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Adipocytes play a crucial role in regulating energy metabolism throughout the

body. Dysfunctional adipocyte biology is a primary factor in the development of

metabolic disorders associated with obesity and type 2 diabetes. Over the past

decades, the role of epigenetic mechanisms, particularly DNA methylation, in the

development and regulation of adipocytes has been extensively elucidated. These

mechanisms influence numerous biological processes in adipose tissue and

adipocytes, including lipogenesis and lipid metabolism. With the discovery of the

active DNA demethylation mechanism centered on ten-eleven translocation (TET)

proteins, a growing body of evidence sug-gests that DNA demethylation

mechanisms also profoundly influence various aspects of adipocyte biology and

regulate cellular differentiation and function by altering the methylation status of

genes. Following the discovery of active DNA demethylation mechanisms

mediated by TET proteins, a growing body of evidence indicates that these

mechanisms profoundly influence multiple aspects of adipocyte biology.

Specifically, these mechanisms regulate cellular differentiation and function by

altering the methylation status of key genes involved in adipogenesis and

metabolism. A precise and detailed understanding of the mechanisms underlying

DNA demethylation in adipocyte biology is imperative for the identification of

novel interventional therapies targeting adipocyte gene methylation and

demethylation. This review examines the specific molecular mechanisms and

significance of passive and active DNA demethylation in adipocyte biology,

focusing on the DNA methyltransferase family and TET proteins. It summarizes

crosstalk mechanisms involving DNA methyltransferases, highlights the multiple

action pathways of TET proteins, and reveals the potential of additional

intervention pathways. This review aims to provide an updated theoretical basis

for promising therapeutic targets.
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DNA methyltransferase family, ten-eleven translocation proteins, adipocyte biology,
DNA demethylation, epigenetic mechanisms
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1 Introduction

Since its initial identification in bacteria in 1925, DNA

methylation has been the subject of extensive investigation across a

diverse range of organisms and is currently the most intensively

studied epigenetic mechanism (1). In mammals, DNA methylation

typically occurs at cytosine-guanine dinucleotide (CpG) sites and

mediates gene expression silencing in promoter regions. This process

relies on a family of DNA methyltransferases (DNMTs) to catalyze

the transfer of a methyl group from S-adenosylmethionine (SAM) to

the fifth carbon of a cytosine residue, resulting in the formation of 5-

methylcytosine (5mC). While this modification does not affect the

base pairing of cytosine, it can alter the functional state of regulatory

regions, thereby exhibiting the classic “epigenetic” marks. DNA

methylation plays a crucial role in maintaining genomic stability,

genomic imprinting, and chromatin structure (2–5). Consistent with

these significant roles, a growing number of human diseases have

been shown to be associated with DNA methylation including lipid

metabolism disorders such as obesity, which was first linked to this

epigenetic process over a decade ago (6). From the initial

identification of genome-wide methylation loci associated with

adipocyte differentiation in 2008 to recent comprehensive

methylome analyses of adipocytes, a series of studies has

demonstrated that DNA methylation is widely present in

adipocytes and influences adipogenesis, adipocyte differentiation,

and adipocyte function (7–9).

Acting as key endocrine and secretory cells, adipocytes are

extensively involved in diverse physiological and metabolic

processes through the synthesis and secretion of numerous

protein signals and bioactive factors (10). Mammalian adipocytes

comprise two major types: brown and white adipocytes. Brown

adipocytes generate heat by oxidizing substrates such as glucose and

fatty acids in response to diverse stimuli. White adipocytes store

and release energy in the form of fatty acids in response to systemic

energy demands (11). Another type of brown adipocyte that occurs

in white fat depots was identified as a new type of adipocyte-beige

adipocytes. Unlike classical brown adipocytes, beige adipocytes

possess the ability to switch between energy storage and energy

dissipation phenotypes (12). Research in physiology and pathology

has revealed that adipocytes not only serve as regulators of systemic

energy homeostasis but also that abnormal lipogenesis and lipid

metabolism are key factors leading to dyslipidemia, obesity, fatty

liver, and other diseases (13). The ongoing advancement of

epigenetics has led to the growing recognition that a range of

biological processes, including adipocyte function, lipid

metabolism, and lipogenesis, are significantly influenced by DNA

methylation. Neonatal mice show high levels of DNA

hypermethylation in white adipose tissue (WAT) early in life and

low levels in brown adipose tissue (BAT) (14). The combined

impact of DNA hypermethylation and high-fat diet (HFD)

feeding has been shown to profoundly disrupt abnormal

adipocyte biology in mice and contribute to the development of

diseases such as atherosclerosis in male mice (15–17). In light of

these findings, de-(hypo)methylation therapies have been proposed

as a potentially efficacious means of reversing the biological
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methylation process in aberrant adipocytes and of responding to

changing metabolic environments, such as obesity, through altered

metabolic gene methylation status. In fact, before the elucidation of

the active DNA demethylation mechanism, DNA de-(hypo)

methylation therapies had already been shown to significantly

influence the pathogenesis of diseases such as cancer and

atherosclerosis (18). A study conducted in 2009 demonstrated

that DNA methylation inhibitors markedly diminish the capacity

of 3T3-L1 cells to undergo adipogenesis during the contact

inhibition phase (19). This suggests that targeted inhibition of

DNA methylation at specific genomic segments plays a critical

role in adipocyte biology. Following the elucidation of the

mechanism of active DNA demethylation, this reversible

methylation process and active DNA demethylation mechanism

are regarded as potential avenues of intervention in a number

of diseases.

