56) 1.48 (0.51,4.56) 2.24 (0.8,4.24)

Uric acid (umol/L) 375.65 (303.98,454.55) 358.9 (274.83,420.45) 375.2 (306.45,438

Total cholesterol (mmol/L) 4.52 (3.83,5.44) 4.61 (3.75,5.49) 4.45 (3.8,5.44)

Triglyceride (mmol/L) 1.77 (1.21,2.43) 1.72 (1.2,2.31) 1.54 (1.11,2.31

FBG (mmol/L) 4.79 (4.28,5.59) 4.59 (4.14,5.23) 4.8 (4.3,5.49)

Serum calcium (mmol/L) 2.19 (2.06,2.27) 2.21 (2.06,2.28) 2.19 (2.05,2.27

Serum potassium (mmol/L) 3.89 (3.62,4.25) 3.9 (3.71,4.31) 3.87 (3.61,4.21

Serum phosphorus
(mmol/L)

1.26 (1.12,1.41) 1.27 (1.12,1.41) 1.28 (1.14,1.42

HDL-C (mmol/L) 1.1 (0.91,1.33) 1.13 (0.92,1.5) 1.15 (0.95,1.43

LDL-C (mmol/L) 2.69 (2.09,3.52) 2.73 (2.09,3.63) 2.61 (2.12,3.34

WBC, white blood cell; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; FBG, fasting blood glucose; HDL-C, high-
)

7

8

)

.

.

)

)

)

)

)

)

d

https://doi.org/10.3389/fendo.2025.1589528
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 3 Distribution of dietary intake in the study population.

Variables N=288 Q1 (N=96) Q2 (N=96) Q3 (N=96) P P-trend

0.352 0.497

<0.001 <0.001

<0.001 <0.001

<0.001 <0.001

0.009 0.002

0.881 0.656

) 0.002 0.139

<0.001 <0.001

<0.001 <0.001

<0.001 0.043

0.127 <0.001

<0.001 <0.001

0.004 0.001

0.274 0.108

<0.001 <0.001

0.035 0.011

0.642 0.374

) <0.001 <0.001

0.028 0.010

<0.001 <0.001

0.028 0.034

0.380 0.208

<0.001 <0.001

0.268 0.764
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Food groups

Grain (g/day) 335 (221.75,489.78) 360 (235.9,493.08) 316.05 (215.35,468.68) 320.2 (220.3,502.55)

Vegetables (g/day) 300 (178.5,435.9) 398.9 (237.38,586.5) 284.45 (198.43,377.5) 243.45 (141.45,329.8)

Fruits (g/day) 100 (0,220.88) 200 (40.55,400) 120 (0,200) 0 (0,150)

meat (g/day) 58.15 (10,140) 35 (0,95.48) 35 (6.25,100) 120.4 (50,184.38)

Eggs (g/day) 60 (0,61.2) 49.50 (0,60) 60 (0,84.28) 60 (0,90)

Dairy products (ml/day) 0 (0,250) 0 (0,237.5) 0 (0,250) 0 (0,250)

energy and Macronutrients

Energy (kcal/day) 1,320.3 (1,027.03,1,644.79) 1,371.06 (1,031.2,1,631.2) 1,186.4 (954.85,1,524.49) 1,411.87 (1,142.26,1,953.51

Carbohydrates (g/day) 213.99 (187.98,239.79) 223.26 (203.5,252.74) 215.63 (192.81,240.82) 196.47 (165.87,229.8)

Protein (g/day) 59.59 (53.31,68.4) 54.89 (50.57,59.62) 59.94 (54.57,66.74) 68.27 (59.07,81.77)

Plant protein (g/day) 31.71 (26.32,36.89) 32.97 (29.06,38.28) 31.05 (26.6,37.39) 31.51 (23.55,36.25)

Animal protein (g/day) 28.78 (19,39.65) 22.8 (15.53,30.4) 27.91 (19.93,39.62) 37.48 (26.73,53.54)

Fiber (g/day) 8.04 (5.46,11.02) 10.95 (8.11,13.99) 7.91 (6.18,10.05) 5.71 (3.63,8.12)

MUFA (mg/day) 11.57 (8.16,16.35) 10.20 (6.47,14.36) 11.43 (8.16,15.31) 13.45 (9.44,18.22)

PUFA (mg/day) 3.92 (2.57,5.26) 3.70 (2.34,4.95) 4.02 (2.65,5.34) 4.21 (2.76,6.05)

Saturated fat (mg/day) 12.93 (8.52,16.65) 11.37 (6.93,14.78) 12.97 (8.26,16.18) 14.82 (11.39,19.7)

Fat (g/day) 39.92 (29.94,48.28) 37.78 (28.12,45.6) 40.15 (29.94,47.71) 43.57 (32.81,53.99)

Micronutrients

Sodium (mg/day) 1,023.1 (729.42,1,725.25) 1,018.54 (725.16,1,705.6) 1,008.12 (729.27,1,609.58) 1,050.09 (729.42,1,910.9)

