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1College of Integrated Circuit Science and Engineering, Nanjing University of Posts and
Telecommunications, Nanjing, China, 2Laboratory Medicine Center, The Second Affiliated Hospital,
Nanjing Medical University, Nanjing, China, 3Department of Hematology, The Affiliated Huaian No.1
People’s Hospital of Nanjing Medical University, Huai’an, China
Background and objective: The increasing global prevalence of diabetes has led to

a surge in complications, significantly burdening healthcare systems and affecting

patient quality of life. Early prediction of these complications is critical for timely

intervention, yet existing models often rely heavily on clinical indicators while

underutilizing fundamental laboratory test parameters. This study aims to bridge

this gap by leveraging the 12most frequently tested laboratory indicators in diabetic

patients to develop an optimized predictive model for diabetes complications.

Methods: A comprehensive dataset was established through meticulous data

collection from a high-volume tertiary hospital, followed by extensive data

cleaning and classification. Various machine learning classifiers, including

Random Forest, XGBoost, Support Vector Machine (SVM), and Multilayer

Perceptron (MLP), were trained on this dataset to evaluate their predictive

performance. We further introduced an ensemble learning model with

Bayesian optimization to enhance accuracy and cost-efficiency. Additionally,

feature importance analysis was conducted to refine the model by reducing

testing costs while maintaining high predictive accuracy.

Results:Our ensemble model with Bayesian optimization demonstrated superior

performance, achieving over 90% accuracy in predicting various diabetic

complications, with an outstanding 98.50% accuracy and 99.76% AUC for

diabetic nephropathy. Feature correlation analysis enabled a refined model that

not only improved predictive accuracy but also reduced overall medical costs by

2.5% through strategic feature elimination.

Conclusions: This study makes three key contributions: (1) Development of a

high-quality dataset based on fundamental laboratory indicators, (2) Creation of a

highly accurate predictive model using ensemble learning and Bayesian

optimization, particularly excelling in diabetic nephropathy prediction, and (3)

Implementation of a cost-efficient diagnostic approach that reduces testing

expenses without compromising accuracy. The proposed model provides a
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strong foundation for future research and practical clinical applications,

demonstrating the potential of integrating machine learning with cost-

conscious medical testing.
KEYWORDS

diabetes complications, predictive modeling, machine learning, Bayesian optimization,
cost-efficient diagnosis, clinical laboratory indicators
1 Introduction

Diabetes mellitus is more than a chronic disease—it is a global

health crisis that threatens millions of lives and places immense

pressure on healthcare systems. Characterized by persistent

hyperglycemia due to defects in insulin secretion, insulin action,

or both, diabetes is classified into Type 1 diabetes (T1D) and Type 2

diabetes (T2D). T1D, often diagnosed in childhood or adolescence,

results from the autoimmune destruction of pancreatic beta cells,

while T2D, which accounts for over 90% of diabetes cases, is

primarily driven by insulin resistance and metabolic dysfunction

(1, 2).

The most devastating aspect of diabetes is not the disease itself

but its complications. Hyperglycemia silently wreaks havoc on

multiple organ systems, leading to both acute and chronic

complications. Acute events such as diabetic ketoacidosis and

hyperosmolar hyperglycemic state demand immediate medical

intervention and can be fatal if left untreated (3, 4). However, the

real danger lies in the chronic complications, which develop

gradually over time, often remaining undetected until irreversible

damage has occurred. These include cardiovascular disease, kidney

failure, blindness, and neuropathy, all of which severely impact

patients’ quality of life and contribute to premature mortality (5, 6).

The scale of this crisis is staggering. According to the

International Diabetes Federation (IDF), 537 million adults were

living with diabetes in 2021, and this number is expected to rise to

700 million by 2045 (7, 8). In many high-income countries, diabetes

prevalence has already exceeded 10%, overloading healthcare

infrastructure and driving up medical costs (9). Meanwhile, rapid

urbanization, sedentary lifestyles, and dietary changes are fueling an

alarming surge in T2D cases across developing nations (10). Given

the inevitable increase in diabetes-related complications, the ability

to predict these complications early and accurately is becoming an

urgent priority.

Despite significant advancements in diabetes management, the

early detection of complications remains a critical challenge. Many

of these complications progress asymptomatically, making timely

intervention difficult. The accuracy of manual diagnosis varies

depending on the type of complication and clinical setting,
02
ranging from 70% to 90%. For instance, diabetic retinopathy is

typically diagnosed through fundoscopic examination and retinal

imaging, with diagnostic accuracy depending on physician

experience (11, 12). Diabetic nephropathy is commonly assessed

using serum creatinine, urinary albumin, and microalbuminuria

measurements, with studies suggesting that pentoxifylline may offer

nephroprotective effects (2, 3). Cardiovascular complications, which

remain the leading cause of mortality among diabetic patients, are

often evaluated based on HbA1c levels, lipid profiles, and blood

pressure, yet fluctuations in HbA1c have been strongly linked to an

increased risk of cardiovascular events (3, 5, 6). Similarly, diabetic

neuropathy is diagnosed through nerve conduction studies and

neurophysiological tests, with emerging research identifying

decreased genomic DNA methylation as a potential biomarker for

neuropathy risk in T2D patients (1, 13).

Given the limitations of traditional diagnostic approaches, there

is a pressing need for more reliable, data driven methods to predict

diabetic complications before they manifest clinically. The

emergence of machine learning (ML) has revolutionized medical

research, enabling the identification of complex, non-linear patterns

in vast datasets that would otherwise be undetectable through

conventional statistical methods (14, 15). Recent machine-

learning (ML) techniques—including logistic regression, decision

tree, random forest, and support vector machine—have

demonstrated strong predictive performance for a variety of

diabetic complications, often achieving AUCs above 0.85 in

external validations (16, 17). However, despite this promise,

existing models typically (1) draw on only a limited set of clinical

indicators and (2) target one complication at a time.

• Limited diversity of predictive features

Most models incorporate HbA1c, blood pressure, and basic

lipid panels, but omit routinely collected indicators such as uric

acid, creatinine, and full lipid subfractions (18, 19). Recent work

(20, 21) shows that features such as blood glucose, creatinine, and

uric acid significantly improve the prediction of retinopathy and

nephropathy when added to simple predictors.

• Focus on a single complication

Diabetic retinopathy models achieve a high negative predictive

value using only minimal clinical inputs, but do not extend to
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nephropathy or cardiovascular disease (22, 23). Patients often

develop multiple concurrent complications (e.g., nephropathy,

neuropathy, and cardiovascular disease), and single-task ML

frameworks clearly cannot handle this complexity (24, 25).