The phenomenon of DNA demethylation was initially observed

as a passive process. In an early study on embryonal carcinoma

cells, it was demonstrated that a substantial reduction in DNA

methylation (approximately 30%) upon retinoic acid induction

facilitated cell differentiation (20). Subsequent studies have

extensively elucidated the passive demethylation process,

confirming that this link is closely associated with the failure to

maintain DNA methylation and highlighting the dominant role of

reduced or inhibited DNMT enzymes activity (21, 22). The

introduction of three nuclear reprogramming methods in 2010

represented a significant shift in the decades-long understanding

that DNA methylation is critical for maintaining stable cellular

identity and advanced active DNA demethylation (23). Although

the mechanism of active DNA demethylation has long been well

characterized in plants, researchers initially failed to explore the

mammalian counterparts to the plant demethylases, which placed

mammalian active DNA demethylation in a state of uncertainty

(24). It is notable that the initial identification of a mammalian

DNA demethylase occurred as late as 1982. However, this discovery

has following been overlooked or subjected to significant debate in

the subsequent decades (25, 26). It is encouraging to note that a

report on the conversion of 5mC from mammalian DNA to 5-

hydroxymethylcytosine (5hmC) by human ten-eleven translocation

(TET) one has provided a new perspective, suggesting the

importance of 5hmC as an intermediate. In light of these

findings, subsequent studies have corroborated that protein-

mediated hydroxymethylation by TET, deamidation by the AID/

APOBEC family, and base excision repair (BER) collectively

represent the comprehensive mechanism underlying active DNA

demethylation (27–30). Despite the recent identification of the

active DNA demethylation mechanism, a series of comprehensive

studies has provided a more detailed explanation of the underlying

process. Overall, the active DNA demethylation process is achieved

by the progressive oxidation or deamination of 5mC, which

involves the following three pathways:(1) TET proteins

successively oxidize 5mC to form 5hmC, 5-formylcytosine (5fC),

and 5-carboxycytosine (5caC), which are then recognized and

processed by the thymine DNA glycosylase (TDG) to initiate

BER, constituting the canonical TET-TDG-BER pathway; (2)
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TDG-BER-independent, direct deformylation of 5fC and direct

decarboxylation of 5caC; (3) AID/APOBEC family directly

mediates 5mC or 5hmC deamidation (31–34) (Figure 1). Among

these three pathways, given the recent discovery of direct

deformylation of 5fC and decarboxylation of 5caC, as well as the

re-evaluation of AID/APOBEC family-mediated deamidation,

which evolved from early recognition, through scientific

questioning, to re-establishment as a distinct mechanism in 2017

[detailed description in (32, 35)]. Consequently, the TET protein-

mediated active DNA demethylation mechanism has been the most

extensively studied among these three pathways. Previously

published reports have highlighted the pivotal role of TET

proteins in numerous biological processes and confirmed their

importance as critical regulatory targets in diseases such as cancer

(36). It is regrettable that, despite the publication of several

significant studies in recent years that have elucidated the

mechanisms and implications of TET proteins in adipocyte

biology, a comprehensive summary of these findings has yet to

emerge. The few existing reports on the relationship between DNA

demethylation and lipid biology are limited in scope and depth,

with a paucity of detailed mechanisms and a tendency to become

obsolete. Accordingly, by concentrating on DNMT enzymes and

TET proteins as the central focus, this review provides a detailed

and in-depth summary of the mechanisms of passive and active

DNA demethylation in adipocyte biology for the first time. It aims

to further illustrate the significant role of epigenetics in adipocyte
Frontiers in Endocrinology 03
biology and hopes to offer deeper research targets for lipid

regulation, adipogenesis, and lipid metabolism-related diseases, as

well as promising clinical prevention and treatment pathways for

the future.
2 DNMT family: taking control of
passive DNA demethylation

The human genome encodes five DNMT: DNMT1, DNMT2,

DNMT3A, DNMT3B, and DNMT3L. Among them, DNMT1,

DNMT3A and DNMT3B are classical cytosine-5 DNMTs. They

comprise an N-terminal regulatory domain and a C-terminal

catalytic domain, utilizing SAM as a methyl donor and a base-

flipping mechanism to translocate the target base into the catalytic

pocket. This process ultimately results in the formation of 5mC via a

methylation reaction (37). DNMT1 preferentially targets

hemimethylated DNA within the methylation pathway to

maintain the methylation pattern during DNA replication, while

DNMT3s primarily act on unmethylated DNA substrates. This

functional dichotomy has long supported the hypothesis that

DNMT1 serves as the primary methylome maintainer, whereas

DNMT3 enzymes facilitate de novo methylation (38, 39).