Potassium (mg/day) 1,735.74 (1,418.71,2,151.91) 2,160.39 (1,767.6,2,462.92) 1,666.67 (1,406.79,1,953.21) 1,509.92 (1,255.68,1,824.45

Calcium (mg/day) 374.19 (248.86,553.66) 429.77 (258.81,642.27) 353.71 (246.5,539.07) 358.17 (204.47,526.7)

Magnesium (mg/day) 264.51 (222.54,307.05) 293.92 (250.1,358.04) 257.13 (223.09,291.62) 233.16 (210.84,279.07)

Phosphorus (mg/day) 860.19 (758.4,1,011.7) 838.5 (739.84,1,006.34) 858.31 (759.11,953.6) 919.77 (791.08,1,098.93)

Iron (mg/day) 14.89 (11.9,18.08) 15.17 (12.38,18.78) 14.68 (11.9,17.15) 14.65 (11.53,17.56)

Copper (mg/day) 1.14 (0.87,1.49) 1.32 (0.99,1.81) 1.14 (0.91,1.33) 1.02 (0.78,1.22)

Zinc (mg/day) 7.30 (6.1,8.93) 7.45 (6.16,9.13) 7.05 (6.05,8.14) 7.43 (5.97,10.09)

MUFA, mono-unsaturated fatty acids; PUFA, polyunsaturated fatty acids.
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score was significantly associated with TyG-BMI (r = 0.251, P <

0.001) and METS-IR (r = 0.274, P < 0.001), but only weakly

correlated with the TG/HDL-C ratio (r = 0.14, P = 0.018).

Table 4 presents the correlations between dietary acid-base load

scores and the four non-insulin-based IR indices.

Table 5 presents the association between the DAL score and

four types of non-insulin resistance in CKD patients. In the rough

model, model 1, and model 2, the DAL score was associated with

both TyG -BMI (b = 0.549, P < 0.001; b = 0.437, P = 0.001; b =

0.336, P = 0.008, respectively) and METS-IR (b = 0.161, P < 0.001;

b = 0.118, P = 0.001; b = 0.091, P = 0.007, respectively). There was

no significant correlation, however, between the DAL score and the

TyG or TG/HDL-C (P > 0.05).
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In terms of energy and macronutrients, the study found that

patients who were in the highest tertile of DAL had a higher intake

of protein, animal protein, MUFAs, saturated fat, fat, and

phosphorus, but a lower intake of carbohydrates, plant protein,

dietary fiber, potassium, calcium, magnesium, and copper. The

sources and types of dietary protein are essential for preventing

disease. Some studies have shown that the total protein and animal

protein can increase the risk of T2DM, whereas plant protein can

reduce it (29, 30). Several prospective studies indicate that total

MUFA intake is negatively related to the probability of T2DM (31,

32). Another study showed that a higher seafood source of omega 3

PUFAs is correlated with a lower risk of developing CKD (33).

Whether fatty acids are a risk or protective factor for T2DM

remains controversial, possibly because of differences in food

sources and carbon chain lengths (34, 35).

In this study, DAL scores were significantly connected with

TyG-BMI and METS-IR scores, but were only mildly correlated

with TG/HDL-C. The four non-insulin-based IR markers,

calculated from human biochemical indicators, are economical,

simple and convenient. Of these four measures, TyG combined

FPG and lipid levels, while the TG/HDL-C ratio is a key component

of hyperlipidemia. TyG-BMI and METS-IR included not only blood

lipids and FBG, but also BMI, which is important because obesity

induces chronic inflammation leading to IR and metabolic

disorders (36). Researches indicates that being overweight

heightens the likelihood of CKD pathogenesis, deterioration of

kidney function, and progression to end-stage kidney disease (37,

38). Mechanistically, IR leads to renal hemodynamic changes,

tubular dysfunction, chronic inflammation and fibrosis (39, 40).

After adjusting for sex, age, energy, HTN, diabetes, and eGFR,

multiple linear regression analysis showed that DAL score was

associated with TyG-BMI (b = 0.336, P = 0.008) and METS-IR (b =

0.091, P = 0.007). Our research aligns with previous studies,

suggests that TyG-BMI and METS-IR serve as more effective and

dependable measures for evaluating IR and forecasting

cardiovascular outcomes (9, 41, 42). Results from a Korean

cohort study indicated that participants in the highest PRAL

quartile had a 1.30 times higher risk of IR compared with the

lowest quartile; Similar risk estimates have been observed for NEAP

scores (18). Studies in Japan have shown that a higher dietary acid-

base load (PRAL and NEAP scores) is connected with IR

(43).Studies conducted in Denmark have shown that higher

PRAL scores are associated with IR (44). Similarly, in this study,

the DAL score was significantly positively correlated with TyG-BMI

and METS-IR. A prospective study of 70–71 years old men in

Swedish showed that the PRAL and NEAP scores were not

associated with insulin sensitivity or b-cell function, in contrast to

our results. This discrepancy may be due to the inconsistent age and

sex of the study population, as we included both male and female

participants over 18 years of age. Multiple mechanisms have been

proposed to explain the associations between DAL and IR.