To bridge these gaps, this study develops a machine learning-

based predictive model using the 12 most frequently tested

laboratory indicators in diabetic patients. These indicators,

already measured in routine clinical practice, provide an

accessible and cost-effective opportunity for early complication

prediction. Our hypothesis is that by integrating machine learning

with these fundamental laboratory test results, we can enable earlier

and more accurate complication detection, ultimately improving

patient outcomes and reducing unnecessary medical expenses.

The primary contributions of this study are as follows:
1 h

Fron
1. Development of a benchmark dataset (DCD): We compile a

well-curated dataset from the Second Affiliated Hospital of

Nanjing Medical University, consisting of 5,000 patient

records, integrating laboratory results with clinical diagnoses.

2. Implementation of an ensemble learning model with

Bayesian optimization: Our model significantly outperforms

traditional classifiers (SVM, XGBoost, Random Forest, MLP).

Notably, our approach achieves 98.5% accuracy and 99.76%

AUC in predicting diabetic nephropathy, surpassing

existing methods.

3. Cost-efficient feature selection: By analyzing feature

importance, we refine our model to reduce medical testing

costs by 2.5%, ensuring that high diagnostic performance is

maintained while eliminating unnecessary tests.
By integrating machine learning with fundamental laboratory

diagnostics, this study presents a practical and scalable solution for

early detection of diabetic complications. The proposed approach

not only enhances predictive accuracy but also optimizes healthcare

resource utilization, offering a feasible path toward more proactive

and cost-effective diabetes management.
2 Materials and methods

2.1 Data collection

Hospital selection: The data used in this study were obtained

from the laboratory department of the Second Affiliated Hospital of

Nanjing Medical University, located in Nanjing, Jiangsu Province,

China. This is a Class-A tertiary comprehensive hospital directly

under the Jiangsu Provincial Health Commission, responsible for

essential tasks such as medical treatment, teaching, scientific

research, and public welfare. The hospital handles 1approximately

2.01 million outpatient and emergency visits annually, discharges

about 78,000 patients, performs around 20,000 surgeries, and

provides hemodialysis services to roughly 160,000 individuals
ttps://jsnydefy.com/index.php?c=category&id=2
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each year. Thus, the hospital possesses sufficient capacity to

support our experimental data collection.

Dataset description: Our dataset includes patient IDs,

diabetes type, initial complication labels and 12 indicators

(blood glucose, uric acid, 24-hour urine protein, HDL

cholesterol, LDL cholesterol, total cholesterol, postprandial

glucose, cystatin C, creatinine, urine microalbumin, urine

microalbumin-tocreatinine ratio, and glycated hemoglobin). All

released data have been fully de-identified to guarantee complete

anonymity and irretraceability. In accordance with the “Measures

for the Ethical Review of Life Sciences and Medical Research

Involving Human Subjects,” 2this study was granted exemption

from formal ethical review.

Feature selection: All twelve laboratory indicators routinely

measured for diabetic patients in our department were included in

the dataset. By retaining every available feature, we ensured that the

model had access to the complete set of clinically relevant variables.

This comprehensive inclusion avoids potential bias and allows the

algorithms to determine their relative importance empirically.

Data preprocessing: Based on the selected features, we extracted

the relevant indicators of all diabetes patients tested in the

laboratory since October 2020, linked them according to the

medical record number, and merged the data. The following two-

step aggregation procedure is applied to convert multiple

measurements per patient into one or more samples, according to

whether the clinical diagnosis remained stable or changed

over time.

Step 1: Stable diagnosis (1-to-1 mapping). When the clinical

diagnosis of a patient did not change, we collapsed all the indicators

into a single representative sample. Specifically, let xij denote the j-

th measurement of indicator i for that patient (xij must hold a

numerical value). We computed the arithmetic mean

�xi  =  
1
Mi
o
Mi

j=1
xij ,

where Mi is the total number of measurements of indicator i. The

vector �xif g12i=1 then constitutes one aggregated sample for that

patient, preserving the central tendency of each indicator while

eliminating intra-patient temporal redundancy.

Step 2: Evolving diagnosis (1-to-Nmapping,N > 1). For patients

whose diagnosis changed over time—resulting in N distinct

diagnostic stages—we first partitioned the patient’s record into

contiguous segments, each corresponding to a single diagnosis

state. Within the k-th segment (diagnosis stage Dk), we again

computed the arithmetic mean of each indicator as in Step 1:

�x(k)i   =  
1

M(k)
i
o
M(k)

i

j=1
x(k)ij  ,

Where M(k)
i is the number of measurements of indicator i during

stage k. After aggregation, we generated N separate samples
2 https://www.gov.cn/zhengce/zhengceku/2023-02/28/content5743658.htm
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�x (k)i

n o12

i=1
, one for each diagnostic stage Dk. This procedure yields

multiple summary observations per patient, each reflecting the

patient’s state under a distinct diagnosis.

Using the above method, we obtained 19,043 initial data points.

During the data cleaning stage, to ensure that each indicator had a

corresponding value for feature extraction, we eliminated records

with null test indicators, meaning patients were required to have all

12 indicators tested simultaneously. Due to the small amount of

data on diabetic gastric complications (only 30 lines before

merging), this data was removed after cleaning. Ultimately, we

obtained 3,000 data points with complete features.
2.2 Tag classification

Based on the cleaned data, the clinical diagnosis results entered

by each diagnosing physician were different. To unify the label data,

we classified cases of essential diabetes into diabetes without

complications. We did not distinguish between type 1 and type 2

diabetes complications, categorizing all into broad complication

labels. The merged results are shown in Table 1.

Following the label merging process, we addressed the class

imbalance in the dataset to ensure equitable representation across

all categories. As shown in Table 2, the original dataset exhibited

significant imbalance, with the largest category, “Diabetes without

complications,” comprising 7556 samples. Given the impracticality

of increasing the sample size of the minority classes to several

thousand, we opted to constrain the sample size of each category to

500. To achieve this balanced distribution, we employed the

SMOTE algorithm (26), which facilitated both oversampling of

the minority classes and undersampling of the majority class

through a nearest-neighbor approach. As a result, we obtained a

balanced dataset with 500 samples per category across 6 labels,

yielding a total of 500 (balanced sample size) × 6 (number of labels)

= 3000 data points. This balanced dataset, referred to as the DCD

dataset, was used for subsequent analyses.
2.3 Model processing

We divided the dataset into a 4:1 ratio, with 2400 data points used

as the training set and 600 data points used as the prediction set. To

ensure that both subsets faithfully reflect the balanced class distribution

resulting from our data augmentation process, we performed stratified

random sampling on the full dataset using the class label as the

stratification key. This study employs machine learning algorithms

such as Random Forest (27), SVM (28), XGBoost (29), and MLP (30),

comparing their prediction results with the proposed model.

