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Advancements in artificial intelligence (AI) are providing a wealth of opportunities

for improving clinical practice and healthcare delivery. It is predicted by AI experts

that healthcare will change more in the next decade than it has in the previous

century due to the volume and speed of these advancing capabilities. In this

paper, we will illustrate the potential value of AI by sharing an example of an AI-

powered digital health platform, designed to support people living with chronic

cardiometabolic conditions and their care teams. The goal is to transform the

care continuum from prevention through diagnosis, treatment, and ongoing

management, including efficient acute care interventions when needed. The

intent is to shift from reactive to proactive care including preventive-based

guidance and interventions. AI-powered health technologies enable true

person-centered care (i.e., for N=1), but for entire populations at scale (i.e., N

>> 1), shifting the traditional mass generalization paradigm to one of mass

customization. We demonstrate how an AI-powered digital health platform: 1)

supports early detection and diagnosis of chronic conditions such as diabetes

and related cardiometabolic conditions with data and insights; 2) optimizes

personalized treatment; 3) tracks progress; 4) provides education; and 5)

enables longitudinal behavior change to sustain health. We will present current

AI capabilities as well as future considerations for the industry. We will also

discuss principles that govern the responsible adoption of AI capabilities in

healthcare to complement, not replace, the clinician.
KEYWORDS
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1 Introduction – defining AI

While AI is one of the most noted and debated topics in society today, it’s not a novel

concept and has been around for many decades. Of note is the period from 1950 to 1956,

where Alan Turing famously published “Computer Machinery and Intelligence” which

proposed a test of machine intelligence called The Imitation Game. In 1952, a computer

scientist named Arthur Samuel developed a program to play checkers, which was the first to
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ever learn the game independently. AI has been universally defined

as any technique that enables computers to mimic human

intelligence using a series of logical constructs, including if-then

rules, decision trees, machine learning and deep learning (1).

Interestingly, the American Medical Association also uses the

term “augmented intelligence”, focusing on AI’s assistive role and

emphasizing the fact that AI enhances human intelligence rather

than replacing it (2). We now take a closer look at these forms of AI

(see Supplementary Figure S1).

Rule-based artificial intelligence (AI) is a type of AI that uses

predefined rules - often derived from clinical evidence-based

guidelines for healthcare applications - to process data and make

decisions. It’s a static approach that is well-suited for environments

where rules and outcomes are traceable and don’t change. An

example of a rule-based AI would be an insulin calculator that

uses an insulin-to-carbohydrate ratio and a correction factor to

recommend an insulin bolus dose based on a defined carbohydrate

intake and a healthcare provider’s prescription for how the insulin

should be administered. The output of such a model will always be

the same for the same permutations of input variables and will not

evolve or change over time. The benefit of such an approach is that

it is testable, and can be assessed confidently for risk, which will not

evolve or change as it can be assessed for every viable permutation

of input variables to the model (1).

Machine Learning (ML) is a type of AI that enables systems to

learn from data, identify patterns, and make decisions with varying

degrees of human intervention. There are different types of

machine learning:
Fron
• Supervised learning: Algorithms are trained on labeled data

and direct supervision by a human.

• Unsupervised learning: A type of machine learning that

learns from data without human supervision. Unlike

supervised learning, unsupervised machine learning

models are given unlabeled data and allowed to discover

patterns and insights without any explicit guidance

or instruction.

• Reinforcement learning: Combining the above approaches,

with human intervention, to allow the system to learn

through trial and error, receiving rewards for

correct actions.
A benefit of such an approach is that the output of the model

can adapt and change to variations in the input variables. In essence,

the model learns over time, and becomes more accurate and in the

case of health interventions, more personalized, an important step

in the journey towards mass customization (3).

Deep learning (DL) is one type of ML involving neural networks

with many layers, enabling high-level data abstraction and pattern

recognition. DL can be used for advanced image analysis for

pathology and radiology, for speech recognition and natural

language processing applications, and for genomic data analysis

for personalized medicine. While ML typically relies on thousands

of data points, DL uses techniques that accommodate millions of

data points. ML algorithms usually perform well with relatively
tiers in Endocrinology 02
small datasets. DL requires large amounts of data to understand and

perform better than traditional machine learning algorithms.

