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Aging sarcopenia is an unavoidable condition that affects the majority of older

adults in their later years. Exercise has been extensively researched as an effective

intervention for sarcopenia. In particular, the release of exerkines and myokines

during physical activity has beneficial effects on the body, which, as mediators,

offer a novel therapeutic strategy for elucidating how exercise enhances skeletal

muscle mass and function. In this review article, we summarize how exerkines

exert protective effects on aging skeletal muscle mainly through the following

mechanisms: (1) mediating energy diversion to skeletal muscle, ensuring more

energy supply to themuscle; (2) enhancing the activity of skeletal muscle satellite

cells to promote muscle repair and regeneration; (3) upregulating the expression

of genes associated with muscle regeneration and, at the same time, inhibiting

the expression of those genes that contribute to the atrophy of skeletal muscle;

and (4) improving the function of the neuromuscular junction to improve the

neural control of skeletal muscle. These combined effects constitute the

protective mechanism of myokines on aging skeletal muscle.
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1 Introduction

The growing number and proportion of older individuals within the total population is

one of the most significant demographic challenges worldwide. The United Nations projects

that, by 2030, 16.9% of China’s population will be over the age of 65, while the global elderly

population is anticipated to exceed 1.5 billion by 2050 (1, 2). The U.S. Census Bureau and the

National Center for Health Statistics predict that by 2040, 80.8 million Americans will be 65

years old, representing approximately 21.6% of citizens. Among them, 14.4 million will be 85

years old, which will be a 123% increase from 2017 (3). With the improvement of people’s life

expectancy, society has entered the stage of aging gradually, which results in various diseases

in the elderly and leads to the aggravation of the social economy and medical burdens (4).

Additionally, aging is a multifaceted biological process characterized by a progressive decline

in physiological function and an increased susceptibility to disease, and this process is

accompanied by both functional and structural changes within the organism (1), such as

increased genetic instability, loss of protein homeostasis, and cellular senescence-induced
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neurodegenerative changes during aging (5). However, decreases in

skeletal muscle mass and strength are common in the older

population. This progressive decline, known as sarcopenia, leads to

impaired physical mobility and disability in older adults (6). The

pathogenesis of aging sarcopenia is accompanied by a reduction in

skeletal muscle mass and impaired contractile function and it also

involves systemic metabolic, inflammatory, and endocrine

abnormalities (7). When the rate of protein decomposition in

skeletal muscle exceeds its rate of synthesis, this imbalance leads to

muscle atrophy; thus, maintaining protein homeostasis during aging

is essential to prevent muscle loss (8, 9). However, with aging, a

combination of disturbances in muscle homeostasis and neuronal

degeneration results in the preferential loss of type II (fast) muscle

fibers. This selective loss is accompanied by a reduction in motor

units, which further exacerbates the weakening of muscle strength,

ultimately resulting in muscle weakness and bradykinesia (10, 11).

Exercise, as a non-pharmacological intervention, has great

potential to improve age-related diseases (12). In particular,

resistance exercise is effective in activating the nervous system

and accelerating muscle protein synthesis to increase skeletal

muscle mass and strength (13). During exercise, skeletal muscles

secrete various molecules that participate in the crosstalk between

organs and play an active role in neurological, metabolic,

cardiovascular, and immune processes (12, 14). These small

molecules synthesized and secreted by skeletal muscle are known

as myokines (15). Furthermore, during and/or after exercise,

peptides, metabolites, and nucleic acids released into circulation

are exerkines (16), which regulate numerous physiological and

pathological processes within the body, ultimately influencing

metabolism to promote health (17). Some skeletal muscles secrete

factors that are both exerkines and myokines, such as interleukin-6

(IL-6), irisin, fibroblast growth factor 21 (FGF21), and brain-

derived neurotrophic factor (BDNF) (17). Mobility exerkines are

key molecules mediating the link between exercise, metabolism, and

inflammation, and minor changes induced by exercise may affect

the whole body (17).

Exerkines have ameliorative effects on age-related diseases and

may be a potential avenue for improving them through exercise. Of

these, myokines are most closely related to skeletal muscle (18, 19).

Therefore, the aim of this paper is to review the research progress on

exerkines and aging sarcopenia in recent years, to explore the causal

relationship between sarcopenia and myokines’ plasma levels, and

to provide a reference for in-depth research on the homeostasis of

skeletal muscle and rejuvenation therapy of skeletal muscle in

the elderly.
2 Overview of aging sarcopenia

Sarcopenia was first recognized as an age-related loss of lean

body mass, and in 2010, it was recognized as a separate condition

(20). The European Working Group on Sarcopenia in Older People

(EWGSOP) defines sarcopenia as a progressive, generalized skeletal

muscle disease involving reduced muscle mass and dysfunction, the

prevalence of which increases with age (21, 22). According to its
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pathogenesis, it can be categorized as primary sarcopenia, which is a

loss of muscle mass and dysfunction associated with aging, or

secondary sarcopenia, which has significant predisposing factors,

such as chronic diseases and malnutrition (23, 24). Sarcopenia

evolves from muscle atrophy to muscle dysfunction and then to

muscle strength decline (21). In addition, we should also emphasize

the difference between sarcopenia and skeletal muscle atrophy.

Muscle atrophy occurs when muscle mass and fiber size decrease

(25). At this point, it is important to emphasize that sarcopenia is a

progressive decline in muscle mass, strength, and function with age

due to environmental or genetic factors (26). However, both

conditions involve reductions in skeletal muscle mass and muscle

fiber size, and both are associated with an imbalance between

protein synthesis and degradation within the muscle fibers (25).

The mechanisms of skeletal muscle atrophy involve the ubiquitin–

proteasome and autophagy-lysosome machinery, IGF1-protein

kinase B-forkhead box O (IGF1–AKT–FoxO) signaling,

inflammatory cytokines, nuclear factor-kappa B (NF-kB)

signaling, and other signaling pathways. The underlying

mechanisms of sarcopenia have been extensively studied, and we

can confirm that reduced physical activity, hormonal imbalances,

decreased absorption, and chronic inflammation affect the release of

myokines and influence the development of sarcopenia (27).

Additionally, the pathogenesis of aging sarcopenia may involve

satellite cell senescence, motor neuron loss, neuromuscular junction

inactivity, mitochondrial function, hormonal status, and abnormal

muscle factor production (28) (Figure 1). First, with aging, protein

synthesis and catabolism are abnormal. When skeletal muscle

protein catabolism exceeds synthesis, a negative protein balance

occurs with muscle atrophy (8). Second, the breakdown of muscle

homeostasis and neuronal degeneration lead to satellite cell

senescence and a reduction in the number and size of skeletal

muscles (11, 29, 30). Finally, mitochondria play a crucial role in

muscle mass and function, and their dysfunction is a driver of

sarcopenia (29, 31–33). Changes in the above factors also affect

patient mobility. However, physical activity and exercise are

effective countermeasures against skeletal muscle aging and delay

or prevent metabolic muscle damage (34). Because exercise

stimulates and promotes skeletal muscle contraction, it releases a

variety of myokines that maintain skeletal muscle mass and

enhance skeletal muscle regeneration (18, 35). Furthermore,

changing myokine signaling in patients with sarcopenia leads to

muscle atrophy and decreased fitness, while muscle atrophy also

decreases myokine expression (36, 37).
3 Overview of exerkines

During or after exercise, tissues secrete different kinds of

peptides, lipids, and nucleic acid substances, which are exerkines

(16). Based on the site of exerkine release, researchers have

designated exerkines released from skeletal muscle as myokines,

those from the heart as cardiokines, those from the liver as

hepatokines, those from white adipose tissue as adipokines, those

from brown adipose tissue as batokines, and those from neurons as
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neurokines (16) (Figure 2). Exerkines can be secreted directly into

the circulation or indirectly with the help of extracellular vehicles.

Meanwhile, their molecular targets and receptors are found

throughout the whole body, including the heart, brain, pancreas,

bones, fat tissue, immune system, and skeletal muscle (38).

Human and animal experiments have found that exerkines

circulate in the blood to achieve the crosstalk between organs and

tissues. In the cardiovascular system, exerkines enhance the

metabolic health in the heart (39). The majority of cardiokines

are also considered to be important mediators in maintaining

cardiac homeostasis and responding to myocardial injury (40).