2.3.1 Basic learning models
Random Forest: Random Forest (27) is an ensemble learning

method that improves the accuracy and stability of a model by

constructing multiple decision trees and combining their

predictions. The training set for each tree is obtained through
Frontiers in Endocrinology 04
TABLE 1 Label conversion.

Clinical diagnosis results Labels

Type 2 Diabetes Diabetes
without

ComplicationsDiabetes Type II

Type 1 Diabetes Type I

Diabetes

Gestational Diabetes

Pregnancy-induced Diabetes

Type 2 Diabetic Peripheral Neuropathy Diabetic
Neuropathy

Diabetic Peripheral Neuropathy

Diabetes with Neurological Complications

Type 2 Diabetic Neurogenic Bladder

Type 1 Diabetic Peripheral Neuropathy

Diabetic Radiculopathy

Type 2 Diabetic Autonomic Neuropathy

Diabetic Retinopathy Diabetic Eye
Complications

Type 2 Diabetic Retinopathy

Type 2 Diabetic Tractional Retinal Detachment

Type 2 Diabetic Proliferative Hemorrhagic Retinopathy

Diabetic Proliferative Retinopathy

Type 2 Diabetic Proliferative Retinopathy

Type 2 Diabetic Neovascular Glaucoma

Diabetic Tractional Retinal Detachment

Diabetic Neovascular Glaucoma

Type 2 Diabetic Retinal Thickening Retinopathy

Diabetic Foot Diabetic Foot
Complications

Type 2 Diabetic Foot

Diabetic Gangrene

Type 2 Diabetic Foot Gangrene

Diabetic Foot Gangrene

Type 2 Diabetic Lower Limb Infection

Type 1 Diabetic Lower Limb Infection

Type 2 Diabetic Foot Disease

Diabetic Lower Limb Infection

Type 2 Diabetic Foot Ulcer and Peripheral Neuropathy

Diabetic Lower Limb Ulcer

Type 2 Diabetic Gangrene

Type 2 Diabetic Peripheral Vascular Disease Diabetic Vascular
Complications

Diabetic Peripheral Vascular Disease

Type 2 Diabetic Peripheral Vascular Disease and Gangrene
Type 1 Diabetic Peripheral Vascular Disease

(Continued)
frontiersin.org

https://doi.org/10.3389/fendo.2025.1593068
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yan et al. 10.3389/fendo.2025.1593068
Bootstrap Sampling, randomly sampling from the original training

set. Each tree is trained in a different subset, and each node is split

using a fraction of the features to minimize overfitting.

Formula:

Information Gain (for selecting the best split):

I(G,D) = H(D) −o
K

k=1

Dkj j
Dj j H(Dk)

where H(D) is the entropy of the dataset (D), and Dkis the subset

after partitioning by feature (k).

Entropy:

H(D) = −o
n

i=1
pi log pi

where pi is the probability of class

Out-of-bag error:

OOB Error =
1
no

n

i=1
I(yi ≠ ŷOOB

i )

When using the Random Forest classifier in Algorithm 1, the

process begins with Bootstrap Sampling to create multiple subsets
Frontiers in Endocrinology 05
from the original training set. Each decision tree in the forest is

trained on a different subset, enhancing the model’s robustness and

reducing the risk of overfitting. We select the optimal features and

split points for each node within these trees to maximize

information gain. Information gain is calculated based on the

reduction in entropy, ensuring that each split improves the purity

of the subsets. This process of selecting features and splitting points

is crucial, as it determines the effectiveness of the Random Forest in

distinguishing between different classes. The Random Forest

algorithm also calculates out-of-bag (OOB) error, which provides

an unbiased estimate of the model performance and helps assess

its accuracy.

XGBoost: XGBoost (29) is an optimized Gradient Boosting

Decision Tree (GBDT) algorithm known for its speed and

performance. The loss function is minimized by constructing the

tree step-by-step and adding a new tree at each step to correct the

error from the previous step. A regularization term is included to

prevent overfitting.

Formula: Loss function:

L(q) =o
n

i=1
l(yi, ŷ i) +o

K

k=1

W(fk)

w h e r e W(fk) i s g T + 1
2 loT

j=1w
2
j , g a n d l a r e t h e

regularization parameters.

Incremental lift:

ŷ (t)
i = ŷ (t−1)

i + hft(xi)

where ŷ (t)
i is the predicted value in round (t), h is the learning rate,

and ft is the weak learner at round t.

Split node selection:

Gain =
1
2

G2
L

HL + l
+

G2
R

HR + l
−

(GL + GR)
2

HL + HR + l

� �
where GL and GR are the gradient sums of the left and right child

nodes, respectively, and HL and HR are the second-order gradient

sums of the left and right child nodes, respectively.

In the case of the XGBoost classifier in Algorithm 1, the

approach is slightly different with Random Forest. XGBoost, an

optimized implementation of Gradient Boosting, builds trees

sequentially, where each new tree aims to correct the errors of the

previous ones. For each decision tree, we calculate the gradient and

Hessian of each node. The gradient represents the first derivative of

the loss function concerning the predicted value, indicating the

direction in which the prediction should move to reduce error.

The Hessian, the second derivative, provides information about the

curvature of the loss function, helping to adjust the step size for the

updates. XGBoost effectively enhances the model’s accuracy while

including a regularization term to prevent overfitting by selecting

the optimal features and split points to minimize the loss function.

Using gradient and Hessian makes XGBoost particularly efficient

and powerful in handling large-scale and complex datasets.

Additionally, the algorithm evaluates the gain of each split,

ensuring that each new tree contributes effectively to reducing the

overall prediction error.
TABLE 1 Continued

Clinical diagnosis results Labels

Diabetic Nephropathy Diabetic Kidney
Complications

Type 2 Diabetic Nephropathy

Diabetic Nephropathy Stage III

Diabetes with Renal Complications

Diabetic Nephropathy Stage IV

Diabetic Nephropathy Stage II

Diabetic Nephropathy Stage I

Type 2 Diabetic Nephropathy Stage II Diabetic
Nephropathy Stage V
TABLE 2 Sample size and proportion relative to largest category for
various diabetes complications.

Category Sample size Proportion relative
to largest category

Diabetes without
complications

7556 1.0000

Diabetic ocular
complications

344 0.0455

Diabetic neurological
complications

331 0.0438

Diabetic foot
complications

285 0.0377

Diabetic vascular
complications

264 0.0349

Diabetic nephropathy 253 0.0335
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SVM: Support Vector Machines (28) maximize the

classification boundaries by finding the best hyperplane to

separate the data.