Subsequent studies have further complemented the mechanism of

maintenance of DNA methylation by demonstrating that

recognition of hemimethylated DNA by DNMT1 is involved in
FIGURE 1

Diagram of DNA demethylation mechanisms. DNMTs, DNA methyltransferases; DNMTi, DNA methyltransferase inhibitors; TET, Ten-eleven
translocation; TDG, Thymine DNA glycosylase.
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the maintenance process in conjunction with localization of specific

chromatin regions containing methylated DNA by the DNMT3s

enzyme (40). Thus, DNMT1, DNMT3s dominate the passive

demethylation process associated with failure to maintain DNA

methylation. In lean murine adipocyte biology, silencing of

DNMT1 accelerates adipogenic differentiation, while the

expression of DNMT3A is significantly upregulated in the

adipose tissue of obese mice. These findings suggest that DNMTs

are intimately linked to adipocyte and adipose tissue (41, 42).
2.1 Overexpression of DNMT: mediating a
bidirectional crosstalk mechanism

The degree of methylation of specific genes, which depends on

the enzymatic activity of DNMT, affects adipocytes, and

overexpression of DNMT a critical contributor to this regulatory

process. Animal experiment data indicate that DNMT3A

overexpression stimulates the proliferation and inhibits the

adipogenic differentiation of porcine intramuscular preadipocytes.

Studies have shown that the overexpression of DNMT1 and

DNMT3A has the opposite effect on lipogenesis in 3T3-L1 cells,

promoting and inhibiting the process, respectively, during the pre-

and late-stage differentiation phases (8, 43). Furthermore, it was

demonstrated that mice fed a HFD exhibited an increased number

of hypermethylated regions and significant upregulation of

DNMT3A expression; a significant increase in the methylation

level of the leptin CpG promoter was accompanied by an

associated increase in DNMT3A (44, 45). HFD significantly

altered the enzymatic activity and global DNA methylation status

of DNMTs in the gonads of mice and increased the levels of

DNMT1 and DNMT3A proteins in the ovaries and testes (46).

These studies highlight that excessive fat intake and the lipid

metabolic microenvironment significantly affect DNMT

enzymatic activity. Data from obese patients indicate that

DNMT1 is highly expressed in both visceral and subcutaneous

adipose tissue and exhibits a positive correlation with body mass

index (BMI) (47). Notably, DNMT1 and DNMT3A, highly

expressed in individuals with obesity, contribute to the induction

of obesity-associated inflammatory responses. Conversely,

inflammatory factors promote DNMT1 activity in adults with

obesity, thus suggesting a bidirectional interaction between

DNMT enzymatic activity and the inflammatory response in the

obese microenvironment (48, 49). In addition, adipose tissue and

cell type-specific gene expression profiles of subcutaneous fat from

six female subjects were retrieved from adiposetissue.org (50). The

profiles revealed that DNMT1 and DNMT3A were highly expressed

in CD8+ T cells and M2 macrophages, respectively. This finding

supports the involvement of DNMTs in the adipose tissue

inflammatory response. Similarly, DNMT enzymatic activity

exhibits bidirectional crosstalk with adipocyte biology, and

hypermethylation of specific genes, mediated by DNMT

overexpression, significantly influences lipid metabolism and

regulation. DNMT1 is hyperactivated in adipocytes of obese
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subjects. Activated DNMT1 selectively methylates the promoter

of adiponectin genes involved in lipid metabolism regulation,

thereby inhibiting adiponectin expression (49). In vitro

experiments demonstrated that high glucose-induced lipid

accumulation occurs via inducing DNMT1-mediated DNA

hypermethylation of specific genes. A key pathway involves

certain oxysterols, which not only regulate lipid metabolism and

inflammatory responses but also serve as agonists to promote

DNMT1 expression (51).
2.2 DNMT inhibition: passive demethylation
and adipocyte biology