Exercise promotes the secretion of cathepsin B from skeletal

muscle, which, together with BDNF, mediates neuronal

maturation and improves cognitive function in the brain (41).

The beneficial effects of exerkines on the brain may manifest as

improvements in mitochondrial function, reductions in oxidative
Frontiers in Endocrinology 03
damage, maintenance of protein homeostasis, and promotion of

synaptic plasticity (42). Exerkines are involved in the function of

osteoblasts and osteoclasts and improve metabolic disorders. For

example, irisin and BAIBA promote bone anabolism, while

myostatin (MSTN) affects the activity of osteoblasts and

osteoclasts, and promotes bone catabolism (43, 44).

Skeletal myogenesis is a multistep process involving the

proliferation, migration, and differentiation of myoblasts (45).

Exerkines are involved in the process of skeletal myogenesis, and

even a single exerkine acting on multiple organs promotes skeletal

myogenesis synergistically (46). For example, irisin affects adipose

tissue and pancreatic function and coordinates the energy supply to

skeletal muscle indirectly (17). Various exerkines act synergistically

on a single organ to maintain homeostasis in the internal

environment of skeletal muscle. Presently, we are unable to

elucidate the specific mechanisms and effects of these actions,
FIGURE 2

Classification of exerkines.
FIGURE 1

Mechanisms of aging sarcopenia.
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which limits our abil ity to maximize the efficacy of

exerkine interventions.

Exerkines are intricately associated with skeletal muscle

function, and the identification or isolation of exerkines may offer

a novel strategy for specific diseases. Because of the diversity of

exerkines, we classified them according to their release sites (see

Table 1). Additionally, we conducted a comprehensive search of

databases such as PubMed, Web of Science, and Sci-Hub to provide

an extensive overview of the molecular relationship between

exercise and skeletal muscle. For the myokines that have been

studied extensively and have great potential for treating aging

sarcopenia, we will provide a detailed explanation of their role in

sarcopenia in the following section.
4 Overview of myokines

Skeletal muscle is one of the endocrine organs, and myocytes

synthesize and secrete a variety of cytokines during contraction, named

myokines, which exert autocrine and paracrine effects (15, 47). Multiple

myokines have been identified by targeted analysis of skeletal muscle

biopsy protein levels in a single acute exercise or long-term post-

exercise population (18). Changes in the abundance of different

myokines in the intermuscular fluid can be observed after exercise

stimulation, and different exercise types stimulate different kinds of

myokines (18). For example, muscles performing centripetal

contractions induce the release of IL-6, interleukin-8 (IL-8), etc.;

strength training induces the production of interleukin-15 (IL-15). A

single exercise induces the release of IL-6, IL-1ra, and IL-8, and

multiple strenuous exercises induce the release of tumor necrosis

factor-a (TNF-a) (47, 48). In addition, different muscle fibers release

different types of myokines; for example, glycolytic fibers mainly

produce actin, angiopoietin, and Muscarinic Acetylcholine Receptors

(mAChRs), whereas oxidative fibers mainly produce myosin and irisin

(49–51). More than 600 myokines have been identified by non-

quantitative tagging proteomic approaches. Some of them act in

multiple organs throughout blood circulation to participate in

metabolic processes, such as promoting glucose uptake, enhancing

insulin sensitivity, improving cognitive functions in the brain,

stimulating osteoblast differentiation, controlling blood pressure, and

regulating myocardial contractility (52–54). Some are involved in

combating acute inflammation caused by infection or low-grade

inflammation due to aging (47). However, the most important

physiological function of myokines is to protect skeletal muscle

function and enhance skeletal muscle motility (18) (Figure 3).

During skeletal muscle cell proliferation, myoblasts secrete

myokines that are more inclined to inhibit neurogenesis and

adipogenesis, whereas during differentiation, myoblasts release

some myokines that have the ability to promote myotube

formation, vascular differentiation, and neurogenesis (35).

Myokines, as signaling molecules, are important carriers in

skeletal muscle and other organs, and have a complex regulatory

network throughout the organism, including with the muscle (53),

fat tissue (55, 56), the pancreas (57, 58), the brain (59), the

vasculature (60), and bone (61), among others.
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5 The role and mechanism of
exerkines in aging sarcopenia

In this section, we aimed to elucidate the relationship between

physical activity and aging sarcopenia from exerkines. When we

searched Medline, PubMed, and Cochrane Library with the

keywords “exerkines”, “aging sarcopenia”, and “skeletal muscle”,

we found that a large number of exerkines were related to skeletal

muscle (outlined in Table 1). We found that many researches focus

on exerkiens related to skeletal muscle regeneration or functionn,

with fewer studies report that exerkines improve aging sarcopenia.

We selected myonectin, Metrnl, adiponectin (ApN), and leptin,

which are more related to aging sarcopenia. Consequently, we will

conduct an exploration of the relationship between these exerkines

and aging sarcopenia, with the objective of identifying a

novel therapeutic direction for aging sarcopenia from a

systemic perspective.
5.1 Myonectin and aging sarcopenia

Myonectin, also known as C1q tumor necrosis factor-a-related
protein isoform 15 (CTRP15), has the function of maintaining body

homeostasis (62). Myonectin knockout reduces muscle strength in

aging mice, which exacerbates muscle atrophy by downregulating

the AMP-activated protein kinase/peroxisome proliferator-

activated receptor-gamma coactivator (PGC)-1a (AMPK/PGC-

1a) pathway (63). When exogenous myonectin supplementation

is added, skeletal muscle atrophy is prevented by the AMPK a2/
PGC-1a4/IGF-1-dependent pathway (63); however, in human

trials, there were no limiting differences in serum myonectin

levels among 142 older adults with or without sarcopenia (62).

Myonectin plays an important role in maintaining homeostasis and

preventing muscle atrophy in vivo, but its serum levels in the elderly

are not significantly associated with sarcopenia.
5.2 Metrnl and aging sarcopenia

Metrnl, also known as meteorin-like hormone, cometin,

subfatin, and IL-39, is expressed in a variety of tissues, including

the liver, heart, stromal cells, macrophages, spleen, and the central

nervous system (64). Although Metrnl is released by a variety of

tissues, Lee et al. (65) found that myofiber-specific expression of

Metrnl is not necessary for muscle regeneration, but when produced

from macrophages, it can promote muscle regeneration.

Macrophages change during aging, in which impairment of

innate immune signaling leads to age-related muscle degeneration

when skeletal muscle regenerates (66). Skeletal muscle injury

decreased the expression of Metrnl and improved muscle

regeneration in aged mice (66). However, in young mice, Metrnl

is expressed in macrophages and induces the expression of

regeneration genes (IL-10, IL-6, and IGF-1) to activate the

proliferation of satellite cells when skeletal muscle is damaged

(67). Thus, the decline in muscle regenerative function may be
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TABLE 1 Kinds of exerkines related to skeletal muscle.

Types Names Primary Role References

Myokines SPARC SPARC is upregulated during skeletal muscle growth, regeneration, and
pathological conditions. In SPARC knockout mice, although the recovery of
injured skeletal muscle strength following fatigue was diminished, reparative
processes persisted.

(223)

Myokines Myonectin Myonectin mitigates skeletal muscle dysfunction via an AMPK/PGC 1a-
dependent mechanism. In aging sarcopenia, the degradation of myonectin results
in heightened mitochondrial dysfunction within denervated skeletal muscle,
exacerbating muscle atrophy.

(63)

Musclin Musclin enhances skeletal muscle endurance by promoting
mitochondrial biogenesis.

(224)

SDF-1 Simultaneous pretreatment of skeletal muscle with SDF-1 and IL-4 resulted in
improved morphology and larger, more evenly distributed muscle fibers upon
recovery of skeletal muscle after its injury. IL-4 and SDF-1 significantly enhanced
the regenerative function of skeletal muscle by modulating the function of adipose
tissue-derived stromal cells (ADSCs).

(225)

FGF19 FGF19 ameliorates obesity-induced skeletal muscle atrophy, regulates skeletal
muscle mass, and mitigates skeletal muscle wasting potentially.

(226)

Sestrin The sestrins (sestrin 1 and sestrin 2) are integrators of anabolic and catabolic
metabolic pathways, which protect skeletal muscle from aging-related atrophy.
Skeletal muscle proteolysis was increased when sestrins were specifically knocked
down in mouse skeletal muscle. In contrast, when skeletal muscle overexpressed
sestrin 1 or 2, the aging-induced loss of muscle mass and strength was
partially reversed.