Generative AI is a broad category for a type of AI, referring to any

artificial intelligence that can create original content. Generative AI

applications are built on underlying foundational AI models, such as

large language models (LLM). LLMs are the text-generating basis of

generative AI. Generative AI models work by using a combination of

attention layers and neural networks to extract semantic, contextual,

and grammatical patterns from large volumes of text training data,

which can then generate new content (4).

All of these forms of AI can manifest within the healthcare

system. Each can play a different role that is accompanied by

varying degrees of risk and intended use; i.e., is the AI intended

to take a current process or system and make it more efficient (i.e.,

better, faster, less expensive, more scalable, etc.) or is it to deliver

something novel that could otherwise not be achieved (5–7). We

discuss this AI application framework later in the paper.
2 An AI architecture to transform the
care continuum

In order to achieve care transformation goals through AI-

powered technology, a solid foundation is needed which includes

data governance, AI policy and procedures and evidence

generation. From this foundation, four pillars rise, as illustrated

in Figure 1: 1) A data intelligence platform, 2) user-generated health

data through a digital health solution, 3) the integration of external

health data sets from data shared by clients and external sources, 4)

the underlying AI algorithms and models including model quality

and evaluation.
2.1 The data intelligence platform

The data intelligence platform includes the data infrastructure,

data engineering, data analytics, data visualization, and AI

modeling that collectively enable the conversion of raw data into

insights and value that can be used for different purposes with

different stakeholders. While the data intelligence platform’s

“DNA” is characterized by the elements listed above, it can best

be functionally described in four sections:
1. Inputs. The inputs to the data intelligence platform are

data, which can come from a variety of sources. These data

are structured, semi-structured, and unstructured, and can

be derived from biometric and non-biometric data sources

that feed into a digital health platform or app. Examples of

biometric sources are sensors, such as continuous glucose

monitoring systems (CGMs), wearables and in the future, a

plethora of planned non-invasive physiologic sensing

devices. A digital health app can additionally collect

individual level data from the user around symptoms,

medications, psychosocial, food, activity, sleep, and

individual health and laboratory testing results and
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provides this data, including summarized insights that are

made available in a clinical portal. These types of data

constitute the principal data sources and using a water

analogy, could be described as different rivers emptying

large volumes of water into a larger lake - in this case, a lake

or lakehouse of data. But, the sources are not just limited to

these larger volumes of data. Into this large body of water,

smaller streams can also trickle in additional data from

external sources (e.g., Firebase, Bitly, Sendbird, Apple

iTunes and Google Play app store, Google Analytics, and

Ring Central, etc.). To summarize, the inputs are data that

can be associated with the following four categories.
tiers in
a. Digital health app engagement data: This is person-

entered data into a digital health app (e.g., daily blood

pressure and weight values, images of food consumed,

surveys and health literacy courses completed, etc.).

b. Event and communications data: This is ancillary

data that surrounds the use of the app, related to

external SMS, email and other notification data.

c. External member data: This can be lab, pharmacy,

genomic or other data associated with the member

or members.

d. App activation data: This is data related to the

activation process, and may provide “string of pearls”

insight into the activation journey a member is taking.
2. Extract-Transform-Load (ETL) Processes: The “extract-

transform-load” is a process that combines data from the

multiple input sources above into a centralized storage

repository for analysis and storage. It’s a common way to

prepare data for machine learning, data analytics, and

business intelligence. It will involve steps that include

data organization, data cleansing, data definition capture

(i.e., data dictionary preparation) among other data pre-
Endocrinology 03
processing steps and techniques. It may also involve

translation, which would be format manipulation to allow

for downstream processing of the data in a unified manner.

3. Data Lake: This is the key power of the data intelligence

platform, and can be implemented through a variety of

platform tools such as Databricks, Azure Synapse, Amazon

Redshift, etc. These platforms allow for efficient storage and

partitioning of data into raw tables (i.e., bronze-layer), pre-

processed data (e.g., silver-layer) and aggregated data (e.g.,

gold-layer). For example, while raw continuous glucose

monitoring (CGM) data may be brought into the bronze

layer, the calculation of the next level of metrics such as time in

range, time above range, estimated average glucose and

glucose variability would occur and be housed in the silver

layer for easy and efficient use. Data architecture is paramount

in order to optimize separability of data in a manner that is

governed by data storage size, frequency of access, type of data,

location of data, etc. For example, housing data together that is

frequently accessed allows for storage capacity to be added

only where needed due to frequency of use, vs. a more “brute

force” way of adding storage capacity, perhaps to where it is

not necessary, thus leading to possible excess costs due to

underutilized capacity.