Metabolic acidosis not only increases the secretion of cortisol and

glucocorticoids (45), but also inhibits the level of adipokine (46),
TABLE 5 Association between DAL score and four types of non-insulin
resistance in CKD patients.

indices b SE P

TyG

Crude 0.004 0.003 0.179

Model1 0.002 0.003 0.399

Model 2 0.001 0.003 0.825

TyG-BMI

Crude 0.549 0.125 <0.001

Model1 0.437 0.128 0.001

Model 2 0.336 0.127 0.008

TG/HDL-C

Crude 0.022 0.016 0.154

Model1 0.011 0.016 0.493

Model 2 0.005 0.016 0.781

METS-IR

Crude 0.161 0.033 <0.001

Model1 0.118 0.034 0.001

Model 2 0.091 0.033 0.007
Crude: unadjusted; Model1: adjusted for gender, age, BMI and energy intake; Model 2:
adjusted for gender, age, BMI, energy intake, Hypertension, Type 2 Diabetes Mellitus and
eGFR. DAL, dietary acid load; NEAP net endoge-nous acid production; PRAL, potential renal
acid load; TyG, triglyceride and glucose index; TyG‐BMI, triglyceride and glucose index with
body mass index;TG/HDL‐C, the ratio of triglycer-ides divided by high‐density lipoprotein
cholesterol; METS‐IR, metabolic score for insulin re-sistance.
TABLE 4 Correlation analysis between dietary acid-base load scores and
four types of non-insulin resistance.

indices
PRAL NEAP DAL

r P r p r p

TyG 0.028 0.636 -0.026 0.656 0.104 0.078

TyG-BMI 0.086 0.148 0.017 0.779 0.251 <0.001

TG/HDL-C 0.042 0.474 -0.015 0.804 0.14 0.018

METS-IR 0.076 0.196 0.008 0.897 0.274 <0.001
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thereby increasing IR. In addition, the acidic environment may

reduce insulin sensitivity by affecting insulin-like growth factor I

(IGF-I) (47, 48). Reduced interstitial pH impairs insulin-receptor

binding, leading to IR (49, 50).The study showed that metabolic

acidosis from diet altered insulin secretion and signaling (51).

IR is associated with the occurrence and progression of CKD,

which is a serious threat to public health because of its high

prevalence, poor prognosis, and high mortality. The intake of

acidic and alkaline foods affects the body’s acid-base balance,

which significantly affects the risk of CKD progression (52). We

assessed the connection the between dietary acid-base load and

non-insulin-based IR markers in patients with CKD.

Both PRAL and NEAP scores were derived from protein and

micronutrients. For micronutrients, the PRAL score includes

phosphorus, potassium, magnesium and calcium (12); the NEAP

score is determined by potassium intake (13); and the DAL score is

calculated based on the PRAL score and body surface area (14). For

these metrics, a higher score indicates that the food has a higher

acidogenic potential. As each measure has a different formula,

limitations, and strengths, the use of all three dietary acid-base

load measures may provide more reliable results than any measure

alone. The food group associated with the highest DAL tertile in this

study was distinguished by increased intake of meat and eggs, but

decreased consumption of vegetables and fruits. With respect to the

body acid load, plant-based dietary patterns are thought to reduce,

while animal-based dietary patterns are thought to increase.

Vegetables and fruits contain excellent antioxidants, which can

eliminate free radicals, prevent oxidative stress, and protect cells

and structures from oxidative damage (53). A rise in the amount of

the consumption of fruits and vegetables has long been linked to

benefits against cancers, diabetes, neurodegenerative diseases, and

cardiovascular diseases (54). However, meat consumption, and

synthetic meat in particular, is positively connected with the

production of proinflammatory substances (55).

To our knowledge, this study is the first to examine the

relationship between dietary acid load and the four non-insulin-

based IR indices in patients with CKD. Previous studies did not

consider diet as a confounding factor, and adjustments were made

for energy in the model used in this study. Nevertheless, this study

has some certain limitations. First, this study was cross-sectional

and unable to assess causality, a prospective cohort study is

recommended for further validation studies. The diversity and

representativeness of the sample may be limited. Subsequent

studies are recommended to validate the findings in groups of

different regions and ethnicities. Second, the 24-h dietary recall is

potentially susceptible to recall bias. Future studies may employ 3-

day dietary records or food frequency questionnaires to more

accurately assess dietary intake. Third, dietary supplements were

not considered. Other confounding factors that were not adjusted

for may have influenced our study results, such as physical activity

and medication use including statins and fibrates. According to our

results, the DAL score was significantly positively associated with

TyG-BMI and METS-IR after adjusting for possible confounders.

This indicates that reducing dietary acid load is a healthy dietary

habit that may help prevent IR-related diseases with CKD.
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According to our current study, the patients with the highest

DAL scores had the highest TyG, TyG-BMI, TG/HDL-C ratio, and

METS-IR. After adjusting for possible confounding factors, the

DAL score exhibited a significant positive correlation with both

TyG-BMI and METS-IR. Reducing dietary acid load by consuming

more fruits and vegetables and limiting excessive intake of meat is

beneficial for some diseases caused by IR.
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