Find a hyperplane in high-dimensional space such that the

sample points of different classes are as far away from that

hyperplane as possible. Non-linearly differentiable data can be

handled by kernel tricks.

Formula:

Hard spacing is maximized:

min
w,b

1
2

wk k2 subject to yi(w · xi + b) ≥ 1

where w is the weight vector, b is the bias, and yi is the

category label.

Soft interval maximization (allowing misclassification):

min
w,b,x

1
2

wk k2+Con
i=1xi subject to yi(w · xi + b) ≥ x1−i

where xi is the slack variable, C is the penalty parameter.

Kernel function (maps data to a higher-dimensional space):

K(xi, xj) = f(xi) · f(xj)
Fron
Input: Original datasets

Output: accuracy, precision, recall, F1 and AUC

1foreach Classifier in {Random Forest, XGBoost, SVM} do

2 Initialize Classifier Object;

3 foreach Unique class label in the target variable do

4 Convert the target variable to the binary format;

5 Split the original datasets into training and

testing sets;

6 Initialize the normalizer and perform data

standardization;

7 Use training data to train each classifier;

8 end

9 if The Classifier is Random Forest then

10 foreach Decision tree in the Random Forest do

11 Randomly select samples from the training set;

12 end
tiers in Endocrinology 06
13 foreach Node in the tree do

14 Select optimal features and splitting points to

maximize information gain;

15 end

16 end

17 if The Classifier is XGBoost then

18 foreach Decision tree in XGBoost do

19 Calculate the gradient and Hessian for each

node;

20 Select the optimal features and splitting

points to

minimize the loss function;

21 end

22 end

23 if The Classifier is SVM then

24 Solve optimization problems to find the

hyperplane

with the maximum margin;

25 w ×x+b = 0;

26 end

27 Use the trained classifier to predict test data;

28 end

29 return accuracy, precision, recall, F1 score, and AUC
Algorithm 1. Machine learning classifier processing process.

Commonly used kernel functions include linear kernel,

polynomial kernel, radial basis kernel (RBF), etc.

For the SVM classifier in Algorithm 1, the focus is finding the

hyperplane that best separates the data into different classes. This is

achieved by solving an optimization problem that maximizes the

margin between the closest points of the different classes, known as

support vectors. The larger the margin, the better the generalization

capability of the SVM. In cases where the data are not linearly

separable, SVM employs kernel tricks to map the data into a higher-

dimensional space, where a linear hyperplane can perform the

separation. Commonly used kernels include the linear kernel,

polynomial kernel, and RBF kernel, each transforming the data in
frontiersin.org
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specific ways to reveal patterns that are not visible in the original

feature space. The choice of kernel and the parameters used in the

SVM model significantly influence its performance and ability to

generalize well to unseen data.

MLP: Multilayer Perceptron (30) learn complex patterns and

features through multiple hidden layers and a large number of

neurons. They consist of several layers (input, hidden, and output),

each containing several neurons.

Formula:

Forward propagation:

a(l) = f o
nl−1

j=1
w(l)
ij a

(l−1)
j + b(l)i

 !

where a(l) is the activation value of the l-th layer. w and b are the

weight and bias respectively.

Activation function: Commonly used activation functions

include Sigmoid, ReLU (Rectified Linear Unit), Tanh, and others.

Loss function (cross-entropy):

L = −o
n

i=1
½yilog (byi) + (1 − yi)log (1 − byi)�

Reverse propagation:

∂ L

∂w(l)
ij

= d (l)
i a(l−1)j

where d (l)
i is the error term in layer l.

Algorithm 2 corresponds to the MLP classifier. For each hidden

layer, we use the function z = wx+b and a = activation function(z). For

the output layer, we use the function: z=wx+b and y= softmax(z). For all

algorithms, we choose the industry-recognized accuracy, precision, recall,

F1 score, and AUC to evaluate the accuracy of the prediction results.
Fron
Input: Original datasets

Output: accuracy, precision, recall, F1 and AUC

1 Initialize MLP Classifier Object;

2 foreach unique class label in the target variable do

3 Convert the target variable to the binary format of

the current class label;

4 Split the original datasets into training and

testing sets;

5 Initialize the normalizer and perform data

standardization;

6 Use training data to trainan MLP classifier;

7 foreach hidden layer in the network do
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8 Compute z = w × x + b;

9 Apply activation function: a = activation_function

(z);

10 end

11 for the output layer do

12 Compute z = w × x + b;

13 Compute predictions: y = softmax(z);

14 end

15 Use the trained classifier to predict test data;

16 Calculate the accuracy, precision, recall,

F1score,

and AUC of prediction results;

17 Obtain feature importance;

18 Store the result of the current class label in a

DataFrame;

19 end

20 return accuracy, precision, recall, F1score, and AUC
Algorithm 2. Multilayer perceptron processing process.

2.3.2 Stacking classifier with Bayesian
optimization

Stacking classifiers: Stacking classifiers (31) are ensemble

learning methods combining multiple base classifiers using a

meta-classifier to optimize final predictions. They leverage the

strengths of diverse models to enhance performance and

generalization. A stacking classifier consists of base classifiers and

a meta-classifier.

Formula:

Base Classifier Prediction:

ŷ (j)
i = fj(X), j = 1, 2,…, k

where ŷ (j)
i is the prediction of the j-th base classifier for input X, and

k is the total number of base classifiers.

Meta-Classifier Input:

Z =

ŷ (1)
1 ŷ (1)

2 … ŷ (1)
n

ŷ (2)
1 ŷ (2)

2 … ŷ (2)
n

⋮ ⋮ ⋱ ⋮

ŷ (k)
1 ŷ (k)

2 … ŷ (k)
n

2666664

3777775
frontiersin.org

https://doi.org/10.3389/fendo.2025.1593068
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yan et al. 10.3389/fendo.2025.1593068
where Z represents the output matrix from all base classifiers,

serving as input to the meta-classifier.

Meta-Classifier Training:

ŷ final = g(Z, q)

where g represents the meta-classifier, and q refers to its parameters.
Fron
Input: Original datasets

Output: accuracy, precision, recall, F1 and AUC

1 Initialize base classifiers: Random Forest (RF),

XGBoost (XGB), and Support Vector Machine (SVM);

2 Initialize meta-classifier;

3 foreach unique class label in the target variable do

4 Convert the target variable to the binary format of

the current class label;

5 Split the original datasets into training and

testing sets;

6 Initialize the normalizer and perform data

standardization;

7 foreach base classifier in [RF, XGB, SVM] do

8 Use training data to train the base classifier;

9 Obtain predictions from the base classifier for the

training and testing sets;

10 Store the predictions as features for the

meta-classifier;

11 end

12 Use the meta-classifier to train on the base

classifiers’ predictions;

13 Use the trained stacking model to predict the test

data;

14 Calculate the accuracy, precision, recall, F1

score, and AUC of prediction results;

15 end

16 return accuracy, precision, recall, F1 score, and AUC
Algorithm 3. Stacking Classifier Processing Process.
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Implementation details. Algorithm 3 corresponds to the

stacking classifier. Based on the experimental analysis of basic

learning models in Section 3.2, we selected three basic models

that perform well on specific classes to form the stacking classifier.