4. Data Sharing and Analytics: This section addresses an

important part of the data intelligence platform,

addressing “what can one do with the data?” Inherent in

this section is advanced reporting and visualization of the

data, key trends over time, key comparisons across different

cohorts, etc. Also, the ability to share data with external

parties - under proper consent, privacy, legal and security

procedures and policies - in multiple formats is paramount;

data sharing allows entities who are downstream in the data

value chain to extract value from data at all levels.
FIGURE 1

The foundational architecture for an AI-powered digital health platform.
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2.2 User-generated health data

A digital health app’s advanced AI-Engine connects and correlates

among various dimensions of health (MEDALS; Medications,

Education, Diet, Activity, Labs, Symptoms and Surveys) which

informs personalized guidance and coaching messages. This is the

fundamental architecture for Welldoc’s digital health apps.

Engagement with any digital health solution is required for it to

deliver its intended purpose to an individual with a chronic

condition such as diabetes. In diabetes, it is well established that

optimal glucose management requires: 1) an understanding of an

individual’s glucose levels in real-time; and 2) diligent self-management

of key behaviors including the Association of Diabetes Care and

Education Specialists (ADCES) ADCES7 Self-Care behaviors (eating

healthy, being active, taking medications, monitoring, problem solving,

reducing risks and healthy coping (8)). The combination of CGM

which can provide dense glucose data, and AI-driven, regulated digital

health solutions, which capture the user engagement data, helps to

address these two factors as illustrated in Supplementary Figure S2

showing examples from Welldoc’s digital health application.

Welldoc conducted analysis to see if engaging with the

combined CGM+AI-driven digital coaching influenced self-

management behaviors. Data were reviewed from individuals

living with type 2 diabetes enrolled in an employer program that

provided a continuous glucose monitoring system and the digital

health platform to each participant. Participant engagement with

the digital health solution was examined across two cohorts: Cohort

1 (n=37) used CGM continuously for 24 weeks; Cohort 2 (n=55)

used CGM intermittently. Counts of specific feature use of the

digital health solution that support ADCES7 self-care behaviors,

including food, medication tracking, activity, sleep, blood pressure,

and weight were tabulated. At baseline: 56% of CGM users were

male; 80% were between 40–64 years years-old; mean baseline A1C

was 9.5%; most participants were not prescribed insulin. It was

found that use of CGM+AI-driven Digital Coaching can help

individuals with type 2 diabetes regardless of their therapy type to

improve ADCES7 self-care behaviors engagement. Engagement

with the digital health solution was significantly greater for the

continuous use cohort in the first 12 weeks (37.1 Weekly Average

Engagements versus 18.8; p=0.00005) (9). Clinicians should

consider how CGM wear time influences self-care behaviors to

coach and treat individuals with diabetes. Further study of the

integration of emerging real-time data sources into digital health

offerings will inform the continued evolution of digital solutions

and the support they provide for individuals managing their

chronic care journey.
2.3 External data integration

As medical knowledge grows, the volume and types of health data

expands and as technologies advance, insights from the data can

support clinical workflows and decision-making. This data can include

(but is not limited to) claims data, genomic data, ethnographic data,

social determinants of health (SDOH) data, survey data, geolocation
Frontiers in Endocrinology 04
data, zip code data, and so forth (see Supplementary Figure S3) (10).

Diabetes is a condition in which ever-advancing technologies have

served to create a digital diabetes ecosystem of connected technologies

including CGMs, insulin pumps including automated insulin delivery

(AID), and smart insulin pens along with numerous health and

lifestyle apps (11, 12). These technologies support people living with

diabetes in their daily self-management while gathering valuable self-

management and lifestyle data that can be transmitted and analyzed.

With the ongoing advances in AI, it is possible to integrate current

technologies with precision medicine learnings into AI software

including physiological data, psychological data based on validated

instruments, e.g. diabetes distress, and reported or tracked health

behaviors such as taking medications, being active and healthy eating.