(227, 228)

TNF-a TNF-a acts on myocytes directly to enhance catabolic processes and promote
skeletal muscle protein degradation. Additionally, TNF-a impairs the regenerative
response following muscle injury through its effects on satellite cells. The
exogenous administration of TNF-a stimulates both myocyte proliferation and
satellite cell activation. Conversely, knockdown of TNF-a facilitates C2C12
myoblast proliferation.

(229)

IL-8 IL-8 serves as an enhanced skeletal muscle anti-catabolic metabolic factor that
reduces atrogin and MuRF1 expression and increases myotube length and
diameter. The addition of IL-8 to primary myoblast culture dishes stimulated the
expression of skeletal muscle hypertrophy-associated protein (myocilin).

(230)

IL-7 IL-7 mRNA and protein levels are elevated during the differentiation of satellite
cells into myotubes. IL-7 may stimulate satellite cell migration, indirectly leading
to reduced differentiation and affecting skeletal myogenesis.

(231)

Cardiokines Metrnl Metrnl protects cardiac function and is protective against aging or inflammatory
skeletal muscle diseases.

(232)

CTRP9 CTRP9 overexpression ameliorates cardiomyocyte apoptosis and fibrosis while
attenuating adverse cardiac remodeling.

(233)

MG53 MG53 is involved in the protective effects against myocardial ischemia/reperfusion
injury, which also regulates insulin sensitivity and energy metabolism in
skeletal muscle.

(234, 235)

Apelin Apelin is an important regulator of cardiac and skeletal muscle homeostasis, and
its absence leads to premature cardiac failure and sarcopenia.

(160)

Follistatin-like 1 Promoting endothelial cell function and blood vessel growth in skeletal muscle
and improving cardiac function after myocardial infarction.

(236, 237)

Angiopoietin 1 Angiopoietin 1 promotes angiogenesis, enhances the survival of skeletal muscle
satellite cells, and facilitates post-injury skeletal muscle regeneration.

(238)

Fractalkine Fractalkine improves skeletal muscle regeneration. (239)

Myonectin Myonectin improves age-related skeletal muscle dysfunction (see the myokines
section for specific functions).

(63)

HGF HGF may be involved in ischemic skeletal muscle regeneration by regulating
muscle innervation and bioenergetics.

(240)

(Continued)
F
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associated with changes in Metrnl concentration induced by

macrophage changes during aging. Serum Metrnl also positively

correlates with weight loss and the severity of cardiac insufficiency

in elderly patients with chronic heart failure (CHF) (68).

Intraperitoneal injection of recombinant Metrnl in mice can

activate the activating cyclic AMP/protein kinase A/Sirtuin1

pathway and reduce ischemia/reperfusion injury-induced
Frontiers in Endocrinology 06
cardiomyocyte apoptosis via activation of AMP-activated protein

kinase/p21 activated kinase 2 signaling for reduction of ischemia–

reperfusion-induced apoptosis in cardiomyocytes (68). Recent

experiments have identified that Metrnl promotes myosatellite

cell proliferation to achieve the initial stage of skeletal muscle

regeneration and also has a muscle regeneration-promoting

function in aged, skeletal muscle-atrophic mice.
TABLE 1 Continued

Types Names Primary Role References

VEGF VEGF promotes capillary growth in skeletal muscle. (241)

Adipokines Adiponectin Adiponectin improves glucose utilization and fatty acid oxidation in C2C12
myocytes and increases glucose uptake in skeletal muscle.

(242)

Leptin Leptin regulates adipogenesis in bone marrow mesenchymal stromal cells and
specifically modulates skeletal muscle mass and contractile function. In conditions
of fat mass deficiency, leptin secretion mitigates the decline in skeletal muscle
mass and strength.

(78, 243)

RBP4 RBP4 correlates with the presence and severity of aging sarcopenia. Knockdown
of RBP4 attenuated denervation-induced fat infiltration and skeletal muscle
atrophy while decreasing expression of the atrophy markers Atrogin-1 and
MuRF1 and increasing expression of the myogenesis regulators MyoD and
myoglobin. Lowering RBP4 levels may represent a promising therapeutic strategy
for the prevention and treatment of muscle atrophy.

(244)

Sfrp5 Sfrp5 attenuates insulin action in adipocytes under normal conditions and
mitigates the inflammatory response in TNF-a-treated adipocytes, but not in
skeletal muscle cells. The effects of Sfrp5 regarding inflammation and insulin
resistance may depend on the specific site of action and metabolic context.

(245)

Catecholamines Catecholamines suppress the activity of the ubiquitin–proteasome system (UPS)
and atrophy-related genes, all of which are via cAMP-dependent functions in
skeletal muscle.

(246)

Hepatokines Lactate Lactate inhibits mitochondrial fatty acid uptake in skeletal muscle via malonyl
coenzyme A and CPT1 inhibition. It also controls energy substrate partitioning in
skeletal muscle.

(247)

Fetuin-A Fetuin-A participates in the downregulation of lipocalin disruption of
mitochondrial energetics in skeletal muscle.

(248)

Angptl Angptl family member deletion causes skeletal muscle fat accumulation and
insulin resistance with reduced whole-body energy expenditure in mice.

(249, 250)

Follistatins Follistatin overexpression induces skeletal muscle hypertrophy, increases muscle
weight and torque production, and attenuates age-related degeneration at the
neuromuscular junction in mice.

(177)

LECT2 LECT2 induces insulin resistance in skeletal muscle. (251, 252)

SeP SeP is implicated in sedentary-induced skeletal muscle atrophy. Excessive SeP
adversely affects insulin secretion from the pancreas and diminishes insulin
sensitivity in skeletal muscle.

(253, 254)

Chemerin Chemerin reduced insulin-stimulated Akt1 phosphorylation and activation of
5’AMP-activated protein kinase (AMPK) in the skeletal muscle and induced
insulin resistance in skeletal muscle. Overexpression of chemerin in mice
decreased skeletal muscle mitochondrial content and increased mitochondrial
autophagy. Chemerin treatment of C2C12 myotubes increased the production of
mitochondrial reactive oxygen species.

(255)

Neurokines Irisin Irisin’s main role in the brain is to protect brain function. The effect of irisin on
skeletal muscle is summarized in the following section.

(256)
Secreted protein acidic and rich in cysteine, SPARC; Stromal cell-derived factor-1, SDF-1; Fibroblast growth factor 19, FGF19; Tumor necrosis factor-a, TNF-a; Interleukin-7, IL-7; Interleukin-8,
IL-8; C1q tumor necrosis factor–related protein 9, CTRP9; Mitsugumin 53, MG53; Hepatocyte growth factor, HGF; Vascular endothelial growth factor, VEGF; Retinol binding protein 4, RBP4;
Secreted frizzled-related protein 5, Sfrp5; Angiopoietin-like protein, Angptl; Leukocyte cell-derived chemotaxin 2, LECT2; Selenoprotein P, SeP. Partial exerkines are secreted by multiple organs,
and we adopt the classification of that by researchers.
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5.3 Adiponectin and aging sarcopenia

The majority of ApNs are secreted by white adipose tissue,

skeletal muscle cells, cardiac muscle cells, liver parenchyma cells,

and osteoblasts. ApN can be classified as full-length ApN (fApN)

and globular ApN (gApN) according to its structure and function

(69). During skeletal muscle injury, immune cells are recruited to

the site of injury and release elastase, which cleaves fApN to gAPN.

