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Background: Metal elements affect the physiological processes of the thyroid

gland and are associated with the formation of thyroid nodules (TNs). This study

aimed to investigate the relationship between metal element levels and TNs in

oilfield workers and to provide a preliminary scientific basis.

Methods: The study used a cross-sectional study to collect relevant data in 2022.

Spearman’s rank correlation was used to analyze the correlation between

multiple metal elements. The Logistic regression model and Weighted Quantile

Sum (WQS) regression model were used to analyze the association between

metal elements and the prevalence of TNs.

Results: A total of 517 oilfield workers were included in this study and the

prevalence of TNs was 40.62%. Sex, age, and uric acid levels differed between

the two groups (P < 0.05). The correlation analysis showed that most of the metals

were correlated with each other to varying degrees. The WQS regression model

showed that mixed exposure to seven metal elements was positively associated

with the risk of developing TNs. In the total population and males, iron (Fe) and

copper (Cu) levels were positively related to the risk of TNs prevalence (P < 0.05).

Conclusions: TNs was found to be very prevalent among oilfield workers. Mixed

exposure to metal elements may be associated with an elevated risk of TNs, with

Fe and Cu emerging as potential contributors to this association.
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1 Introduction

Thyroid nodules (TNs) are discrete lesions within the thyroid

gland caused by abnormal, focal growth of thyroid cells. The

imaging definition is a space-occupying lesion in the thyroid

gland that can be detected by imaging and differentiated from the

surrounding thyroid tissue (1). TNs may cause compressive

symptoms (e.g., hoarseness, dyspnea, dysphagia) and disrupt

thyroid hormone secretion, leading to hyperthyroidism or

hypothyroidism, which significantly impair patients’ quality of life

(2–5). Global epidemiological studies show that the prevalence of

TNs is at a high level. A large Chinese study found that the overall

prevalence of TNs was 36.9% (6). Studies conducted in Korea,

Vietnam, the United States, Canada, South Africa, and Denmark

showed that the prevalence of TNs was 34.2%, 48.8%, 30%, 30%,

79%, and 54%, respectively (7–9). Oilfield workers are at higher risk

of TNs due to occupational factors such as night shift work (10) and

occupational load (11). In China, the prevalence of TNs among

oilfield workers in Jilin and petrochemical enterprise workers in

Zhejiang reached 20.91% and 76.0%, respectively (12, 13).

Metal elements exert profound impacts on human health. Iron

(Fe), a metal element essential for oxygen transport, is a critical

component of hemoglobin and is indispensable for cellular energy

metabolism and enzymatic reactions (14). Zinc (Zn) plays critical

physiological roles, particularly in immune function and

developmental processes (15). Copper (Cu) regulates diverse

biological processes via redox activity and is implicated in the

pathogenesis of multiple diseases (16). Calcium (Ca), the most

copious mineral in the human body, fulfills structural and functional

roles: approximately 99% of bodily calcium is stored in bones, while

plasma Ca homeostasis regulates skeletal integrity, hormone secretion,

neuronal signaling, and vascular function (17, 18). Magnesium (Mg) is

indispensable for oxidative phosphorylation, glycolysis, and

macromolecule synthesis (e.g., proteins, nucleic acids) (19). In

contrast, heavy metals such as lead (Pb) and cadmium (Cd) exhibit

toxicological effects, posing significant risks to human health (20).

Metal elements are essential for human life and critical to

physiological processes, including the thyroid (21). In recent

years, some scholars have studied the relationship between metal

elements and TNs. A study from Guangdong, China, found that

subjects with higher serum Zn, Mg, and Cu levels had a 1.23-fold,

1.04-fold, and 1.007-fold increased risk of thyroid nodule

prevalence, respectively (P < 0.05) (22). Ma et al. identified Ca

and Mg as significant TNs risk factors (23). Conversely, a Korean

study reported a nonlinear dose-response relationship between Cu

levels and TNs prevalence, with no associations observed for other

metals (24). Kravchenko et al. demonstrated that reduced serum

levels of Ca, Mg, Zn, Cu, and Pb correlated with increased nodular

goiter risk (25).