AI can then provide precise, holistic therapy recommendations

individualized to each person (11).

Two factors need to be considered with regard to the potentially

large volume of external data: one, how clinicians will access these

data; two, how will clinicians utilize these data effectively in their

work flows. Typically, data from glucose sensors, insulin pumps,

and food and activity trackers could be viewed via a web portal. The

clinician would have to log in with a username and password and

then locate the patient and then view and manually transfer that

data to the electronic health record (EHR). This clearly is

cumbersome and takes clinicians away from their optimal work

flow within the EHR. In the near future, most web portals will be

replaced with direct data integration with the EHR. The data should

always be synced in the electronic chart of the patient and can be

added to the encounter documentation easily. In addition, direct

integration would facilitate virtual visits and remote monitoring.

Regarding the second point, access to person-generated data

continuously can be overwhelming and may increase burden on

clinicians. AI systems should be able to summarize the data and

produce correlative insights that would give clinicians the

actionable information that they need. Alerts could be generated

only when clinicians need to be aware of critical results. Such

algorithms would thus free up clinicians for higher cognitive tasks.

When computers do what computers do the best, clinicians will be

freed up to be more humanistic caregivers, engendering trust and

empathy with their patients.

In a recent study, clinicians were given a task to make diagnoses

and demonstrate clinical reasoning when given standardized patient

vignettes. The clinicians were randomized to the use of an AI for

clinical decision support or to the use of traditional medical

references. The results surprisingly demonstrated no differences

in the clinical reasoning scores between the two groups. In fact, the

AI by itself performed better than the clinicians with the AI. This

suggests that AI tools cannot be given to clinicians without training.

Clinicians must learn to use AI optimally to get the best results (13).
2.4 Algorithms and models

Since clinical AI systems are developed on vast amounts of real-

world health data, the corresponding labels and data quality will

influence an AI model’s performance. Potential challenges
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https://doi.org/10.3389/fendo.2025.1593321
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shomali et al. 10.3389/fendo.2025.1593321
associated with the quality of data can include: 1) poor quality of the

data themselves (e.g., blurred images, intermittent data from a

CGM, etc.); 2) incorrect data labels; and 3) insufficient data, with

only a small portion of the data being labeled (14). AI algorithms

must be trained on fair datasets that accurately represent social,

environmental, and economic factors which influence health.

Otherwise, they may amplify implicit bias and discrimination if

trained on data that reflect the health-care disparities experienced

by groups defined by race, ethnicity, gender, sexual orientation,

socioeconomic status, or geographic location (15). The STANDING

Together consensus workgroup has published recommendations,

through an international consensus process, which provide

guidance on transparency around who is represented in the data,

how people are represented, and how data is used when developing

AI technologies for healthcare (16). Choosing an appropriate AI

model, based on the use case, is also important. Some AI models,

like Generative AI, are resource intensive (e.g., require significant

computing power), hence picking the right model is important for

successful implementation of AI models in practice.
2.5 Evidence generation

Digital health is significantly altering the way researchers

approach research as it is enabling the collection of real-world data

(RWD). Large-scale, continuous data from diverse patient

populations through wearable devices, mobile apps, and integrated

electronic health records (EHRs), allows for more representative

insights into treatment effectiveness compared to that with more

controlled settings of traditional randomized controlled trials (RCTs),

which can be less generalizable to real-world practice (17). By

leveraging data from large patient populations using digital health

platforms, researchers can study diverse groups and identify patterns

that may not be apparent in smaller RCTs. Digital health technologies

empower individuals to actively participate in research by self-

reporting data through apps and wearables, leading to more

person-centered insights and providing a richer picture of health

outcomes beyond clinical visits. Continuous data collection allows for

monitoring treatment effects in real-time, enabling rapid adjustments

and better understanding of treatment dynamics. Utilizing existing

digital health infrastructure can be more cost-effective than

conducting traditional RCTs, especially for long-term studies.