The stacking process combines base classifiers’ strengths while

addressing their weaknesses. For each base classifier, predictions

are generated and combined as input features for the meta-classifier.

In the experimental section, we will compare several meta-classifiers

and determine which is the best one in our dataset.

•Base classifiers: Random Forest, XGBoost, and SVM. Each

classifier is trained independently on the training dataset.

•Meta-classifier: Random Forest, XGBoost, SVM, Logistic

Regression, and Stacking Classifier. It learns from the outputs of

the base classifiers to make the final prediction.

For evaluation, we use industry-recognized metrics such as

accuracy, precision, recall, F1 score, and AUC to measure the

performance of the stacking classifier.

Bayesian optimization: Bayesian Optimization is a sequential

global optimization framework that is particularly effective for

tuning hyperparameters in complex machine learning models,

such as stacking classifiers. A probabilistic surrogate model

approximates the expensive black-box objective function in this

framework. An acquisition function then guides the search for the

optimum by balancing exploring uncertain regions and exploiting

regions known to yield favorable outcomes. This methodology is

highly efficient in scenarios where each function evaluation (such as

training a stacking classifier with various hyperparameter

configurations) is computationally expensive.

Implementation details. Firstly, we define the search space for

the base classifiers (Random Forest, XGBoost, SVM) in Table 3. For

Random Forest, choosing 50–200 trees manages the trade-off

between high variance from too few estimators and the

diminishing returns on variance reduction with excessive trees,

while a maximum depth of 3–20 prevents both underfitting and

overfitting by regulating model complexity (32). Similarly, setting the

minimum samples required for splitting between 2 and 10 ensures

robust partitioning without leading to overly granular splits (33). In

XGBoost, the interval of 50–200 boosting rounds typically allows

sufficient convergence without incurring excessive computational

cost or overfittin (29), and sampling the learning rate on a log-

uniform scale between 0.01 and 0.30 efficiently explores the spectrum

between rapid but potentially unstable convergence and slower, more

stable learning (34). The maximum tree depth range in XGBoost, also

set between 3 and 20 and provides a comparable mechanism for

controlling model complexity (29). For the Support Vector Machine,

the regularization parameter C is explored on a log-uniform scale

from 0.001 to 1 to balance the trade-off between margin

maximization and classification error (35), while restricting the

kernel function to either linear or RBF ensures applicability to both

linearly separable data and datasets exhibiting nonlinear

patterns (36).

Secondly, assuming the defined hyperparameter search space is

denoted asQ, we initialize a Bayesian optimization process over this

space. We suppose Ht as the set of observations up to the t-th trial
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including the hyperparameter configuration qt corresponding to the
highest 5-fold cross-validated accuracy At.

At = Accuracy(StackingClassifier(qt))

At step t, we employ the Tree-structured Parzen Estimator

(TPE) as the Surrogate Model to generate the next set of

hyperparameters. The function of this process can be represented as

qt+1 = arg max  a
q∈Q

(q Ht)j

The acquisition function a is used to determine the next

hyperparameter point to evaluate. Our acquisition function is

based on Expected Improvement, which is equivalent to the ratio

of the distribution of good-performing hyperparameters g(q) to that
of poor-performing ones l(q). When this ratio g(q)

l(q) is large, it

indicates that the sampling point lies in a region of good

performance, thus holding greater potential for improvement.

Given that our parameters include both continuous and discrete

types, for continuous variables, we utilize Gaussian kernel density

estimation, while for discrete hyperparameters, we apply histogram

estimation. After obtaining the qt+1, we compute the At+1 and

update the optimal set of observations if At+1 is better than the

previous best value. After T trials, the best-performing

hyperparameters are selected, improving the accuracy and

robustness. T are set to 5000 in our experiment.
3 Results and discussions

In this section, we first trained the base learning models on the

imbalanced dataset to demonstrate the significant impact of data

imbalance on model performance. Subsequently, we conducted

experiments using the DCD dataset based on data augmentation

and compared the performance of base learning models and

different stacking classifiers. Based on the performance analysis of

different models, we selected the best model for Bayesian

optimization to further enhance its performance. Finally, we
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performed feature importance analysis on the model, and by

filtering out unimportant features, we were able to further

improve the model’s classification performance and reduced the

cost of medical treatment.
3.1 The impact of class imbalance

In our study, we trained four different machine learning

models-RF, XGBoost, SVM, and MLP—on a raw imbalanced

dataset. The recall results for these models across different classes

are illustrated in Figure 1, which reveals a pronounced performance

disparity attributable to the imbalance of the dataset. The first class,

due to its prominent data volume, achieves an accuracy close to 1,

while the recall rates of other models are generally below 0.4.

Particularly, SVM is the most affected, with recall values close to 0.

To investigate the impact of this imbalance, we conducted a

sensitive analysis by varying the sample retention percentage of the

“Diabetes without complications” category (Class 0), as depicted in

Figure 1. We selected seven different proportions to retain the data

of the Class 0. Overall, for most models, the performance on other

classes tends to decrease as the data volume of the Class 0 increases.

In summary, data imbalance leads to the near-total failure of

basic learning models in predicting other classes. Therefore,

performing data augmentation on other classes and controlling

the data volume of the Class 0 is crucial for balancing the overall

performance of the model.
3.2 The results on DCD dataset

3.2.1 The results of basic learning models
First, because machine learning models do not involve iteration,

there is no loss function change curve. However, for the MLP

processing flow described in Section 2, we obtained the loss function

curve of the iteration during training, as shown in Figure 2. The loss

value is high in the initial stage (the first 200 iterations). Still, it

drops rapidly from nearly 1.8 to about 0.2, indicating that the model

has learned a significant amount of helpful information early in the

training process. In the middle stage, the loss value continues to

decrease. However, the rate of decrease slows, suggesting that while

the model is still learning, the performance improvements brought

by each iteration are diminishing. In the final convergence stage, the

curve stabilizes, and the loss value remains unchanged, indicating

that the model has reached a steady state where further training

yields minimal improvement. This overall trend demonstrates that

the model converges effectively without evident overfitting

or underfitting.