Although studies have explored associations between metal

elements and TNs, the evidence base remains inconclusive due to

limited sample sizes and methodological heterogeneity. Notably, no

prior research has systematically investigated this relationship in

oilfield workers. Therefore, this study aims to investigate the

relationship between metal elements and TNs in oilfield workers
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and to establish a foundational framework for exploring the

prevention and treatment of TNs in occupational populations

from the perspective of metal elements.
2 Materials and methods

2.1 Study subjects

This study enrolled oilfield workers who underwent medical

checkups between October and December 2022 at a designated

hospital for oilfield workers in China. An on-site health

questionnaire survey was administered to participants during

their checkups, with data extracted from medical records.

Informed consent was obtained from all participants prior to

enrollment. The study protocol received ethical approval from the

Biomedical Ethics Committee, Department of Medicine, Xi’an

Jiaotong University (No. 2022-1539) and was conducted in

accordance with institutional guidelines. The exclusion criteria

implementation process was detailed in Figure 1. To ensure data

integrity, we excluded study participants with missing basic

information. Inclusion criteria: signed informed consent.

Exclusion criteria: missing data, history of thyroid surgery and

medication (26).
2.2 Questionnaire data collection

In this study, a structured questionnaire was used to conduct

the field survey and all the researchers involved in the field work

went through a systematic training. It mainly includes the

following: basic information (name, sex, age, education, marital

status, annual income status) (27, 28); occupational related factors

(type of work, shift work, noise exposure, dust exposure); history of

thyroid surgery; history of thyroid medication; smoking and

drinking consumption status.
FIGURE 1

Flowchart of the inclusion and exclusion.
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2.3 Anthropometric data collection

Anthropometric data such as height, weight, and body mass

index (BMI) are measured by trained professionals using

standardized measurement tools. The body mass index (BMI) =

weight (kg)/height (m) squared (kg/m2) (29).
2.4 Laboratory analysis

All subjects fasted for more than 8 hours, and 5 ml of fasting

venous blood was taken in the early morning for biochemical

analysis. A biochemical automatic analyzer (AU-5800, Beckman

Coulter, Brea, CA, USA) was used to measure total cholesterol (TC),

triglycerides (TG), high-density lipoprotein (HDL), and low-

density lipoprotein (LDL), fasting blood glucose (FBG), and uric

acid (UA). Thyroid-stimulating hormone (TSH), free

t r i iodothyronine (FT3) , f ree thyrox ine (FT4) , to ta l

triiodothyronine (TT3), and total thyroxine (TT4) were measured

by chemiluminescent immunoassay (Siemens, ADVIA Centaur

XPT, Erlangen, Germany). Whole blood concentrations of

selected metal elements Zn, Fe, Cu, Ca, Mg, Pb, and Cd were

assessed by a trace element analyzer (Shanghai, China).
2.5 Color doppler ultrasound of the thyroid
gland

Thyroid ultrasound was performed by an experienced

sonographer using a high-frequency probe to observe the shape

and size of the thyroid gland. If nodules were found, the number,

size, morphology, and echogenicity of the nodules, borders, and the

presence of calcifications were recorded.
2.6 Outcome definitions

The criteria for determining TNs refer to the Chinese

Guidelines for the Diagnosis and Treatment of TNs and

Differentiated Thyroid Cancer (Second Edition), and the imaging

definition refers to the occupying lesions in the thyroid gland that

can be detected by imaging and distinguished from the surrounding

thyroid tissue. The presence of TNs is determined by ultrasound

findings (1).
2.7 Statistical analysis

Continuous variables with normal distribution were expressed

as mean ± standard deviation (SD) and compared using the

independent samples t-test. Non-normally distributed variables

were presented as median (interquartile range [IQR]) and

analyzed with the Mann-Whitney U test. Categorical data were

described as counts (n) with percentages (%), and group differences

were assessed using Chi-square test.
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Spearman’s rank correlation coefficient was used to analyze the

correlation between seven metal elements. To account for

magnitude differences, metal concentrations were naturally ln-

transformed and standardized to z-scores (mean=0, SD=1) prior

to analysis (30). The odds ratio (OR) thus represents the effect of a

one-SD increase in metal exposure on TNs risk. Metals were

analyzed as both continuous and categorical variables.