Although subsequent studies have elucidated DNA methylation

maintenance mechanisms, research on DNMT1’s role in this process

has been extensively studied, especially in the context of passive

demethylation mechanisms in adipocyte biology. Previous in vitro

experiments demonstrated that DNMT1 expression regulates the

timing of adipocyte differentiation and confirmed that DNMT1

silencing accelerates this process (42). A study investigating the

epigenetic regulator tonicity-responsive enhancer-binding protein

(TonEBP) in thermogenesis and obesity found that treatment with

the DNMT inhibitor RG108 (12 mg/kg, intraperitoneal injection

every two days) conferred resistance to HFD-induced body weight

gain and adiposity in mice, confirming that DNMT1 primarily

mediates this protective effect (52). The paper by Park and

colleagues presents a compelling argument that DNMT1 is the

most abundant DNA methylation modifier in adipose tissue, and

that adipocyte DNMT1 is required for the maintenance of the obese

phenotype and systemic energy homeostasis. Using adipose-specific

DNMT1 knockout mice, the authors demonstrated that adipocyte

DNMT1 deficiency promotes lipid accumulation via promoter

hypomethylation, exacerbates obesity-induced impairments in

adipose tissue remodeling and energy metabolism, and induces

hypertrophic expansion of adipose tissue (53). In addition to this,

recent studies have supported the finding that DNMT3A and

DNMT3B deletion plays a pivotal role in adipose biology. A study

on heterozygous DNMT3A deletion in mice demonstrated that

DNMT3A-deficient mice exhibited a hypomethylated landscape,

characterized by an inflammatory phenotype in adipocytes, an

overall metabolic manifestation of obesity and age-related insulin

resistance, and a broader spectrum of aberrantly differentiated

adipocyte progenitors (54). Paradoxically, Dnmt3B knockout mice

exhibited reduced energy expenditure, susceptibility to diet-induced

obesity and insulin resistance (55). A further intriguing study

revealed that mice with hematopoietic DNMT3A deficiency

exhibited more pronounced weight gain, a heightened

inflammatory response, and glucose intolerance when subjected to

the same HFD (56). These experiments not only confirmed that

DNMT3A inhibition disrupts lipid metabolism regulation by

mediating DNA demethylation, but also showed that DNMT3A

plays an important role in inducing lipid metabolism-related

inflammatory responses.
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2.3 DNMT inhibitors: promising clinical
treatments

More targeted research has emerged in the field of DNA

methyltransferase inhibitors (DNMTi). Although the majority of

DNMTi therapeutic effects are focused on oncology, numerous

studies now explore their role in adipocyte biology. 5-Azacytidine

(5AC) and decitabine (5-azido-2’-deoxycytidine, DAC) have

become widely utilized in oncology research as common DNMTi

since they were identified in the early 1980s for their ability to

reverse DNA methylation (57–59). In adipocyte biology, the effect

of 5AC on the differentiation of adipose-derived stem cells is well

documented. Its inhibitory effect on methylation has also been

demonstrated to disrupt cholesterol and lipid homeostasis.

Treatment with DAC induces significant hepatic DNA

hypomethylation in mice fed with HFD, thereby leading to a

marked reduction in hepatic lipid accumulation (60–62).

Moreover, both have been demonstrated to positively regulate

leptin gene expression, which in turn regulates fat mass. In 3T3-

L1 cells, 5AC-mediated DNMT1 inhibition promotes leptin

expression via DNA hypomethylation; similar marked increases

in leptin expression have been observed in decitabine (DAC)-

treated fibroblasts and HeLa cells (63, 64).

Notably , inhibi t ion-mediated DNA demethylat ion

mechanisms, which target DNMT, have been associated with

dysregulated adipocyte-related disorders. These findings provide

potential targets for the treatment and prevention of related

disorders. In an ovarian cancer cell migration study, the effect of

DNMTi on fully differentiated adipocytes demonstrated that

h ypome t h y l a t i n g d r u g s may i nflu en c e t h e t umo r

microenvironment and, consequently, reduce cancer cell

metastasis. This provides a potential mechanism for how

epigenetic modulation of adipocytes may reduce metastasis (65).

Combined low-dose DAC treatment and pharmacological DNMT1

inhibition has been demonstrated to ameliorate type 2 diabetes

mellitus and halt the onset and progression of non-alcoholic fatty

liver disease (NAFLD) by targeting and modulating macrophage

polarization in adipose tissue (66, 67). DNMT inhibition-mediated

hypomethylation of lipogenesis-associated genes represents a

potential mechanism by which bisphenol A exposure may induce

hepatic lipid accumulation. This suggests that targeted epigenetic

therapy for lipogenesis may represent a promising strategy for

ameliorating hepatic lipid accumulation (68) (Figure 2).
3 TET proteins: active regulators of
DNA demethylation

The first member of the TET protein family, TET1, was

identified in patients with acute myeloid leukemia carrying the t

(10;11) (q22; q23) translocation. Subsequently, TET2 and TET3

were identified and found to exhibit high sequence homology with

TET1. (69, 70). TET proteins function as iron (II)/a-ketoglutarate
(Fe (II)/a-KG)-dependent dioxygenases. Their primary structure

includes a carboxyl-terminal catalytic domain, which contains a
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cysteine-rich domain (CRD) and two double-stranded b-helical
(DSBH) regions (71). The amino-terminal regions of TET1 and

TET3 contain a CXXC domain involved in CpG dinucleotide

binding. In contrast, during evolution, the putative CXXC

domain of TET2 was lost from the protein as a result of genomic

inversion and was subsequently replaced by CXXC4 (36) (Figure 3).

Owing to this structural variability, TET2 protein typically binds

gene promoters indirectly, through interactions with transcription

factors that modulate gene expression (72). Interest in TET proteins

has centered on the observation that oxidized methylcytosine serves

as an intermediate in DNA demethylation. TET-mediated oxidation

of 5mC to 5hmC, 5fC, or 5caC represents a central pathway of

active DNA demethylation. In-depth studies have demonstrated

that active DNA demethylation, which is mediated by TET proteins,

involves at least four processes: promotion of passive DNA

demethylation, active DNA demethylation through DNA repair,

enzymatic decarboxylation of 5caC, and dehydroxymethylation by

DNMT enzymes [summarized in (73)]. This active DNA

demethylation process occurs in diverse biological contexts and

plays a significant role in the pathogenesis of neurological disorders

and in oncology (74, 75). Consistent with these roles, the active

DNA demethylation process, which is primarily mediated by the

TET proteins, is also critical for the biology of adipocytes.
3.1 TET and adipocytes: in-depth
epigenetic regulatory mechanisms

The TET protein family is critical for adipose tissue biology.