The prediction results of the basic learning models are shown in

Table 4. The prediction accuracy of the various models for each type

of complication is high, all exceeding 80%. The precision in

predicting the category of no complications in diabetes is the

lowest among the categories, with the highest accuracy achieved

using the Random Forest at 86.83%. For the other complication

categories, except for the SVM in predicting vascular complications
TABLE 3 Hyperparameter of Bayesian optimization.

Classifier Hyperparameter Type Range/
Categories

Random
Forest

ensemble size Integer 50 to 200

tree depth Integer 3 to 20

node splitting Integer 2 to 10

XGBoost

number of
boosting rounds

Integer 50 to 200

learning rate Log-uniform 0.01 to 0.3

tree complexity Integer 3 to 20

SVM
penalty term Log-uniform 0.001 to 1

kernel function Categorical {linear, RBF}
Integer: Discrete values within a specified range.
Log-uniform: Continuous values sampled logarithmically within the range.
Categorical: Discrete options from a predefined set.
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of diabetes and the MLP in predicting neurological complications of

diabetes, the prediction accuracy of all other classifiers exceeds 90%.

We bold the highest values of several indicators with the highest

prediction accuracy in each category. It is not difficult to find that

XGBoost demonstrates the best overall performance among the

base learning models.

Furthermore, Figure 3 shows the Receiver Operating

Characteristic (ROC) curves of different baseline classifiers. From

the figure, it is apparent that the accuracy of the models in

predicting diabetic complications is high, with large AUC. The

ROC curves indicate that Random Forest, XGBoost, and MLP

outperform SVM, especially in predicting complications of

diabetes nephropathy. However, for other complications, MLP’s

performance is noticeably inferior to that of Random Forest

and XGBoost.

3.2.2 The results of stacking classifier
Based on the performance analysis of the base learning models,

we found that Random Forest, XGBoost, and SVM all demonstrated

good predictive performance in specific classes, while MLP

exhibited relatively poorer performance. Assuming the meta-

classifier is the logistic regression, we compared the basic

classifiers with and without MLP in the Table 5. It was found that

the performance of the basic classifiers with MLP decreased.
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Therefore, we selected Random Forest, XGBoost, and SVM as

the base classifiers for the stacking classifier and conducted further

research on different meta-classifiers. As shown in Table 6, we

evaluated six different meta-classifiers and presented their

predictive performance on each class. When SVM was used as the

meta-classifier, its performance was poor, especially for the class

“Vascular complications of diabetes,” which remained below 90%.

The averaging method showed significantly better accuracy than

Random Forest. XGBoost achieved the best results on the classes

“Complications of diabetes nephropathy” and “Foot complications

of diabetes,” with accuracies of 98.33% and 95.16%, respectively.

When logistic regression was used as the meta-classifier, the overall

performance improved markedly. Although the AUC values were

not the highest, they were very close to the highest values. To

further explore the potential for improvement, we conducted

additional experiments using the best stacking classifier with

logistic regression as the meta-classifier. We found that while

there were improvements in “Complications of diabetes

nephropathy” and “Foot complications of diabetes,” the

performance on most other classes declined. Therefore, we

ultimately chose logistic regression as the meta-classifier.

Figure 3 shows the ROC curve of the Stacking Classifier with

logistic regression, which combines the strengths of multiple

baseline classifiers to achieve superior performance. The figure
FIGURE 1

The Recall of different models (a–d) on the imbalanced dataset.
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shows that the stacking classifier with logistic regression

consistently demonstrates a higher AUC across all diabetic

complication categories, indicating its robustness and better

generalization capability than individual classifiers.

3.2.3 The results of stacking classifier with
Bayesian optimization

In this subsection, we optimized the stacking classifier with the

best performance obtained previously using the Bayesian

optimization algorithm, and the results are presented in Table 7.

The stacking classifier and optimized version provide the highest

values for all other metrics. In particular, when predicting.

“neurological complications of diabetes”, precision reaches

93.50%, with an AUC of 95.21%, and both F1 and recall values

exceed 70%, significantly outperforming all other methods.

Although the AUC values in predicting “Ocular complications of

diabetes” and “Foot complications of diabetes” are lower than

optimal values, the differences are only 0.17% and 0.96%
FIGURE 2

MLP convergence curve.
TABLE 4 Prediction results of basic learners.

Complication types Classifiers Accuracy Recall F1 AUC

No complications in diabetes

Random Forest

86.83% 28.71% 42.34% 90.04%

Ocular complications of diabetes 93.83% 64.95% 77.30% 94.74%

Neurological complications of diabetes 90.00% 43.69% 60.00% 93.60%

Complications of diabetes nephropathy 97.00% 82.98% 89.66% 99.59%

Vascular complications of diabetes 93.00% 55.91% 71.23% 97.08%

Foot complications of diabetes 94.83% 72.32% 83.94% 95.91%

No complications in diabetes

XGBoost

86.67% 43.56% 52.38% 85.71%

Ocular complications of diabetes 95.33% 75.26% 83.91% 96.27%

Neurological complications of diabetes 91.83% 60.19% 71.68% 94.39%

Complications of diabetes nephropathy 98.33% 91.49% 94.51% 99.54%

Vascular complications of diabetes 92.83% 67.74% 74.56% 94.91%

Foot complications of diabetes 94.83% 75.00% 84.42% 96.11%

No complications in diabetes

SVM

83.67% 3.96% 7.55% 78.57%

Ocular complications of diabetes 89.33% 44.33% 57.33% 89.45%

Neurological complications of diabetes 83.83% 5.83% 11.01% 82.78%

Complications of diabetes nephropathy 92.00% 55.32% 68.42% 95.04%

Vascular complications of diabetes 86.00% 10.75% 19.23% 88.93%

Foot complications of diabetes 91.00% 54.46% 69.32% 89.23%

No complications in diabetes

MLP

85.17% 34.65% 44.03% 84.64%

Ocular complications of diabetes 91.67% 60.82% 70.24% 92.16%

Neurological complications of diabetes 87.17% 39.81% 51.57% 90.88%

Complications of diabetes nephropathy 96.50% 90.43% 89.01% 99.18%

Vascular complications of diabetes 90.17% 62.37% 66.29% 92.70%

Foot complications of diabetes 91.33% 60.71% 72.34% 91.42%
Bold means the optimal values among different methods for the same evaluation metric.
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respectively. However, the recall and F1-score values of optimized

stacking classifier are highest. Figure 3 further illustrates that the

stacking classifier is more robust after training by Bayesian

optimization. Therefore, the stacking classifier with Bayesian

optimization is identified as the optimal model to predict diabetic
Frontiers in Endocrinology 12
complications, and we will use this method as the basis for

subsequent optimization.