Multivariable logistic regression models were fitted to evaluate

single metal and multiple metal associations with TNs risk. The

trend test was used to estimate the P-trend values for the tertiles of

the seven metal elements by replacing the tertiles 1(T1), tertiles 2

(T2), and tertiles 3 (T3) exposure levels with the median levels of the

metal elements in each group, which were treated as continuous

variables in the model, to explore the trends in the prevalence of

interstorey metal elements and TNs. Weighted Quantile Sum

(WQS) regression modeling to analyze the effect of mixed

exposure to metal elements on the risk of developing TNs. OR

and 95% confidence intervals (CI) were calculated to assess TNs

risk. All analyses were performed using SPSS 26.0 and R 4.3.3, with

two-tailed statistical significance set at a=0.05.
3 Results

3.1 Baseline characteristics

A total of 517 oilfield workers were enrolled in this cross-

sectional study, comprising 315 males (60.93%) and 202 females

(39.07%) with a mean age of 49.12 ± 3.12 years. The prevalence of

TNs was 40.62% (210/517). Males constituted a higher proportion

of TNs cases (55.20%) compared to females (44.80%), with this sex

difference reaching statistical significance (P < 0.05). Participants

with TNs were significantly older than those non-TNs (P < 0.05),

while serum UA levels were markedly lower in the TNs group (P <

0.05). No significant differences were observed between the groups

regarding marital status, education level, annual income, smoking/

drinking status, shift work, noise/dust exposure, BMI, TC, TG,

HDL, LDL, FBG, or thyroid hormone levels (P > 0.05). Analysis of

blood metals revealed significantly elevated Cu levels in the TNs

group (P < 0.05), whereas Zn, Fe, Ca, Mg, Pb, and Cd levels showed

no intergroup differences (P > 0.05) (Supplementary Table S1).
3.2 Correlation between the seven metal
elements

The results of Spearman’s rank correlation analysis showed that

after ln-transformed, most of the metals were correlated with each

other to varying degrees. The results of correlation analysis showed

significant correlations (P < 0.05) between Zn and Fe, Cu, Ca, Mg;

Fe and Mg; Cu and Mg, Pb; Ca and Mg; Mg and Pb, Cd. The largest

correlation coefficient was found between Mg and Pb, -0.34,

followed by Mg and Zn with a correlation coefficient of 0.33

(Figure 2; Supplementary Table S2).
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3.3 The association of single metal
elements exposure with TNs

In Model 1 (unadjusted), Cu levels showed a statistically

significant positive association with TNs risk (OR = 1.216, 95%

CI: 1.016, 1.455; P < 0.05). No significant associations were observed

for Zn, Fe, Ca, Mg, Pb, or Cd (P > 0.05). Model 2 adjusted for sex,

age, BMI, income, education, smoking, and drinking status. Both

Cu (OR = 1.206, 95% CI: 1.003, 1.450; P < 0.05) and Fe (OR = 1.223,

95% CI: 1.003, 1.491; P < 0.05) exhibited significant positive

associations with TNs risk. Conversely, Zn, Ca, Mg, Pb, and Cd

remained non-significant (P > 0.05) (Table 1).
3.4 The association of multiple metal
element exposure with TNs

3.4.1 Logistic regression modeling to construct
multiple metal models

In Model 1, Cu levels showed a positive association with TNs

prevalence risk (OR = 1.233; 95% CI: 1.018, 1.492; P < 0.05), whereas

Zn, Fe, Ca, Mg, Pb, and Cd exhibited no statistical significance (P >

0.05). In Model 2, Fe levels demonstrated a significant positive

correlation with thyroid nodule development risk (OR = 1.253;

95% CI: 1.018, 1.543; P < 0.05), while Zn, Cu, Ca, Mg, Pb, and Cd

showed no statistically significant associations (P > 0.05) (Table 2).