TET1 has been identified as an epigenetic repressor of the beige

adipocyte-selective thermogenesis gene program. It inhibits

adipocyte thermogenesis in a cell-autonomous manner and exerts

its effects in mice with diet-induced obesity (76). TET3, which

shares high structural similarity with TET1, has been demonstrated

to serve as a pivotal epigenetic regulator of homeostatic control of

white adipose tissue deposition and diet-induced adipose

expansion. It autonomously regulates adipogenic cells and is an

indispensable protein for adipogenesis both in vitro and in vivo (77).

TET2 with structural specificity has been identified as an anti-

lipogenic demethylase in the differentiation of T3-L1 cells, and

knockdown of TET2 profoundly impairs adipocyte differentiation,

leading to a significant increase in lipogenesis (78). Notably,

although the aforementioned studies demonstrated that TET1/2

can influence adipocyte biology independently of the DNA

demethylation pathway, subsequent studies have corroborated the

crucial role of TET proteins as DNA demethylation enzymes (76,

77). First, fundamental in vitro studies have systematically validated

these findings. A study on the regulation of mesenchymal cell

profiles by TET1/2 indicates that TET1 and TET2 serve as

inhibitors and promoters of osteogenesis and adipogenesis,

respectively, by mediating alterations in DNA demethylation

status (79). TET3 functions as a DNA demethylating enzyme in

conjunction with the pivotal transcription factor CCAAT/Enhancer

Binding Protein d (C/EBPd) to promote adipocyte differentiation by

catalyzing the DNA demethylation of C/EBP binding motifs and
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stimulating the expression of essential adipogenic genes (80).

Findings from animal studies show that TET1 knockout is linked

to downregulation of genes involved in lipid metabolism and

adipocyte differentiation, and TET1 deficiency in mice fed with
Frontiers in Endocrinology 06
HFD has been observed to induce the upregulation of genes

associated with lipogenesis and fatty acid uptake (81, 82).

Decreased b3-adrenergic receptor (b3-AR) expression and

blunted b-adrenergic signaling are strongly linked to obesity.
FIGURE 2

DNMTs and adipose biology-related mechanism diagram. (A) Overactivation of DNMT1/3a by adipocytes in adults with obesity elicits inflammatory
adipose tissue accumulation via inflammatory response and inhibiting adiponectin expression by selective methylation of DNMT1. (B) In HFD-fed
mice, adipose tissue DNMT3a and testicular DNMT1/3a levels increased significantly, while DNMTi reduced hepatic fat content. (C) DNMT1 and
DNMT3a knockout mice exhibit lipid accumulation, hypertrophic adipose tissue, and inflammatory adipocyte production through hypomethylation,
respectively. DNMTs, DNA methyltransferases; HFD, High-fat diet; DNMTi, DNA methyltransferase inhibitors.
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Adipocyte-specific deletion of all three TET genes increases b3-AR
expression, thereby enhancing lipolysis, thermogenesis, oxidative

metabolism, and fat browning in transgenic mice. This effectively

prevents obesity (83). Recent studies have demonstrated that TET2

acts as a DNA demethylase to regulate gene expression in human

and mouse endothelial cells, and these studies have indicated that

endothelial TET2 deficiency exacerbates HFD-induced obesity (84).

These studies strongly indicate that the TET proteins play a pivotal

role in regulating adipocyte biology. However, the interaction

between these two factors is not a unidirectional process. More

interestingly, HFD-induced obesity models have been

demonstrated to diminish TET2 expression in adipose endothelial

cells. Additionally, a recent study by Liu and colleagues revealed

elevated muscle TET3 expression in humans and mice with obesity/

diabetes, substantiating a robust positive correlation between

obesity/diabetes and elevated muscle TET3 expression (84, 85).

These findings suggest that the dysregulated lipid metabolic

environment also influences TET protein expression.

Consequently, selectively modulating TET proteins to promote or

inhibit demethylation or methylation of specific genes may offer a

promising strategy for correcting aberrant lipid metabolism.
3.2 PPAR: important mediation sites for
TET proteins

Peroxisome proliferator-activated receptors (PPAR) are

recognized as lipid sensors due to their capacity to regulate whole-

body energy metabolism. The family consists of PPARa, PPARg, and
PPARd, with PPARg playing an important role in the regulation of

adipogenesis and glucose metabolism, as well as promoting lipid

storage and insulin sensitivity (86, 87). A genome-wide 5hmC

analysis of differentiated adipocytes revealed elevated levels of

5hmC at the PPARg binding site, suggesting that TET enzymes
Frontiers in Endocrinology 07
regulate adipogenesis by targeting the PPAR (88). Functional analysis

of TET1/2 in adipogenesis showed that TET1/2 upregulation in

mouse 3T3-L1 preadipocytes was accompanied by an increased

expression of PPARg. They observed that the knockdown of TET1/

2 impairs adipogenesis by inhibiting PPARg expression, thereby

highlighting a more prominent role for TET2 in this process (89).

The findings of Bian and Liu et al. further substantiate the dominant

role of TET2. Their studies revealed, respectively, that TET2

promotes the mouse transcriptional activity of PPARg in a

catalytically dependent or independent manner and that TET2

deficiency blocks adipogenesis by repressing the expression of C/

EBPb, C/EBPa and PPARg. Taken together, these findings suggest

that TET2 deficiency is closely associated with adipogenesis (90, 91).