To avoid the Bayesian optimization favoring a particular train/

test split and to further demonstrate the effectiveness of the model

based on Bayesian optimization, we introduced 5-fold cross-
FIGURE 3

ROC curves of different classifiers (a–f).
TABLE 5 Prediction results of stacking learning with and without MLP.

Complication Types Classifiers Accuracy Recall F1 AUC

No complications in diabetes

Stacking Classifier with MLP (logits)

87.17% 49.51% 56.50% 89.96%

Ocular complications of diabetes 96.17% 80.41% 87.15% 95.14%

Neurological complications of diabetes 92.27% 67.90% 76.44% 94.36%

Complications of diabetes nephropathy 98.00% 92.55% 93.55% 99.33%

Vascular complications of diabetes 94.20% 81.72% 83.02% 97.06%

Foot complications of diabetes 95.16% 77.68% 85.71% 96.08%

No complications in diabetes

Stacking Classifier without MLP
(logits)

87.67% 50.50% 57.95% 89.66%

Ocular complications of diabetes 96.50% 81.44% 88.27% 95.15%

Neurological complications of diabetes 92.83% 67.96% 76.50% 94.89%

Complications of diabetes nephropathy 98.17% 92.55% 94.05% 99.68%

Vascular complications of diabetes 94.83% 82.80% 83.24% 97.21%

Foot complications of diabetes 95.16% 77.68% 85.71% 96.33%
Bold means the optimal values among different methods for the same evaluation metric.
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TABLE 6 Prediction results of stacking learning.

Complication types Classifiers Accuracy Recall F1 AUC

No complications in diabetes

Stacking Classifier (Averaging)

87.00% 37.62% 49.35% 88.82%

Ocular complications of diabetes 95.67% 75.26% 84.88% 94.88%

Neurological complications of diabetes 90.00% 45.63% 61.04% 95.10%

Complications of diabetes nephropathy 97.67% 88.30% 92.22% 99.37%

Vascular complications of diabetes 93.17% 61.29% 73.55% 96.72%

Foot complications of diabetes 94.33% 72.32% 82.65% 95.84%

No complications in diabetes

Stacking Classifier (RF)

86.83% 28.71% 42.34% 90.04%

Ocular complications of diabetes 93.83% 64.95% 77.30% 94.74%

Neurological complications of diabetes 90.00% 43.69% 60.00% 93.60%

Complications of diabetes nephropathy 97.00% 82.98% 89.66% 99.59%

Vascular complications of diabetes 93.00% 55.91% 71.23% 97.08%

Foot complications of diabetes 94.83% 72.32% 83.94% 95.91%

No complications in diabetes

Stacking Classifier (XGBoost)

86.33% 39.60% 49.38% 86.23%

Ocular complications of diabetes 96.00% 79.38% 86.52% 95.99%

Neurological complications of diabetes 92.50% 63.11% 74.29% 94.86%

Complications of diabetes nephropathy 98.33% 92.55% 94.57% 99.73%

Vascular complications of diabetes 92.16% 66.67% 72.51% 95.52%

Foot complications of diabetes 95.16% 76.79% 85.57% 96.80%

No complications in diabetes

Stacking Classifier (SVM)

83.67% 3.96% 7.54% 78.57%

Ocular complications of diabetes 83.83% 5.82% 11.01% 82.76%

Neurological complications of diabetes 83.83% 5.83% 11.01% 82.78%

Complications of diabetes nephropathy 92.00% 55.32% 68.42% 95.03%

Vascular complications of diabetes 86.00% 10.75% 19.23% 88.93%

Foot complications of diabetes 91.00% 54.46% 69.32% 89.23%

No complications in diabetes

Stacking Classifier (logits)

87.67% 50.50% 57.95% 89.66%

Ocular complications of diabetes 96.50% 81.44% 88.27% 95.15%

Neurological complications of diabetes 92.83% 67.96% 76.50% 94.89%

Complications of diabetes nephropathy 98.17% 92.55% 94.05% 99.68%

Vascular complications of diabetes 94.83% 82.80% 83.24% 97.21%

Foot complications of diabetes 95.16% 77.68% 85.71% 96.33%

No complications in diabetes

Stacking Classifier (Stacking)

86.50% 44.55% 52.63% 85.47%

Ocular complications of diabetes 95.50% 76.29% 84.57% 95.33%

Neurological complications of diabetes 92.67% 66.02% 77.56% 93.95%

Complications of diabetes nephropathy 98.33% 93.62% 94.62% 98.00%

Vascular complications of diabetes 94.50% 81.72% 82.16% 94.65%

Foot complications of diabetes 95.33% 77.68% 86.14% 93.35%
F
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Bold means the optimal values among different methods for the same evaluation metric.
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TABLE 7 Prediction results of stacking classifier with Bayesian optimization.

Complication types Classifiers Accuracy Recall F1 AUC

No complications in diabetes

Stacking Classifier (logits) +
Bayesian Optimization

88.33% 50.50% 59.30% 90.20%

Ocular complications of diabetes 96.50% 81.44% 88.27% 95.15%

Neurological complications of diabetes 93.50% 71.84% 79.14% 95.21%

Complications of diabetes nephropathy 98.33% 93.62% 94.62% 99.71%

Vascular complications of diabetes 94.83% 82.80% 83.79% 97.21%

Foot complications of diabetes 95.67% 79.46% 87.25% 95.84%
F
rontiers in Endocrinology
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Bold means the optimal values among different methods for the same evaluation metric.
FIGURE 4

The 5-fold cross validation of stacking classifier with and without Bayesian optimization.
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validation. The dataset was divided into five different train and test

splits, and the optimal hyperparameter combinations were applied

to each split separately. Ultimately, the average metrics for each fold

were calculated and compared with the unoptimized model in the

Figure 4. It can be observed that the optimized stacking classifier

showed varying degrees of improvement in average performance in

each split, which proves that the optimal parameter configuration

found by Bayesian optimization has generalizability.
3.2.4 The analysis of feature importance
Our work also considers the relevance of features. Since selected

features are the indicators most frequently tested in the hospital, our

objective is to reduce the cost of patient testing by removing

irrelevant features. This approach allows for more accurate

predictions of diabetic complications using fewer indicators.

This study uses the Pearson correlation coefficient matrix to

analyze the correlation between diabetes features and removes the

highly correlated features based on the results. The Pearson

correlation coefficient (37) measures the degree of linear

correlation between two variables, calculated as follows:

r = on
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − �x)2on

i=1(yi − �y)2
q

where r is the Pearson correlation coefficient, xi and yi are the i-

th observations of the two variables, and �x and �y are the means of
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the two variables. The Pearson correlation coefficient ranges from -1

to 1. Values closer to 1 or -1 indicate stronger linear correlations,

while values closer to 0 indicate weaker correlations. Generally,

when the absolute value of the correlation coefficient exceeds 0.85,

the two features are considered to have a very high correlation. The

heat map in Figure 5 shows the highest correlation is 0.6, indicating

no need to delete any features. Based on feature importance,

we remove less important features to observe changes in

model performance.