ApN is a protective factor against aging sarcopenia, and it is

negatively correlated with skeletal muscle density, physical

function, and bone density (70, 71). We found that ApN

improves aging skeletal muscle in two aspects. On the one hand,

gApN induces the expression of myogenic differentiation antigen

(MyoD) to promote myoblast proliferation and differentiation and

activates myoblastogenin and myoregulatory factor 4 to promote

muscle differentiation and fusion into multinucleated myotubes

(69). On the other hand, the ApN/adiponectin receptor 1-AMPK

axis mediates exercise-induced satellite cell proliferation and

improves locomotor activity in aging mice (69). At the same time,

the improvements exhibit muscle-type specificity. Tail vein

injection of the ApN receptor agonist (AdipoRon) three times a

week for 6 weeks in 25-month-old mice significantly enhances the

function and metabolism of fast-twitch fibers but does not affect

slow-twitch fibers (72). All in all, ApN affects mitochondrial
Frontiers in Endocrinology 07
metabolism, muscle fiber regeneration, and skeletal muscle

autophagy against skeletal muscle dysfunction in aged individuals.
5.4 Leptin and aging sarcopenia

Leptin is mainly derived from adipose tissue and correlates with

total fat mass and plays a key role in energy balance regulation,

appetite control, insulin sensitivity, and glucose metabolism (73,

74). Higher leptin levels are associated with a higher risk of

sarcopenia in the elderly (75). In a cross-sectional study of 4,062

subjects (≥69 years old), serum leptin levels were found to be

associated with the risk of obesity-related sarcopenia (76). In

contrast, Kao et al. (77) found that higher serum leptin levels

were correlated with a lower risk of sarcopenia. Such

contradictory findings may be related to the body fat content of

the subjects, and leptin receptor sensitivity is higher in obese

individuals. Elevated levels of leptin significantly influence fatty

acid oxidation and lipid metabolism in skeletal muscle,

consequently leading to skeletal muscle dysfunction (76). In order

to explore the relationship between leptin, Collins created fat-free

(FF) mice by crossing ApN-Cre mice. The resulting FF mice

constitutively have a complete absence of adipose tissue from

birth. FF mice have low leptin levels and exhibit muscle mass
FIGURE 3

Production and action of myokines.
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defects driven by fast fiber atrophy (78). The effects and

mechanisms of leptin on skeletal muscle homeostasis are limited.
6 The role and mechanism of
myokines in aging sarcopenia

Exercise is an effective strategy to ameliorate sarcopenia. A

number of studies have found that myokines improve skeletal

muscle mass and strength. Based on the bidirectional effects of that

on skeletal muscle mass, myokines can be categorized into two types

that increase skeletal muscle mass and cause skeletal muscle atrophy.

Myokines, as key mediators, may be a breakthrough in the study of

the mechanisms by which exercise improves aging sarcopenia. The

ameliorative effect of myokines on aging sarcopenia is characterized

by the promotion of skeletal muscle protein synthesis, modulation of

energy uptake in skeletal muscle, and enhancement of signaling at

neuromuscular junctions (Figure 4).
6.1 Myostatin and aging sarcopenia

MSTN belongs to the transforming growth factor beta(TGF-b)
superfamily (79). Skeletal muscle, cardiac muscle, adipose tissue, the

brain, the kidneys, and even leukocytes can express MSTN (80–82).
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MSTN is first synthesized as an inactive precursor protein and

hydrolyzed into active MSTN in two steps. First, the furin family

removes potential MSTN complex signal peptides, and then bone

morphogenetic protein 1 (BMP1)/Tolloid matrix metalloproteinases

separate the muscle growth inhibitory ligand from the inhibitory N-

terminal prepeptide structural domain, exposing the active site of

MSTN binding to the receptor (83).

MSTN regulates skeletal muscle mass and function (84).

Compared to younger men (mean age, 20 years), older men (mean

age, 70 years) have approximately 100% higher expression of the

MSTN gene, accompanied by an approximately 40% reduction in the

cross-sectional area of type II muscle fibers. If the elders have elevated

levels of serumMSTN, their grip strength will reduce by approximately

7.5% (85). It is hypothesized that MSTN level increases with age and

loss of skeletal muscle, and a serum MSTN increase of 1 ng/mL is

associated with an 11% increase in the odds of developing sarcopenia in

older men (85–87). The mechanisms of MSTN that affect skeletal

muscle mass are shown as MSTN binds to activins 2A and 2B and

activates intracellular Smad2 and Smad3 signaling to negatively

regulate skeletal muscle growth (88, 89). Specifically, the hydrolyzed

active MSTN binds to the transmembrane hormone type IIB receptor

(ActRIIB) through dimerization of disulfide bonds. This leads to the

phosphorylation of Smad3 and Smad4, which then bind to activin

receptor-like kinase 4 or 5 (ALK4 and ALK5) for signaling, affecting

transcription factors such as the myocyte-specific enhancer factor

(MEF2) and the myoblast determination protein 1 (MyoD1), which
FIGURE 4

Mechanism of myokines action.
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inhibit myoblast proliferation and differentiation (83, 90). Additionally,

MSTN inhibits muscle hypertrophy through mammalian target of

rapamycin (mTOR) signaling and increases muscle degradation

through the forkhead box protein 01 (Fox01) pathway (83). As a

negative regulator of muscle mass, MSTN knockdown or inhibition

results in increased muscle mass. Therefore, blocking muscle growth

inhibitor signaling or regulating its MSTN gene expression may be a

therapeutic strategy for MSTN-related diseases, such as age-

related sarcopenia.
6.2 Interleukin-6 and aging sarcopenia

IL-6 is a multifunctional cytokine released by multicellular cells

during inflammation. IL-6 participates in innate and adaptive

immune responses, and in the activation of anabolic and catabolic

pathways to regulate cell growth, differentiation, and survival (91–

93). IL-6 has three signaling pathways: the classical signaling

pathway, the trans-signaling pathway, and the cluster signaling

pathway (91, 94, 95). IL-6 regulates myosatellite cell proliferation

and migration through these three signaling pathways and thus

regulates physiological muscle hypertrophy (92). At the same time,

IL-6 signaling is tightly regulated by feedback suppressors, such as

suppressor of cytokine signaling, SH2-domain containing protein

tyrosine phosphatase 2 (SHP2), and T-cell protein tyrosine

phosphatase (TC-PTP), among others (92). Exercise induces IL-6

transcriptional upregulation through skeletal muscle contraction,

contributing to increased serum IL-6 concentrations (91, 96).

Patients with aging sarcopenia have higher blood concentrations

of IL-6 than healthy individuals, and elevated plasma IL-6 may

increase fat deposition within skeletal muscle (97). In animal

experiments, IL-6 injection into the tibialis anterior muscle of mice

caused the upregulation of some genes related to immunity, and the

downregulation of some genes related to energy metabolism (98).

Pelosi and coworkers (99) constructed NSE/IL-6 transgenic mice and

found that IL-6 overexpression in NSE/IL-6 mice resulted in a

significant reduction in the rate of muscle growth in early postnatal

life. In adulthood, these mice have severe muscle atrophy

accompanied by low muscle mass and a significant reduction in

muscle cross-sectional areas, individual muscle fiber cross-sectional

areas, and total number of muscle fibers. Pelosi’s experiment

demonstrated that elevated levels of IL-6 during the first and

middle stages of life are an important factor in shifting muscle fiber

type and skeletal muscle atrophy. However, elevated IL-6 has two

opposite effects; slowly increasing the concentration of IL-6 in plasma

result skeletal muscle atropht, but exercise-induced increase in

plasma IL-6 promotes skeletal muscle regeneration (100, 101). On

the one hand, the increased IL-6 concentration may activate satellite

cells, enhancing muscle regeneration and growth (91, 102, 103).

Additionally, IL-6 mediates short-term energy allocation, diverting

energy to skeletal muscle (104). On the other hand, a slow and

sustained increase in IL-6 inhibits skeletal myogenesis and protein

synthesis (105), and accelerates skeletal muscle degeneration and

atrophy (106–108). Whether the slow and sustained increase of IL-6

in the blood of elderly patients with sarcopenia causes damage to
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muscle fibers by influencing myofiber type transition and energy