Although the majority of studies have demonstrated an association

between TET2 and PPARg, it has been shown that the TET1 protein

is also regulates adipocyte biology by targeting PPARa, which plays

an important role in this process by increasing cellular fatty acid

uptake, esterification, and transport, as well as regulating genes

involved in lipoprotein metabolism (86). A study on NAFLD

demonstrated significant reductions in PPARa and its downstream

critical enzymes, including acyl-CoA oxidase 1 (ACOX1) and

carnitine palmitoyltransferase 1A (CPT1A), as well as the fatty acid

oxidation product b-hydroxybutyrate (b-HB), in TET1 knockout

mice. This evidence supports the hypothesis that TET1 activates

PPARa through hydroxymethylation. This activation promotes fatty

acid oxidation and inhibits the progression of NAFLD (92).

Intriguingly, studies focusing on NAFLD suggest that TET1

deletion may achieve a therapeutic effect in NAFLD mouse models

through substantial downregulation of PPARg expression.

Additionally, another animal study revealed that TET2 plays a

pivotal role in regulating the progression of NAFLD by mediating

alterations in the methylation of C-Maf-induced proteins, which

modulate the Gbp2-PPARg-CD36 axis (93, 94). These studies

demonstrate that TET proteins target PPAR nuclear receptors to
FIGURE 3

TET proteins structural domains. CRD, Cysteine-rich structural domain; DSBH, Double-stranded b-helical; TET, Ten-eleven translocation.
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regulate NAFLD progression by modulating adipose tissue biology.

This suggests that DNA demethylation interventions targeting the

TET protein pathway may be an effective method for regulating lipid

metabolism-related diseases.
3.3 Targeting leptin: another important
pathway of action for TET proteins

Leptin, the first identified adipokine to be identified, is a pivotal

adipokine that facilitates adipose tissue-brain communication to

sustain energy homeostasis and normal body weight (95, 96). It

was initially hypothesized that leptin could act as a powerful hormone

to promote weight loss in adults with obesity. However, elevated

plasma leptin levels in individuals with overweight or obesity,

together with leptin resistance as a major contributor to obesity

pathogenesis, indicate altered leptin expression in obesity. These

alterations have been potentially associated with methylation of its

promoter region (97, 98). Prior research has demonstrated that the

leptin promoter in the epididymal fat of diet-induced obese mice

exhibits a markedly reduced methylation at week 8 compared with

the low-fat group. This suggests that a high-fat diet may induce early

DNA demethylation of the leptin promoter, leading to increased

leptin expression (99). It is surprising that the study did not identify a

significant inverse correlation between leptin promoter methylation

and leptin transcription. Nevertheless, subsequent studies focusing on

the relationship between TET proteins and leptin have provided

further evidence of their association. Hypothalamic agouti-related

peptide (AGRP)-expressing neurons are integral to the regulation of

feeding behavior, and their activity is inhibited by leptin (100, 101).

Xie et al. demonstrated that TET3 negatively regulates AGRP

expression and influences leptin signaling in AGRP-expressing

neurons (102). In their experiments, leptin was failed inhibit

fasting-induced binge eating in TET3 knockout mice. These results

suggest TET3 is required for leptin-induced suppression of AGRP

expression in the cell lines. This highlights the critical role of TET3 in

the central control of obesity. The latest research findings offer new

insights and compelling evidence for the association between

adipocyte TET2 and leptin (103). In this study, the authors treated

primary differentiated adipocytes with various factors known to

increase white adipose tissue concomitant with obesity and

demonstrated that only leptin suppressed TET2 expression. They

confirmed that TET2 deficiency ameliorates HFD-induced obesity

and insulin resistance by partially decreasing leptin levels as well as

that the expression of the leptin gene in adipocytes is regulated by

TET2. Furthermore, analysis of human data provided evidence for a

negative feedback loop between TET2 and leptin in the context

of obesity.
3.4 Cofactors: important regulators for
targeting TET in adipocytes

The structural properties of TET proteins and the requirement

for key residues within the DSBH structural domain to bind
Frontiers in Endocrinology 08
cofactors—a necessary condition for optimizing catalytic function

—collectively determine that cofactors are essential for the

functional integrity of TET proteins (71). Iron is a canonical

cofactor for Fe (II)/alpha-ketoglutarate-dependent dioxygenases

(104). Studies of the iron-dependent effects of the TET proteins

showed that TET2 in 3T3-L1 cells under deferoxamine (DFO)