3.4.2 WQS regression modeling for modeling
mixed multiple metal exposures

TheWQS regression analysis demonstrated that under positive-

direction constraints, the seven metal elements were significantly

associated with an elevated risk of TNs (OR = 1.870, 95% CI: 1.111,
Frontiers in Endocrinology 04
3.144, P < 0.05). When restricted to negative directionality, the

outcome showed no statistical significance (OR = 1.420, 95% CI:

0.783, 2.577, P > 0.05) (Table 3). Weight distributions of seven

metals derived from 10,000 bootstrap iterations (Figure 3). Metal

elements with estimated weights greater than 14.3% (1/7) were

considered to have a significant effect on the WQS index. Under

positive-direction constraints, Fe (56.0%) and Cu (14.9%) were

weighted more than 14.3% (Figure 3A, Table 4). Under negative-

direction constraints, Mg (35.4%), Cd (28.0%), and Pb (14.4%) were

weighted more than 14.3% (Figure 3B, Table 4). Since the WQS

results only found a significant positive association between mixed

metals and the risk of developing TNs, Fe and Cu were the two

important metal elements that influence the risk of developing TNs.
3.5 The association of Fe and Cu with TNs

When Fe and Cu were analyzed as continuous variables, Model

1 demonstrated a significant positive association between Cu levels

and TNs prevalence (OR = 1.221; 95% CI: 1.020, 1.462; P < 0.05),

whereas no such association was detected for Fe (P > 0.05). This

association pattern persisted in Model 2, with Cu showing a
FIGURE 2

Heat map of correlation between metal elements. *P < 0.05, **P <
0.01. The numbers in the figure indicate the magnitude of the
correlation coefficient. “✗” indicates that the correlation between the
two metals is not significant.
TABLE 1 Effect of a single metal element on the risk of developing TNs.

Metal
Model 1 Model 2

OR (95%CI) P OR (95%CI) P

Zn 1.011 (0.848, 1.205) 0.901 1.037 (0.865, 1.243) 0.694

Fe 1.068 (0.896, 1.274) 0.462 1.223 (1.003, 1.491) 0.046*

Cu 1.216 (1.016, 1.455) 0.033* 1.206 (1.003, 1.450) 0.046*

Ca 1.077 (0.904, 1.283) 0.409 1.052 (0.879, 1.259) 0.579

Mg 0.898 (0.754, 1.071) 0.233 0.882 (0.736, 1.058) 0.178

Pb 1.046 (0.876, 1.250) 0.618 1.090 (0.905, 1.313) 0.364

Cd 1.001 (0.840, 1.194) 0.988 1.029 (0.855, 1.238) 0.764
frontie
*P<0.05; Model 1: not adjusted for any covariates; Model 2: adjusted for sex, age, BMI, income,
education, smoking, and drinking status. Bolded values indicate statistical significance.
TABLE 2 Effect of multiple metal elements on the risk of
developing TNs.

Metal
Model 1 Model 2

OR (95%CI) P OR (95%CI) P

Zn 1.056 (0.872, 1.278) 0.579 1.068 (0.876, 1.301) 0.517

Fe 1.090 (0.908, 1.310) 0.355 1.253 (1.018, 1.543) 0.033*

Cu 1.233 (1.018, 1.492) 0.032* 1.205 (0.989, 1.466) 0.064

Ca 1.134 (0.942, 1.365) 0, 184 1.116 (0.922, 1.351) 0.261

Mg 0.857 (0.698, 1.051) 0.139 0.828 (0.669, 1.024) 0.082

Pb 0.942 (0.776, 1.145) 0.549 0.985 (0.804, 1.206) 0.883

Cd 1.004 (0.839, 1.202) 0.964 1.032 (0.854, 1.248) 0.743
*P<0.05; Model 1: not adjusted for any covariates; Model 2: adjusted for sex, age, BMI, income,
education, smoking, and drinking status. Bolded values indicate statistical significance.
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comparable effect size (OR = 1.213; 95% CI: 1.008, 1.460; P < 0.05).