supply processes, thereby leading to atrophy of the whole skeletal

muscle, still needs to be further explored.
6.3 Irisin and aging sarcopenia

In 2012, Bostrom et al. (109) found that exercise activation of

PPAR-g co-activator-1a (PGC-1a) upregulated its downstream

target—fibronectin type III domain containing 5 (FNDC5). FNDC5

is a membrane protein present in the brain and skeletal muscle that is

cleaved by an unknown protein hydrolase and releases irisin after

exercise (110, 111). Animal studies have shown that irisin can

enhance the activity of skeletal muscle satellite cells, reduce protein

degradation, alleviate skeletal muscle fibrosis, and improve the

stability of muscle membrane, thereby alleviating sarcopenia in

different animal models, including those with denervated muscle

loss, hindlimb suspension, and hereditary muscular dystrophy (46,

112, 113). During skeletal muscle differentiation, elevated levels of

irisin upregulate p-Erk expression to promote the skeletal muscle

protein synthesis pathway (46). During growth, intraperitoneal

administration of irisin to 5-week-old mice resulted in an increase

in skeletal muscle weight via the Akt and mTOR signaling pathways,

subsequently translating this augmented muscle mass into enhanced

grip strength. It may also downregulate the expression of Atrogin-1

and MuRF-1, thereby inhibiting the catabolic processes associated

with skeletal muscle (46). During aging, Guo (12) found that irisin

and its precursor FNCD5 in muscle tissue decreased with aging. Irisin

knockout mice showed more severe muscle atrophy and smaller

muscle mass and grip strength. However, injecting recombinant irisin

protein into the abdominal cavity of aging mice can improve grip

strength and muscle mass, thus improving symptoms of sarcopenia

(12). Targeting the AMPK-PGC-1a-FNDC5 and the IGF-1/Akt/

mTOR pathway with irisin prevents the onset of muscle disease in

the elderly (114). In contrast, Baek et al. (115) found that there was no

difference in plasma irisin levels between patients with aging

sarcopenia and healthy older individuals, and even an increase in

blood irisin levels could not change the state of reduced muscle mass,

muscle dysfunction, and physical performance in patients with aging

sarcopenia. These contradictory results may be related to the source

of the subjects. The latter subjects came from outpatient geriatrics

and endocrinology clinics. The baseline status of the subjects in the

two studies was not consistent. In animal experiments, irisin

produced positive effects on skeletal muscle mass and function in

growth and developmental stages, and in aging. Replication of these

results in animal studies in humans requires further investigation.
6.4 Fibroblast growth factor 21 and aging
sarcopenia

FGF21 is a family of 22 related proteins that can be classified as

six subfamilies based on genetic and functional similarities (116),

which has a complex molecular mechanism of signaling, involving

multiple FGF receptors (FGFRs) and a dedicated co-receptor, b-
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klotho (117–119). FGF21 expression is low in healthy skeletal muscle;

however, fasting, endoplasmic reticulum stress, mitochondrial

myopathy, and metabolic disorders induce increased expression of

FGF21 in skeletal muscle, especially in dystrophic mice, where

mRNA and protein expression of skeletal muscle FGF21 are

significantly upregulated (120–122). In the elderly, elevated serum

FGF21 levels were significantly associated with the risk of sarcopenia,

low muscle mass, and low grip strength (123). Elevated levels of

FGF21 are accompanied by decreased mitochondrial autophagy and

skeletal muscle protein synthesis, resulting in loss of muscle mass and

strength (124). Interestingly, inhibition of FGF21 levels in blood

improves the aging phenotype (125). In animal experiments, skeletal

muscle-specific FGF21 deficiency protects muscle from atrophy and

weakness induced by starvation (121). These effects may be closely

related to the state of mitochondria. FGF21 regulates mitochondrial

function by activating the AMPK-SIRT1 pathway, which, in turn,

activates peroxisome proliferator-activated receptor gamma

coactivator-1a (PGC-1a), thereby affecting skeletal muscle energy

supply (126, 127).

FGF21 secretion is increased in myasthenia gravis and

mitochondrial stress states, and FGF21 regulates skeletal muscle

glucose uptake (128) and protein synthesis (129). It has been

hypothesized that increased FGF21 expression in sarcopenia may

promote mitochondrial stress, reduce skeletal muscle glucose uptake,

and disrupt skeletal muscle proteostasis. These states further

stimulate FGF21 overexpression, thus creating a vicious cycle.
6.5 b-Aminoisobutyric acid and aging
sarcopenia

Aminoisobutyric acid originates from different organs and can be

classified as three isomers, a-aminobutyric acid (AABA), b-
aminobutyric acid (BABA), and g-aminobutyric acid (GABA). A

pair of these isomers, which have the same molecular weight and

related structures, mirror isomers, and are also known as enantiomers

(130). b-Aminoisobutyric acid (BAIBA) is a PGC-1a-dependent
myokine produced by skeletal muscle during exercise. It is mainly

found as two enantiomers, L-BAIBA and D-BAIBA, which originate

from different pathways (131–134). Skeletal muscle contraction

stimulates young and old mice to release BAIBA to improve

muscle mass and strength (132). In another study, plasma BAIBA

levels were higher in adult subjects than in the elderly, and that

BAIBA expression was regulated by PGC-1a (135, 136). It has also

been suggested that BAIBA secretion is similar in young and old

muscles, and the reduced BAIBA function may result from a

significant decrease in its receptor with age (132). BAIBA has now

been shown to promote osteoblast survival under oxidative stress and

maintain bone quality (44, 132). The development of sarcopenia in

older age groups is often accompanied by osteoporosis and

dysfunction in muscle, leading to a reduction in skeletal muscle

loading and bone mass (10). As sarcopenia is closely linked to

endocrine and mechanical risk factors for osteoporosis, and

muscles and bones act synergistically mechanically and biologically

(10, 135), it is hypothesized that the effect of BAIBA on delaying
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skeletal muscle atrophy in sarcopenia in older adults may be through

maintenance of bone mass and an increase in the muscle attachment

points, attenuating the decline in muscle strength.
6.6 Brain-derived neurotrophic factor and
aging sarcopenia

The mammalian neurotrophic factor family includes nerve

growth factor (NGF), neurotrophin-3, neurotrophin-4/5, and

BDNF (137). BDNF is secreted out of the cell as Pro-BDNF after

being translated and cut into mature BDNF. BDNF and Pro-BDNF

act on specific receptors in the nucleus and cell membrane (138,

139). Different skeletal muscles secrete BDNF in response to

different exercise durations and intensities. Post-exercise plasma

BDNF levels depend on exercise duration, its intensity, type of

exercise, the level of previous training, and the functional status of

the body (140–145). In skeletal muscle, BDNF regulates glycolytic

fiber-type recognition, fatty acid oxidation, and satellite cell

differentiation, and strengthens the neuromuscular junction (143,

146). BDNF takes part in the generation of regenerating muscle

fibers after injury and is necessary for the formation of regenerating

muscle fibers after injury or damage (147, 148). In contrast, plasma

BDNF levels are significantly lower in patients with aging

sarcopenia and in debilitated patients with diminished muscle

strength and physical activity (149). In animal models,

intramuscular injection of BDNF promotes functional repair after

nerve injury. BDNF plays an important role in protecting the

neuromuscular junction (150). The ameliorative effect of BDNF

on aging sarcopenia involves muscle repair signal cascades and

neuromuscular signaling connections. Activation of TrkB receptors

by BDNF enhances presynaptic protein kinase C family (cPKCa,
cPKCbI, and cPKCe), and activation of PKCs enhances synaptic

vesicle fusion and neurotransmitter release (143), which enhances

the functional innervation of the muscles (150).

Muscle wasting during aging is partly due to the retraction and

death of motor neurons, resulting in the detachment of muscle fibers

from neuronal innervation. Muscle fiber degeneration and muscle

atrophy can only be avoided if these muscle fibers are re-innervated

by neighboring neurons (151). Perhaps we may speculate that BDNF

delays skeletal muscle atrophy during aging by enhancing

neuromuscular connections in patients with aging sarcopenia.
6.7 Apelin and aging sarcopenia

Apelin belong to cardiac factor, myokine and adipokine (152),

and is extensively distributed across various organs and tissues,

including skeletal muscle, adipose tissue, the central nervous

system, the gastrointestinal tract, lungs, liver, and heart (153).

Apelin-13 and apelin-17 are the predominant isomers of apelin

found in human plasma, with apelin-13 exhibiting greater biological

activity and receiving more extensive research attention (154).

Exercise and aging are important factors influencing apelin

secretion. Exercise induces apelin, while overall levels decrease
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with aging (155, 156). However, the effect of exercise on apelin

levels is controversial. One study demonstrated that prolonged

aerobic exercise significantly elevated plasma apelin levels,

whereas another study indicated that it did not influence apelin

expression (152, 157).

Apelin enhances myocyte metabolism and stem cell function to

stimulate skeletal muscle formation during aging (155, 158, 159).