conditions had lower levels of 5mC, in marked contrast to

untreated cells, confirming that TET2 mediates iron-dependent

DNA demethylation during adipose differentiation (105). In

addition, investigations into TET1-mediated active DNA

demethylation in adipogenesis demonstrated that 0.1 mM DFO

significantly suppressed lipid accumulation, indicating that iron-

related TET inhibitors intervene in the adipogenic process (82). As

a cofactor, vitamin C affects the function of TET proteins by

promoting the folding of catalytic structural domains or iron

recycling pathways (106). A critical role in determining the

biological outcome of TET1 function has been reported for

vitamin C (107). Mechanistic studies of TET1 in obesity revealed

that vitamin C intervention improved the lipid metabolic status of

TET1-deficient mice fed an HFD, reversed adipocyte hypertrophy

in TET1 haploinsufficient mice, and effectively prevented Tet1-

deficiency-induced lipid accumulation associated with methylation

of the PPARa gene promoter (81). This study shows that TET1

plays a key role in lipid metabolism and suggests that vitamin C,

acting as a cofactor, alleviates lipid metabolic dysfunction by

enhancing TET1 activity. Therefore, targeting cofactors may also

be an important way to regulate the methylation processes in the

biology of adipose tissue. Unfortunately, the field currently lacks

more in-depth research, and some important exploratory studies

remain largely uncharted. For instance, whether cofactors influence

TET protein activity in a dose-dependent manner and whether

cofactors other than vitamin C exert beneficial effects on gene

demethylation in adipocyte biology remain unresolved

questions (Figure 4).
4 Other potential impact mechanisms

In addition to the extremely important role of TET proteins in

the active DNA demethylation pathway of adipocyte biology, BER

functions as a key component of the canonical TET-TDG-BER

DNA demethylation pathway. The BER process is initiated by the

DNA glycosylase, and TDG is one of the most representative DNA

glycosylases in this process (108). Numerous studies have shown

that TDG catalyzes the excision of 5mC, 5fC and 5caC produced by

oxidation of TET proteins, and biochemical reconstitution assays of

purified recombinant proteins have even demonstrated the

existence of a direct interaction between TET1 and TDG. These

findings highlight TDG’s essential role in the active DNA

demethylat ion mechanism (109–113) . TDG-mediated

mechanisms in adipocytes involve PPARg and fatty acid binding

protein 4 (FABP4). In porcine preadipocytes, TDG depletion

downregulated PPARg and FABP4 mRNA expression, leading to

a significant reduction in lipid droplet formation after induction of

differentiation. The results indicate that inhibition of porcine
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preadipocyte differentiation by TDG knockdown is achieved by

altering the methylation levels of some genes involved in adipocyte

differentiation (114). Methyl-CpG-binding domain protein 4

(MBD4), a mammalian DNA glycosylase, suppresses mutations

induced by 5mC deamination and excises guanine-mismatched

uracil and modified uracil, and is a key player in ensuring the

integrity of the active DNA demethylation process (115, 116). The

discovery of the role of MBD4 in adipocyte biology preceded TDG.

Studies on the differentiation process of porcine adipocytes

confirmed the inhibitory effect of MBD4 on cel lular

differentiation, also by downregulating the mRNA expression

levels of the cellular promoter regions C/EBPa, PPARg, and
adipocyte protein 2 (aP2) (117). Unfortunately, most current

research on DNA glycosylases focuses on their BER function in

the DNA damage response. In adipocyte biology, the specific roles
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and molecular mechanisms of DNA glycosylases in DNA

demethylation pathways remain poorly understood.

It is also worth noting that the epigenetic regulation is a process

that is susceptible to environmental and genetic factors, and the

DNA demethylation process of adipocyte biology is no exception.

This principle is illustrated by differences in DNA demethylation

pathways in the adult male rat germline between HFD-induced and

genetic obesity models (118). According to the Developmental

Origins of Health and Disease (DOHaD) concept, maternal

obesity and accelerated neonatal growth predispose offspring to

WAT accumulation (119). Adult rat offspring of dams fed a HFD

(termed HF) show adipocyte hypertrophy, hyperleptinemia and

increased leptin mRNA levels in a depot-specific manner. These

phenotypic changes correlate strongly with early-life modifications

of epigenetic markers. Specifically, in perirenal WAT of HF
FIGURE 4

Mechanism of action of TET proteins in adipocyte biology. The core mechanisms in the map include TET3-mediated demethylation promoting
adipocyte differentiation, adipose tissue expansion, and fat deposition. TET2 drives adipogenesis via methylation of PPARg or related genes; TET2
deficiency lowers leptin levels. TET1 activates PPARg/a to promote adipogenesis and fatty acid oxidation, respectively, and inhibit NAFLD progression.
Deletion of all three TET genes upregulates b3-AR expression, enhancing mitochondrial lipolysis, thermogenesis, and oxidative metabolism. In
adipose biology, vitamin C and DFO respectively promote and inhibit TET protein activity. TET, Ten-eleven translocation; HFD, High-fat diet; NAFLD,
Non-alcoholic fatty liver disease; AGRP, Agouti-related peptide; C/EBPd, CCAAT/Enhancer Binding Protein d; DFO, Deferoxamine.
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offspring, where the leptin promoter showed a decrease in 5mC and

an increase in 5hmC in perirenal WAT of HF offspring, suggesting

that this specific leptin regulation may be associated with active

DNA demethylation (120). Another study, using a similar

approach, confirmed that reduced PPARg2 expression in

perirenal adipose tissue of HF offspring was associated with

persistent hypermethylation (121). In light of this, could

promoting the degree of DNA demethylation of adipose-

associated genes in HF offspring be an effective way to ameliorate

the transcriptional repression of hypermethylation? What role do

key enzymes regulating DNA methylation/demethylation, such as

DNMTs and TET proteins, play in this epigenetic mechanism?