Notably, elevated Fe levels exhibited a significant association with

TNs (OR = 1.231; 95% CI: 1.008, 1.504; P < 0.05) (Table 5).

When analyzed as categorical variables, neither metal was

significantly associated with TNs in Model 1 (P > 0.05). However,

Model 2 revealed a 77.1% increased TNs risk for participants in the

highest Fe T3 compared to the lowest T1 (OR = 1.771; 95% CI:

1.089, 2.879; P < 0.05). No significant association emerged for Cu in

this model. The trend test showed that the risk of prevalence of TNs

increased with increasing Fe levels (P-trend=0.021) (Table 5).
3.6 Sex-stratified analysis of the
relationship between Fe and Cu and TNs

In males, when Fe and Cu were analyzed as continuous

variables, both elements showed significant positive associations

with TNs risk in Model 1 (Fe: OR = 1.286, 95% CI: 1.007, 1.643, P <

0.05; Cu: OR = 1.289, 95% CI: 1.002, 1.657, P < 0.05) and Model 2

(Fe: OR = 1.349, 95% CI: 1.043, 1.746, P < 0.05; Cu: OR = 1.328, 95%

CI: 1.023, 1.724, P < 0.05). When analyzed as categorical variables,

significant associations were observed in Model 1 for Cu (T3 vs T1:

OR = 2.252, 95% CI: 1.249, 4.063, P < 0.05), though Fe showed no

association in Model 1 (P > 0.05). In Model 2, both Fe (T3 vs T1: OR

= 1.980, 95% CI: 1.022, 3.836, P < 0.05) and Cu (T3 vs T1: OR =

2.165, 95% CI: 1.172, 3.999, P < 0.05) showed significant positive

associations with TNs. The trend test showed that the risk of

prevalence of TNs increased with increasing Fe (P-trend= 0.040
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in Model 1; 0.025 in Model 2) and Cu (P-trend = 0.006 in Model 1;

0.013 in Model 2) (Table 6).

In females, neither continuous nor categorical analyses revealed

significant associations for Fe (P > 0.05). Notably, Cu in T2 showed

protective effects against TNs compared to T1 in Model 2 (OR =

0.419, 95% CI: 0.191, 0.918, P < 0.05), though no significant trends

were detected (P-trend > 0.05) (Table 6).
4 Discussion

This cross-sectional study investigated associations between

seven metal elements (Zn, Fe, Cu, Ca, Mg, Pb, Cd) and TNs risk

among 517 oilfield workers. Comprehensive data including

demographic characteristics, physical/laboratory examinations,

and thyroid ultrasound findings were collected. The overall TNs

prevalence was 40.62%, with significant differences observed

between TNs and non-TNs groups in sex, age, and UA levels.

Mixed exposure to the seven metals demonstrated a positive

association with TNs risk. Specifically, both Fe and Cu levels

showed significant positive associations in the total population,

with consistent patterns observed in male subgroups.
TABLE 3 Mixed exposure effects of seven metal elements.

WQS OR (95%CI) P

Positive 1.870 (1.111, 3.144) 0.017*

Negative 1.420 (0.783, 2.577) 0.247
*P<0.05; Model adjusted for sex, age, BMI, income, education, smoking, and drinking status.
Bolded values indicate statistical significance.
FIGURE 3

Estimated weights of each metal elements in the WQS regression model. (A) Positive weight distribution graph. (B) Negative weight distribution
graph. The dotted line indicated the position of the reference value, and metal elements with estimated weights exceeding the reference value were
considered to have a significant effect on the WQS index.
TABLE 4 Weights of each metal element in the WQS regression model.