The Apelin/Apelin receptor system stimulates skeletal muscle stem

cells through the Forkhead box 03–MuRF-1–Atrogin axis and

simultaneously activates the AMP-activated protein kinase

(AMPK) and P7050K pathways to promote protein production in

myofibers, which together promote skeletal muscle regeneration

(159). Knockdown of the apelin gene in the skeletal muscle of aged

mice led to muscle mass reduction, muscle weakness, and motor

dysfunction (160), whereas aged mice that are administered apelin

or that are subjected to adenovirus-mediated enhancement of the

apelin gene expression in skeletal muscle exhibit improved muscle

function and hypertrophy of muscle fibers (155). Apelin-

administered mice had increased expression of the markers Pax7,

Myf5, and Myogenin in satellite cells and target muscle stem cells to

promote muscle regeneration (156). Furthermore, apelin deficiency

resulted in changes in skeletal muscle fiber types. Compared to

wild-type mice, apelin knockout induces a shift from fast type II to

slow-oxidizing type I fiber in mice and increases the proportion of

MHC-1 type fibers (161). Additionally, apelin knockout mice

exhibited a decreased number of mitochondria in myogenic

fibers, a significant reduction in mitochondria-related enzyme

activities, and diminished muscle tonic contractility and grip

strength compared to wild-type mice (155).

Exercise-induced apelin enhances skeletal muscle function and

alleviates sarcopenia, which makes apelin a potential target for the

treatment of myofibrillar atrophy, muscle weakness, and oxidative

stress in aging mice (159, 162). However, with age, both systemic

and local apelin levels show a decreasing trend. Exogenous

administration of apelin can lead to significant improvements in

age-related pathologies. Apelin may serve not only as a novel tool

for the early diagnosis of sarcopenia but also as a prognostic marker

for evaluating the benefits of exercise in older adults.
6.8 Insulin-like growth factor-1 and aging
sarcopenia

Insulin-like growth factor-1 (IGF-1) is an anabolic growth factor

that facilitates tissue development, maturation, cellular adaptation,

and regeneration during growth and development (163). In skeletal

muscle, IGF-1 is secreted by muscle fibers into the extracellular

matrix, subsequently binding to insulin-like growth factor binding

proteins (IGFBPs) (164, 165). Age and exercise are key factors

influencing circulating IGF-1 concentrations. Serum IGF-1 levels

decrease with age, but exercise promotes ICF-1 secretion (166–

169). Aerobic exercise, resistance exercise, whole-body vibration,

and electrical stimulation all activate the IGF-1 pathway, increase

protein synthesis and skeletal muscle mass, inhibit protein

degradation and apoptosis, and enhance the exercise capacity of
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skeletal muscle in early aging mice (170). In animal experiments,

IGF-1 knockout in mouse monocytes/macrophages resulted in

impaired muscle regeneration after injury, with reduced size of

regenerating muscle fibers, enlarged interstitial gaps, and deposition

of lipid tissue (171). In contrast, IGF-1-overexpressing mice maintain

high IGF-1 levels even in old age, therebymaintaining skeletal muscle

function (6). IGF-1 achieves its protective effects on skeletal muscle

by activating muscle signaling responses and skeletal myogenesis (6,

172). Elevated plasma levels of IGF-1 lead to IGF-1 Akt/Protein

Kinase B-mTOR pathway stress, which promotes ribosomal

biosynthesis and facilitates the formation of new myofibrillar

proteins to provide a condition for skeletal muscle remodeling.

Additionally, a high level of IGF-1 inhibits skeletal muscle via the

ubiquitin ligases MuRF1 and MAFbx (173, 174). Skeletal muscle

secretion of IGF-1 decreases during aging, which results in a decline

in skeletal muscle mass and function. However, high plasma IGF-1

levels can increase muscle mass to decrease the incidence of

aging sarcopenia.
6.9 Other myokines and aging sarcopenia

Follistatin (FST) is a multifunctional protein whose main

function is to antagonize the TGB-b superfamily, such as the

muscle growth inhibitors, activin, and BMPs (175). FST, as a

cytokine expressed systemically, is particularly abundant in skeletal

muscle, the heart, adipose tissue, the kidneys, and the lungs (176).

FST overexpression through gene transfer or a transgene induces

skeletal muscle hypertrophy, myofiber regeneration, and satellite cell

proliferation (177, 178). Circulating MSTN and FST are negatively

correlated with muscle function in older women (179). In patients

with severe muscle atrophy, the MSTN pathway was found to be

significantly downregulated with a progressive increase in FST, which

may partially delay muscle atrophy (180). Although FST

overexpression increases muscle mass and excitability, it does not

prevent the age-related decline in motor unit function (177).

Decorin is an exercise-induced muscle factor expressed in

various tissues, including intestinal tissue, heart, adipose tissue,

and skeletal muscle. It plays a role in regulating autophagy,

inflammation, and glucose homeostasis, and has been shown to

effectively prevent muscle atrophy by inhibiting MSTN (181).

Decorin is an anti-fibrotic and pro-myogenic generating agent.

When it is injected into damaged skeletal muscle directly, it can

promote the process of complete skeletal muscle regeneration and

reduce the formation of fibrotic scar tissue (182). Decorin reduces

MSTN-induced phosphorylation of Smad2 and inhibits the

activation of the Smad signaling pathway in a dose-dependent

manner (183). Intramuscular injection of recombinant Decorin

may significantly enhance muscle mass in dystrophic mice by

activating skeletal muscle cell differentiation (184, 185). Leukemia

inhibitory factor (LIF), which belongs to the IL-16 family, regulates

skeletal muscle growth and regeneration and is associated with

skeletal muscle after prolonged exercise (49, 186). Aerobic exercise

upregulates LIF expression in human skeletal muscle to inhibit

myasthenia gravis and improve muscle performance. Exogenous
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LIF intervention may enable human myoblast proliferation by

inducing the cell proliferation factors c-Myc and JunB (49). IL-15

is a contraction-induced myokine that improves energy metabolism

in skeletal muscle locally (187, 188). High IL-15 levels protect

against high-fat diet-induced obesity, glucose intolerance, and

insulin resistance (188). A comparison of wild-type, IL-15

knockout, and IL-15 transgenic mice reveals that IL-15 promotes

muscle protein synthesis and myofiber regeneration by activating

critical regulators of skeletal muscle autophagy (189, 190). IL-15

and its cognate receptor a (IL-15 receptor a) are involved in the

regulation of anabolic and catabolic homeostasis in skeletal muscle.

IL-15Ra may play a role in the increased synthesis of myofibrillar

proteins in skeletal muscle after a single bout of resistance exercise

(191). However, few studies have reported an association between

the above muscle factors and sarcopenia in aging sarcopenia, but

they all have the function of maintaining muscle mass and

enhancing muscle strength.
7 Strategies to improve aging
sarcopenia

7.1 Exercise improves aging sarcopenia

Diminished function and impaired remodeling of motor units are

commonly observed in elderly patients with sarcopenia (192). Liu

(193) synthesized different exercise intensities in elderly patients with

sarcopenia and found that all exercises improved muscle strength and

mass, and high intensity was more effective in increasing strength

than low or moderate intensity. The high-intensity interval training

(HIIT) model, which alternates high-intensity intervals with low-

intensity recovery periods, provides physiological benefits quickly

(194). HIIT induces transcriptional co-activation of PGC-1a via

mTOR and rps6 phosphorylation, which promotes muscle

hypertrophy to mitigate skeletal muscle atrophy and enhance

overall exercise performance (193). HIIT also enhances locomotor

performance in aged mice, which includes muscle mass and strength,

grip strength, and mitochondrial biomass (195).

Resistance exercise, also known as weight training and strength

training, requires the muscles to resist applied external force or

weight. Resistance exercise can improve muscle strength, mass, and

physical performance in middle-aged and older adults (196). Twice-

weekly resistance exercise is an appropriate prescription for patients

with aging sarcopenia (196). A 10-week resistance training in 70-

year-old male and female patients with sarcopenia found that the

resistance training intervention resulted in an increase in both the

mass of lean and limb skeletal muscle (197). The mechanism by

which resistance exercise effectively promotes skeletal muscle

protein synthesis may involve regulating the secretion of

myokines and participating in microRNA regulatory processes

(198). Active resistance training also played a favorable role on

the lumbar spine, lean body mass, and muscle strength (199).

Additionally, resistance training affects visceral fat loss, blood

pressure, glucose, and fat metabolism beneficially (200). While

numerous studies have documented the beneficial effects of
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resistance exercise in older individuals with sarcopenia, high-

intensity resistance training may not be appropriate for elderly

populations and those with lower fitness levels (201). It is important

to find ways to improve skeletal muscle mass and strength more

safely and effectively while significantly reducing mechanical stress.