We list the feature importance of a single model and the average

importance of multiple models in Table 8. We found that the feature

importance’s ranks of XGBoost and RF are similiar to the average

version, and the “postprandial glucose” feature had the lowest

correlation. In contrast, the “urine microalbumin/creatinine”

feature is identified as the least important for both SVM and MLP.

We removed these features, respectively, and retrained the model.

The predicting results after removal are shown in Table 9. Compared

with removing the “urine microalbumin/creatinine” feature, the

prediction accuracy for several complication types improved

(highlighted in the table) after removing the “postprandial glucose”

feature. Notably, the accuracy for “Vascular complications of

diabetes” improved from 94.83% to 95.17%, a 0.34% increase,

followed by a 0.17% increase in the accuracy for “Complications of

diabetes nephropathy”. The recall, F1, and AUC values also showed

varying improvements and declines, but generally, the increases

outweighed the decreases. Therefore, we believe that using the
FIGURE 5

The heat map of each feature.
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TABLE 8 The average importance of each feature.

Feature Importance
(XGBoost)

Importance
(SVM)

Importance (RF) Importance
(MLP)

Average
importance

creatinine 10.28% 1.04% 10.15% 3.76% 6.31%

cystatin C 10.39% 1.16% 9.95% 3.07% 6.15%

high-density lipoprotein
cholesterol

10.01% 1.30% 8.74% 3.01% 5.76%

glycosylated hemoglobin 8.83% 1.39% 8.86% 3.55% 5.66%

24-hour urine protein 8.40% 0.88% 9.32% 2.04% 5.16%

urine microalbumin 7.19% 0.83% 7.81% 2.51% 4.90%

blood sugar 7.59% 1.08% 7.41% 3.32% 4.85%

uric acid 7.19% 0.83% 7.81% 2.51% 4.58%

urine microalbumin/creatinine 8.53% 0.37% 8.32% 1.09% 4.58%

total cholesterol 7.41% 0.82% 7.72% 2.13% 4.52%

low-density lipoprotein
cholesterol

6.47% 0.89% 6.89% 2.83% 4.27%

postprandial glucose 6.58% 0.63% 6.19% 2.27% 3.92%
F
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TABLE 9 Prediction results after removing features.

Complication Types Classifiers Accuracy Recall F1 AUC

After removing features “urine microalbumin/creatinine”

No complications in diabetes

Stacking Classifier (logits) +
Bayesian Optimization

86.17% 42.57% 50.89% 88.51%

Ocular complications of diabetes 95.83% 79.38% 86.03% 94.77%

Neurological complications of diabetes 92.50% 66.99% 75.41% 94.85%

Complications of diabetes nephropathy 98.00% 90.43% 93.41% 99.42%

Vascular complications of diabetes 94.50% 75.27% 80.92% 95.50%

Foot complications of diabetes 94.67% 76.79% 84.31% 94.49%

After removing features “postprandial glucose”

No complications in diabetes

Stacking Classifier (logits) +
Bayesian Optimization

88.50% 49.51% 59.17% 89.40%

Ocular complications of diabetes 96.50% 82.47% 88.40% 94.34%

Neurological complications of diabetes 93.17% 68.93% 77.60% 95.92%

Complications of diabetes nephropathy 98.50% 93.62% 95.14% 99.76%

Vascular complications of diabetes 95.17% 81.72% 83.98% 97.00%

Foot complications of diabetes 95.00% 78.57% 85.44% 96.33%

After removing features “postprandial glucose” and “low-density lipoprotein cholesterol”

No complications in diabetes

Stacking Classifier (logits) +
Bayesian Optimization

88.17% 45.54% 56.44% 88.58%

Ocular complications of diabetes 94.17% 71.13% 79.77% 94.73%

Neurological complications of diabetes 92.50% 66.02% 75.14% 94.61%

Complications of diabetes nephropathy 98.00% 90.43% 93.41% 99.79%

Vascular complications of diabetes 94.00% 79.57% 80.43% 96.24%

Foot complications of diabetes 95.50% 78.57% 86.70% 95.73%
Bold means the optimal values among different methods for the same evaluation metric.
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average feature importance can break the dependency of different

models on certain features and is more suitable for reflecting the

feature importance of ensemble learning models.

Next, we removed two features to examine the model’s prediction

accuracy. This experiment tried different combinations of removing

two features and finally found that accuracies decreased mainly after

removing “postprandial glucose” and “low-density lipoprotein

cholesterol”. The prediction results are shown in Table 9. This

reduction did not occur when only one irrelevant feature was

removed. Therefore, removing two features did not consistently

improve the model’s prediction accuracy while reducing costs.

Finally, for cost considerations, we obtained the cost of each

sampling indicator from the hospital where the dataset was collected,

as shown in Table 10. Our final model is combined with the

experimental results above, stacking classifier with Bayesian

optimization after removing the “postprandial glucose” feature. The

cost of sampling all 12 features is 160 RMB, while this “postprandial

glucose” indicator costs 4 RMB. Therefore, compared to sampling 12

indicators simultaneously, sampling only 11 features can reduce

medical expenses by 2.5%, improving prediction accuracy.
4 Conclusion

In summary, this paper addresses the prediction of diabetic

complications through laboratory medicine indicators. The aim is to

provide diabetic patients with an early understanding of their

potential complications following basic tests upon hospital

admission. This approach provides a more accurate risk

assessment for doctors and patients, potentially optimizing clinical

decision-making. Initially, this study collected sample data from the
Frontiers in Endocrinology 17
laboratory department of a reputable hospital. Through data

cleaning and label classification, a comprehensive data set was

constructed, supporting this experiment’s training and prediction

processes and facilitating further research in this field. Subsequently,

by comparing the prediction results of Random Forest, XGBoost,

SVM,MLP, Stacking Classifier, and Stacking Classifier with Bayesian

Optimization, the experimental results indicate that the Stacking

Classifier with Bayesian Optimization exhibits superior performance

in predicting diabetic complications. Notably, the Stacking Classifier

with Bayesian Optimization achieved an accuracy of 98.33% and an

AUC of 99.71% in predicting diabetic nephropathy. Furthermore,

to reduce patient testing costs, this paper analyzed the feature

heat map and incrementally removed one and two features to

observe changes in prediction accuracy. The experimental results

demonstrate that after removing “postprandial glucose,” the

overall prediction accuracy further improved, and the reduction in

testing requirements led to a 2.5% decrease in the patient’s

medical expenses.
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