Metal Positive weights Negative weights

Zn 0.085 0.044

Fe 0.560 0.002

Cu 0.149 0.051

Ca 0.055 0.124

Mg 0.003 0.354

Pb 0.136 0.144

Cd 0.012 0.280
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The results of this study showed that the prevalence of TNs

among these oilfield workers was 40.62%, which was higher than

the global prevalence of TNs in the general population (24.83%) and

higher than the prevalence of TNs in the most recent report of a

large health screening cohort in China (36.9%) (8, 31). In addition,

the prevalence of TNs in this population was higher than the local

level when compared to the prevalence of TNs in the general

population where the samples were collected (26.4%) (6). This

difference may be due to the specificity of the occupation, where

oilfield workers may be exposed to more factors that contribute to

the development of TNs. Compared with the previously reported

prevalence of TNs in the oilfield occupational population, it was

higher than that of Jilin oilfield workers (20.91%) and lower than

that of Zhejiang petrochemical enterprise workers (76.0%) (12, 13).

This difference may stem from the difference in ultrasound

methods; both this study and the Zhejiang study used color

Doppler ultrasound for examination, whereas the Jilin oilfield

used Gray-scale ultrasound, and color Doppler ultrasound had a

higher sensitivity than Gray-scale ultrasound (32, 33). Thus, the

prevalence of TNs reported in the Jilin oilfields was relatively low.

Sex is an important factor influencing the occurrence of TNs,

and in the present study, it was found that females accounted for

44.80% of patients with TNs, which was higher than 35.18% of non-

TNs patients. Females are affected by sex-related hormones such as

physiology, pregnancy, estrogen, and progesterone (34). Estrogen

promotes the proliferation of thyroid stem cells through classical

genomic and non-genomic pathways and leads to the development

of TNs (35, 36). In addition, age is an important factor influencing

TNs, and previous studies have shown that the prevalence of TNs

increases with age (37). Our findings showed that the mean age in

TNs group (49.45 ± 3.67) was higher than the mean age in non-TNs

(48.90 ± 3.79), which is consistent with the results of previous

studies. Our analysis showed that UA levels were statistically

different between the two groups, with the TNs group having

lower UA levels than non-TNs. Previous findings have been
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inconsistent, with some studies finding UA to be an independent

risk factor for the formation of TNs, while others have found UA to

be a protective factor for TNs in males over 30 years of age, which

still needs to be further explored (38, 39).

The results of this study showed that Fe levels were positively

correlated with the risk of developing TNs in the total population

and males, and the risk of developing TNs increased with increasing

Fe levels. This is inconsistent with the findings of Ma et al, in whose

study no association between Fe and TNs was observed (23). There

are fewer relevant studies and limited evidence. Fe influences the

risk of developing TNs may be related to thyroid hormones. Excess

Fe can generate large amounts of reactive oxygen species (ROS) by

participating in electron transfer in the oxidative respiratory chain

in the mitochondria, and excess ROS subsequently leads to

mitochondrial dysfunction, oxidative stress, lipid peroxidation,

and DNA damage, which ultimately leads to Fe-dependent cell

death, which in turn affects the normal functioning of the thyroid

gland (40). Fe is also involved in the regulation of the immune
TABLE 5 The association of Fe and Cu with TNs.

Metal
Model 1 Model 2

OR (95%CI) P OR (95%CI) P

Fe 1.079 (0.904, 1.288) 0.400 1.231 (1.008, 1.504) 0.041*

T1 Ref. Ref.

T2 1.051 (0.680, 1.623) 0.824 1.165 (0.736, 1.844) 0.514

T3 1.296 (0.842, 1.994) 0.239 1.771 (1.089, 2.879) 0.021*

P-trend 0.242 0.021*

Cu 1.221 (1.020, 1.462) 0.030* 1.213 (1.008, 1.460) 0.041*

T1 Ref. Ref.

T2 1.053 (0.681, 1.630) 0.816 1.031 (0.658, 1.617) 0.893

T3 1.438 (0.934, 2.215) 0.099 1.355 (0.866, 2.119) 0.184

P-trend 0.102 0.215
*P<0.05; Model 1: not adjusted for any covariates; Model 2: adjusted for sex, age, BMI, income,
education, smoking, and drinking status. Bolded values indicate statistical significance.
TABLE 6 Sex-stratified analysis of the association of Fe and Cu with TNs.