Low-load resistance training with blood flow restriction (L-BFR)

induces similar increases in muscle mass but has less effect on

skeletal muscle strength compared to H-RT (high-load resistance

training), which is considered an effective countermeasure for

sarcopenia (201). Static stretching has the potential to increase

skeletal muscle strength and endurance, which leads to significant

increases in skeletal muscle suppleness (202).

Now, it is widely acknowledged that physical activity plays a

crucial role in the prevention and treatment of sarcopenia (200).

Various exercise modalities—including resistance training, aerobic

training, and balance training—are all effective in promoting muscle

health among older adults. Among them, high-volume, high-

intensity resistance training is the most significant in improving

skeletal muscle mass and physical function in older adults (200). For

elderly patients with sarcopenia, the choice of specific exercise

modes should be based on individual characteristics, limitations,

and needs, where safety is always a key factor (196, 199).
7.2 Nutrients improve aging sarcopenia

A healthy diet with adequate protein, vitamins, antioxidant

nutrients, and long-chain unsaturated fatty acids may alleviate

sarcopenia (203). Vitamin D/vitamin D receptor signal affects all

stages of myogenesis by stimulating skeletal muscle fiber

proliferation, differentiation, and maintenance and improving

skeletal muscle mass and strength (204, 205). On the one hand,

vitamin D directly inhibits skeletal muscle atrophy. On the other

hand, it inhibits MSTN expression via IGF-independent signal

indirectly, which prevents skeletal muscle degeneration and

improves myofilament and muscle strength (204, 205). Chronic

hypovitaminosis D may lead to upregulation of muscle atrophy

markers (Murf1 and MaFbx), VD receptor loss, and a dramatic

reduction in cellular remodeling capacity (205). VD receptor

deficiency in mouse myocytes is associated with lean body mass,

sarcopenia, reduced grip strength, and exercise capacity (206).

Human studies also reported that vitamin D deficiency reduces

skeletal muscle grip strength and stride speed, particularly

pronounced in the elderly (207, 208), whereas oral nutritional

supplementation with protein and vitamin D in elderly patients

with sarcopenia effectively enhances skeletal muscle mass, although

it does not improve physical mobility (209). However, in older adults

with vitamin D deficiency, a longer duration of supplementation or a

higher dosage of vitamin D may be necessary compared to younger

adults to achieve the beneficial effects on skeletal muscle (204).

Vitamin D supplementation during resistance training will improve

skeletal muscle mass and positively impact skeletal muscle

remodeling in both older and younger adults (210).

Essential amino acids (EAAs) stimulate skeletal muscle protein

synthesis and turnover, play a key role in replacing degraded or
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damaged skeletal muscle proteins, and lay the metabolic foundation

for enhanced skeletal muscle function (211). Several studies of EAA

supplementation in elderly patients with sarcopenia have found that

EAA interventions have a positive effect on both skeletal muscle mass

and strength (212). Supplementation of an animal protein diet

containing EAA during resistance training synergistically promotes

increased skeletal muscle mass (213). Cuyul-Vásquez and coworkers

(214) demonstrated that whey protein supplementation during

resistance training significantly increased skeletal muscle mass and

grip strength in elderly patients with sarcopenia. However, if protein

supplementation is stopped at the end of 12 weeks of exercise, it may

result in a skeletal muscle protein synthesis decline (215).

Appropriate intake of energy, protein, long-chain saturated fatty

acids, amino acids, vitamin D, and antioxidants may reduce the

decline in skeletal muscle mass and strength in older adults (216).

Furthermore, there are also some natural products that have been

suggested for the treatment and prevention of sarcopenia, such as

ursolic acid and pentacyclic triterpene acid fruits (apple peel and

tomatidine) (217). In animal models, these natural products increase

muscle mass and grip strength in mice by decreasing age-related

muscle atrophy mediator activity (217). b-Hydroxy b-methylbutyrate

(HMB) has been shown to improve muscle mass without affecting

muscle strength and function in sarcopenic or debilitated older adults

(218). b-Sitosterol is widely found in various parts of plants and has

various effects, such as anti-inflammatory, anti-alcoholic fatty liver,

and antioxidant. It can protect mice from the muscle atrophy induced

by dexamethasone (9).

Daily dietary structure may influence protein intake and interfere

with skeletal muscle protein metabolism and transcription, thereby

accelerating skeletal muscle mass loss in older adults (219). Plant-

based dietary patterns are becoming more popular in improving

skeletal muscle atrophy, and related studies have shown that plant-

based dietary patterns are more beneficial and effective than animal-

based dietary patterns in maintaining muscle mass in functionally

independent Chinese older adults (220). There is less research on the

effects of vegan diets on physical performance and body composition.

However, one study of a vegan diet in young women showed that

dietary changes would lead to alterations in overall macronutrient

compartmentalization that would impair skeletal muscle mass (221).

In the elderly population, vegan diets increase the risk of inadequate

protein intake, negatively affecting skeletal muscle mass (222).

Aging sarcopenia has attracted widespread attention as a

skeletal muscle disease in the elderly, but there are no suitable

clinical interventions. Nutrition and exercise are the main methods

for its prevention and treatment. Appropriate intake of animal and

vegetable proteins and a balanced dietary structure combined with

appropriate physical activity are important strategies to improve

sarcopenia in the elderly.
8 Conclusion

In this paper, we summarize the current state of research on

aging sarcopenia and the effects of various exerkines on skeletal

muscle. Exercise-induced exerkines improve aging sarcopenia
Frontiers in Endocrinology 13
mainly by increasing skeletal muscle energy supply, activating

satellite cells involved in skeletal muscle repair and regeneration,

improving the function of the neuromuscular junction, and

enhancing the neural control of skeletal muscle. Daily dietary

changes affect skeletal muscle regeneration and repair by altering

protein intake. Therefore, a rational diet combined with exercise

training is one of the most effective measures to improve aging

sarcopenia. However, there is a lack of research on the mechanisms

of combining myokines with nutrients to improve aging sarcopenia.

Meanwhile, further research is needed to study the effects of

multiple exerkines to improve aging sarcopenia.
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et al. Leptin administration activates irisin-induced myogenesis via nitric oxide-
dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice.
Int J Obes (2005). (2015) 39:397–407. doi: 10.1038/ijo.2014.166

56. Stanford KI, Goodyear LJ. Muscle-adipose tissue cross talk. Cold Spring Harbor
Perspect Med. (2018) 8. doi: 10.1101/cshperspect.a029801

57. Barlow JP, Solomon TP. Do skeletal muscle-secreted factors influence the
function of pancreatic b-cells? Am J Physiol Endocrinol Metab. (2018) 314:E297–
e307. doi: 10.1152/ajpendo.00353.2017

58. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, et al.
Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion
from L cells and alpha cells. Nat Med. (2011) 17:1481–9. doi: 10.1038/nm.2513

59. Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, et al. Running-
induced systemic cathepsin B secretion is associated with memory function. Cell Metab.
(2016) 24:332–40. doi: 10.1016/j.cmet.2016.05.025

60. Miyabe M, Ohashi K, Shibata R, Uemura Y, Ogura Y, Yuasa D, et al. Muscle-
derived follistatin-like 1 functions to reduce neointimal formation after vascular injury.
Cardiovasc Res. (2014) 103:111–20. doi: 10.1093/cvr/cvu105

61. Lee JY, Park SJ, Han SA, Lee SH, Koh JM, Hamrick MW, et al. The effects of
myokines on osteoclasts and osteoblasts. Biochem Biophys Res Commun. (2019)
517:749–54. doi: 10.1016/j.bbrc.2019.07.127

62. Ji S, Park SJ, Lee JY, Baek JY, Jung HW, Kim K, et al. Lack of association between
serum myonectin levels and sarcopenia in older asian adults. Exp Gerontol. (2023)
178:112229. doi: 10.1016/j.exger.2023.112229

63. Ozaki Y, Ohashi K, Otaka N, Kawanishi H, Takikawa T, Fang L, et al. Myonectin
Protects against Skeletal Muscle Dysfunction in Male Mice through Activation of Ampk/
Pgc1a Pathway. Nat Commun. (2023) 14:4675. doi: 10.1038/s41467-023-40435-2

64. Lee JO, Byun WS, Kang MJ, Han JA, Moon J, Shin MJ, et al. The myokine
meteorin-like (Metrnl) improves glucose tolerance in both skeletal muscle cells and
mice by targeting ampka2. FEBS J. (2020) 287:2087–104. doi: 10.1111/febs.15301