These questions warrant further investigation to clarify their

biological and translational implications.
5 Concluding remarks

Epigenetic mechanisms exert profound influences on biological

processes, with DNA methylation and demethylation serving as

central regulatory processes in human biology and disease

pathogenesis. Adipocyte biology, a key biological hub in metabolic

diseases such as obesity, diabetes, and non-alcoholic fatty liver

disease, is profoundly shaped by epigenetic mechanisms (Table 1).

DNA demethylation reverses gene hypermethylation or abnormal

methylation status, thereby counteracting DNA methylation-
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mediated gene silencing. This process is widely involved in

adipocyte biology by promoting the expression of specific genes.

DNMT enzymes are central regulators of DNA methylation and

passive demethylation. In adipocyte biology, active DNMTs stimulate

adipogenesis and inflammatory responses in adults with obesity,

whereas inhibition of DNMT activity may suppress these processes.

However, a seemingly paradoxical phenomenon is that knocking out

DNMT exacerbates lipid accumulation and the progression of

obesity. Although part of this phenomenon is due to DNMT acting

on different target genes, it is not yet known whether it is related to

the level of active DNMT enzymes. In adipocyte biology, TET-

mediated active DNA demethylation mechanisms exhibit

prominent multi-pathway regulatory effects. TET proteins regulate

adipocyte biological processes either autonomously or through

demethylation, promoting PPARa and PPARg gene expression to

regulate adipogenesis, while also having a bidirectional regulation on

leptin production, and are regulated by cofactors. Additionally, the

BER pathway, as a link in the classical TET-TDG-BER pathway, TDG

interferes with the lipogenesis process in the same way as MBD4.

While the mechanisms and biological significance of DNA

demethylation in adipocyte biology have been explored through

multiple approaches, existing studies leave several key questions

unresolved. Firstly, the role of DNMTi in adipocyte biology and

lipid metabolism-related disorders is far less well-explored

compared to cancer, with current research scope being relatively

narrow. In particular, in the available studies, targeting 5-Ac in
TABLE 1 The specific action mechanisms of DNMTs and TETs in adipocyte biology.

Enzymes Classification Mechanisms of action Biological process Reference

DNMTs

DNMT1
- Maintenance of DNA methylation
- Inhibition of lipocalin expression
- Activated by high glucose/oxysterols

- Bidirectional lipogenesis inhibition/promotion
- Gene overexpression induces an inflammatory
response

- Gene silencing accelerates adipocyte
differentiation/promotes lipid accumulation/
resists increased adiposity

(39, 8, 48, 49, 51, 42)

DNMT3A
- mediate de novo methylation
- Maintenance of DNA methylation
- Induction of leptin CPG methylation

- Gene overexpression inhibits adipocyte
differentiation, lipogenesis, and induction of
inflammatory responses

- Gene deletion induces obesity/insulin resistance
in old age

(40, 41, 8, 44, 54)

DNMT3B
- Synergistic mediation of de novo methylation
and maintenance of methylation

- Knockouts lead to lower energy expenditure (55)

TETs

TET1
- Mediates gradual oxidation of 5mC
- Regulation of PPARg expression
- Hydroxymethylation activates PPARa

- Knockout promotes fatty acid uptake
- Bidirectional regulation of lipogenesis
(inhibition of thermogenesis or promotion of
lipid metabolism)

- Promote fatty acid oxidation

(76, 81, 89, 92, 86, 94)

TET2

- Catalytic-dependent/non-dependent promotion
of PPARg transcriptional activity

- Mediates C-Maf-induced protein methylation
- Inhibited by leptin

- Regulation of endothelial cell gene expression
- Gene knockdown blocks lipogenesis
- Regulating progress in NAFLD
- Gene deficiency targeting leptin improves
obesity and modulates insulin sensitivity

(78, 84, 89, 90, 91, 93)

TET3

- Autoregulation of lipogenesis cells
- Erase DNA methylation (e.g. C/EBPd binding
sites)

- Negative regulation of Agrp expression

- Promote white fat deposition, adipocyte
differentiation

- Modulation of appetite in obesity-
related centers

(77, 80, 102, 103)
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adipocytes has identified genomic loci of DNA methylation, but the

mechanisms governing its removal remain to be elucidated.

Secondly, TET2 has been the focus of more targeted studies

owing to the unique of its structural domains. While many of

these studies have reported TET2’s role in regulating the PPARg
gene, future research is needed to fully characterize the broad

impact of TET2-dependent transcription on PPARg genomic

targets. TET2 differs structurally from TET1 and TET3 and

exhibits specific binding to transcription factors in the

demethylation pathway. This suggests that targeting TET2-

transcription factor interactions represents a safer and more

specific therapeutic strategy. Most critically, current research on

DNMT-mediated passive and TET-mediated active DNA

demethylation mechanisms in adipocyte biology is predominantly

focused on in vitro and animal models, lacking robust clinical

evidence to validate these findings. In summary, despite over a

decade of investigation, the molecular mechanisms of DNA

demethylation in adipocyte biology remain incompletely

understood. Their functional implications likely extend beyond

our current knowledge, with future studies poised to reveal

additional critical insights into their roles in metabolic health

and disease.
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