Metal
Model 1 Model 2

OR (95%CI) P OR (95%CI) P

Males

Fe 1.286 (1.007, 1.643) 0.044* 1.349 (1.043, 1.746) 0.023*

T1 Ref. Ref.

T2 1.179 (0.603, 2.304) 0.631 1.158 (0.577, 2.322) 0.680

T3 1.828 (0.975, 3.426) 0.060 1.980 (1.022, 3.836) 0.043*

P-trend 0.040* 0.025*

Cu 1.289 (1.002, 1.657) 0.048* 1.328 (1.023, 1.724) 0.033*

T1 Ref. Ref.

T2 1.646 (0.933, 2.906) 0.086 1.584 (0.883, 2.841) 0.123

T3 2.252 (1.249, 4.063) 0.007** 2.165 (1.172, 3.999) 0.014*

P-trend 0.006** 0.013*

Females

Fe 1.022 (0.740, 1.411) 0.897 0.966 (0.687, 1.357) 0.841

T1 Ref. Ref.

T2 1.236 (0.663, 2.305) 0.505 1.162 (0.599, 2.256) 0.657

T3 1.177 (0.517, 2.678) 0.698 0.905 (0.380, 2.153) 0.821

P-trend 0.508 0.876

Cu 1.107 (0.851, 1.440) 0.449 1.102 (0.838, 1.450) 0.486

T1 Ref. Ref.

T2 0.531 (0.256, 1.101) 0.089 0.419 (0.191, 0.918) 0.030*

T3 0.698 (0.358, 1.361) 0.291 0.672 (0.332, 1.359) 0.269

P-trend 0.274 0.234
frontie
*P<0.05, **P<0.01; Model 1: not adjusted for any covariates; Model 2: adjusted for gender, age,
BMI, income, education, smoking, and alcohol status. Bolded values indicate
statistical significance.
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system. Chronic inflammation is one of the important pathogenetic

mechanisms of TNs, and Fe overload may promote the formation of

TNs by inducing chronic inflammation (41).

The results of this study showed that Cu levels were positively

associated with the risk of TNs in the total population and males

and that the risk of TNs increased with increasing Cu levels. Zeng

et al. showed that subjects with higher Cu levels had an increased

risk of thyroid nodule prevalence (P < 0.001), and participants in

the fourth quartile had the highest prevalence of TNs among all

participants compared to the first quartile of Cu levels in serum,

which is in agreement with our study results (22). However, in

another study, Cu levels were found to be unrelated to the

development of nodular goiter (42). It has been proposed that the

MAPK signaling pathway involved in cell proliferation is stimulated

by Cu and that the cellular influx of Cu also enhances the

phosphorylation of ERK1/2 through the interaction of Cu with

MEK1, and thus higher levels of Cu may be involved in the

pathogenesis of TNs through Cu-MEK1 interaction (22). Despite

these insights, the precise molecular mechanisms linking Cu

homeostasis to TNs pathogenesis remain poorly characterized,

warranting further investigation.

However, this study also has some limitations. First, this study is a

cross-sectional survey, and the results of the study can only be used to

make a preliminary judgment of whether they are related or not, and

cannot be used for causal argumentation; therefore, more longitudinal

data need to be collected and prospective cohort studies need to be

carried out to understand the causal relationship. Second, the

restricted sample size from a specialized occupational cohort

(oilfield workers) limits statistical power and generalizability.

Extrapolation to general populations requires confirmation in

multi-center studies encompassing diverse occupational exposures.

Third, our study did not consider the effects of dietary structure,

iodine status, genetics and other confounding factors on TNs and

Metal elements. Future investigations should incorporate these

covariates using standardized nutritional assessments and genome-

wide association approaches.
5 Conclusions

Our study found that TNs were very prevalent among oilfield

workers. Mixed exposure to metal elements may be associated with

an elevated risk of TNs, with Fe and Cu emerging as potential

contributors to this association. However, given the inherent

limitations of cross-sectional designs in establishing causality,

these results should be interpreted as exploratory evidence

highlighting prioritized metals for further investigation. Future

prospective studies are needed to verify causality, which will help

develop targeted prevention strategies for this occupational group.
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