65. Lee DE, McKay LK, Bareja A, Li Y, Khodabukus A, Bursac N, et al. Meteorin-like
is an injectable peptide that can enhance regeneration in aged muscle through immune-
driven fibro/adipogenic progenitor signaling. Nat Commun. (2022) 13:7613.
doi: 10.1038/s41467-022-35390-3

66. Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, et al. Poor
repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-
dependent accumulation of regulatory T cells. Immunity. (2016) 44:355–67.
doi: 10.1016/j.immuni.2016.01.009

67. Baht GS, Bareja A, Lee DE, Rao RR, Huang R, Huebner JL, et al. Meteorin-like
facilitates skeletal muscle repair through a stat3/igf-1 mechanism. Nat Metab. (2020)
2:278–89. doi: 10.1038/s42255-020-0184-y

68. Cai J, Wang QM, Li JW, Xu F, Bu YL, Wang M, et al. Serum meteorin-like is
associated with weight loss in the elderly patients with chronic heart failure. J Cachexia
Sarcopenia Muscle. (2022) 13:409–17. doi: 10.1002/jcsm.12865

69. Lu W, Feng W, Lai J, Yuan D, Xiao W, Li Y. Role of adipokines in sarcopenia.
Chin Med J. (2023) 136:1794–804. doi: 10.1097/cm9.0000000000002255

70. Walowski CO, Herpich C, Enderle J, Braun W, Both M, Hasler M, et al. Analysis
of the adiponectin paradox in healthy older people. J Cachexia Sarcopenia Muscle.
(2023) 14:270–8. doi: 10.1002/jcsm.13127
Frontiers in Endocrinology 15
71. Komici K, Dello Iacono A, De Luca A, Perrotta F, Bencivenga L, Rengo G, et al.
Adiponectin and sarcopenia: A systematic review with meta-analysis. Front Endocrinol.
(2021) 12:576619. doi: 10.3389/fendo.2021.576619

72. Balasubramanian P, Schaar AE, Gustafson GE, Smith AB, Howell PR, Greenman
A, et al. Adiponectin receptor agonist adiporon improves skeletal muscle function in
aged mice. eLife. (2022) 11. doi: 10.7554/eLife.71282

73. Park HK, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine
function and metabolism. Metabol: Clin Exp. (2015) 64:24–34. doi: 10.1016/
j.metabol.2014.08.004

74. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY,
et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol
Metab. (2011) 301:E567–84. doi: 10.1152/ajpendo.00315.2011

75. Lana A, Valdés-Bécares A, Buño A, Rodrıǵuez-Artalejo F, Lopez-Garcia E.
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Llanos P, et al. Fibroblast growth factor 21 is expressed and secreted from skeletal muscle
following electrical stimulation via extracellular atp activation of the pi3k/akt/mtor
signaling pathway. Front Endocrinol. (2023) 14:1059020. doi: 10.3389/fendo.2023.1059020

120. Salminen A, Kauppinen A, Kaarniranta K. Fgf21 activates ampk signaling:
impact on metabolic regulation and the aging process. J Mol Med (Berlin Germany).
(2017) 95:123–31. doi: 10.1007/s00109-016-1477-1
Frontiers in Endocrinology 16
121. Oost LJ, Kustermann M, Armani A, Blaauw B, Romanello V. Fibroblast growth
factor 21 controls mitophagy and muscle mass. J Cachexia Sarcopenia Muscle. (2019)
10:630–42. doi: 10.1002/jcsm.12409

122. Zhou S, Qian B, Wang L, Zhang C, Hogan MV, Li H. Altered bone-regulating
myokine expression in skeletal muscle of duchenne muscular dystrophy mouse models.
Muscle Nerve. (2018) 58:573–82. doi: 10.1002/mus.26195

123. Jung HW, Park JH, Kim DA, Jang IY, Park SJ, Lee JY, et al. Association between
serum fgf21 level and sarcopenia in older adults. Bone. (2021) 145:115877. doi: 10.1016/
j.bone.2021.115877

124. Roh E, Hwang SY, Yoo HJ, Baik SH, Cho B, Park YS, et al. Association of
plasma fgf21 levels with muscle mass and muscle strength in a national multicentre
cohort study: korean frailty and aging cohort study. Age Ageing. (2021) 50:1971–8.
doi: 10.1093/ageing/afab178

125. Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G, et al.
Age-associated loss of opa1 in muscle impacts muscle mass, metabolic homeostasis,
systemic inflammation, and epithelial senescence. Cell Metab. (2017) 25:1374–89.e6.
doi: 10.1016/j.cmet.2017.04.021

126. Chau MD, Gao J, Yang Q, Wu Z, Gromada J. Fibroblast growth factor 21
regulates energy metabolism by activating the ampk-sirt1-pgc-1alpha pathway. Proc
Natl Acad Sci United States America. (2010) 107:12553–8. doi: 10.1073/
pnas.1006962107

127. Ost M, Coleman V, Voigt A, van Schothorst EM, Keipert S, van der Stelt I, et al.
Muscle mitochondrial stress adaptation operates independently of endogenous fgf21
action. Mol Metab. (2016) 5:79–90. doi: 10.1016/j.molmet.2015.11.002

128. Rosales-Soto G, Diaz-Vegas A, Casas M, Contreras-Ferrat A, Jaimovich E.
Fibroblast growth factor-21 potentiates glucose transport in skeletal muscle fibers. J
Mol Endocrinol. (2020) 65(3):85–9. doi: 10.1530/jme-19-0210

129. Homer-Bouthiette C, Xiao L, Hurley MM. Gait disturbances and muscle
dysfunction in fibroblast growth factor 2 knockout mice. Sci Rep. (2021) 11:11005.
doi: 10.1038/s41598-021-90565-0

130. Wang Z, Bian L, Mo C, Shen H, Zhao LJ, Su KJ, et al. Quantification of
aminobutyric acids and their clinical applications as biomarkers for osteoporosis.
Commun Biol. (2020) 3:39. doi: 10.1038/s42003-020-0766-y

131. Lyssikatos C, Wang Z, Liu Z, Warden S, Brotto M, Bonewald L. The L-
enantiomer of b- aminobutyric acid (L-baiba) as a potential marker of bone mineral
density, body mass index, while D-baiba of physical performance and age. Res Square.
(2023). doi: 10.21203/rs.3.rs-2492688/v1

132. Kitase Y, Vallejo JA, Gutheil W, Vemula H, Jähn K, Yi J, et al. b-
aminoisobutyric acid, L-baiba, is a muscle-derived osteocyte survival factor. Cell Rep.
(2018) 22:1531–44. doi: 10.1016/j.celrep.2018.01.041

133. Feng J, Wang X, Lu Y, Yu C, Wang X, Feng L. Baiba involves in hypoxic
training induced browning of white adipose tissue in obese rats. Front Physiol. (2022)
13:882151. doi: 10.3389/fphys.2022.882151

134. Shimba Y, Katayama K, Miyoshi N, Ikeda M, Morita A, Miura S. b-
aminoisobutyric acid suppresses atherosclerosis in apolipoprotein E-knockout mice.
Biol Pharm Bull. (2020) 43:1016–9. doi: 10.1248/bpb.b20-00078

135. Yang YJ, Kim DJ. An overview of the molecular mechanisms contributing to
musculoskeletal disorders in chronic liver disease: osteoporosis, sarcopenia, and
osteoporotic sarcopenia. Int J Mol Sci. (2021) 22. doi: 10.3390/ijms22052604

136. Hangelbroek RW, Fazelzadeh P, Tieland M, Boekschoten MV, Hooiveld GJ,
van Duynhoven JP, et al. Expression of protocadherin gamma in skeletal muscle tissue
is associated with age and muscle weakness. J Cachexia Sarcopenia Muscle. (2016)
7:604–14. doi: 10.1002/jcsm.12099

137. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development
and function. Annu Rev Neurosci. (2001) 24:677–736. doi: 10.1146/annurev.neuro.
24.1.677
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142. Just-Borràs L, Cilleros-Mañé V, Hurtado E, Biondi O, Charbonnier F, Tomàs
M, et al. Running and swimming differently adapt the bdnf/trkb pathway to a slow
molecular pattern at the nmj. Int J Mol Sci. (2021) 22. doi: 10.3390/ijms22094577
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