While digital health is enabling researchers to move beyond the

limitations of RCTs by providing access to rich, real-world data,

there are challenges associated with using digital health for real-

world evidence that must be considered. Data collected through

digital platforms can be incomplete, inconsistent, or biased due to

user behavior and device limitations. Ensuring patient privacy and

data security is critical when collecting large amounts of personal

health information. Analyzing large, diverse datasets from digital

health sources requires advanced statistical methods and expertise.

Lack of standardized data collection protocols across different

digital health platforms can hinder data comparability.

Despite research challenges there is some evidence of the potential

of digital health to improve clinical outcomes in cardiometabolic
Frontiers in Endocrinology 05
conditions. A cluster-randomized trial of an early digital health tool

powered by rules-based AI enrolled 163 patients with type 2 diabetes

across 26 primary care practices. Results showed a mean decline in

A1C of 1.9% in the maximal treatment group (mobile- and web-based

self-management patient coaching system and provider decision

support) compared to 0.7% in the usual care group, a difference of

1.2% (P<0.001). There were no appreciable differences observed

between groups for patient-reported diabetes distress, depression,

diabetes symptoms, or blood pressure and lipid levels (all P>0.05) (18).

More recently a study sought to demonstrate the safety of a

CGM-informed insulin bolus calculator that applies trend arrow

and exercise adjustments to bolus insulin dose recommendations

and provides real-time coaching through an AI-powered digital

health tool. Fifty-four participants with either type 1and type 2

diabetes and using CGM were enrolled in a 30-day prospective

clinical trial conducted at two research sites. Participants used the

mobile application to monitor their CGM data and calculate insulin

doses. Time in Range (TIR) during the prospective 30-day period

was compared to that in 30 days of baseline data. Participants’ TIR

improved from 68.4% to 71.8% (N=54, P=0.013) with no increase in

time below 70 mg/dL. Researchers noted that individuals with type

2 diabetes had a greater increase in TIR (74.3% to 81.4%) than those

with type 1 diabetes; 64.4% to 65.2%). In users with at least

moderate diabetes distress at baseline, there was a significant

reduction in diabetes distress at study completion. Use of a novel

CGM-informed insulin bolus calculator by individuals with

diabetes was associated with significant improvement in TIR

without an increase in hypoglycemia or diabetes distress (19).

In a review of key papers (written between July 1, 2021 and June

30, 2022), addressing both digital therapeutics and digital care

solutions in the prevention and treatment of diabetes Clements

et al. found a focus on translating evidence-based diabetes

prevention programs into validated digital delivery formats and

on remote physiological monitoring as the use of connected

technologies monitoring aspects of metabolic health expands (20).

One of the studies reviewed was a randomized controlled trial of an

interactive smartphone app-based lifestyle intervention for weight

loss conducted in 28 adults with a body mass index between 25–42

kg/m2. Subjects were randomized to either a conventional weight

loss program or to the smart phone digital health intervention. This

app-based electronically delivered lifestyle intervention produced

statistically significant, clinically meaningful weight loss and

improved metabolic health at 6 months (21). Engagement with

the intervention correlated strongly with weight loss. Researchers

note that larger and longer studies of this intervention are needed.

Another study reviewed was a secondary analysis of retrospective

data of adults with prediabetes who were enrolled in a digital diabetes

prevention program which incorporates interactive mobile

computing, remote monitoring, and evidence-based curriculum,

behavior tracking tools, health coaching, and online peer support to

prevent or delay type 2 diabetes. The sample (N=1095) included

people with prediabetes who completed at least 9 months of the digital

prediabetes program. Participants were 67.7% (n=741) female, with a

mean age of 53.6 (SD 9.75) years. After 12 months, participants

decreased their weight by an average of 10.9 lbs (5.5%; P<.001) and
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increased their physical activity by 91.2 (P<.001) minutes. These

results suggest that the digital prediabetes program is effective at

preventing type 2 diabetes through a significant reduction in body

weight and increase of physical activity. A prospective randomized

controlled clinical study is needed to validate these findings (22).

Evidence generation is not only important for clinical

outcomes, but for economic outcomes as well. Implementation

and scaling of AI technology is associated with high costs. Studies

should examine the cost-effectiveness, potential savings, and the

economic feasibility of any novel AI solutions across healthcare

systems. Health economic analyses should assess the value for

specific AI interventions and can thus support the optimal

allocation of health system resources (23).
2.6 AI policy and procedures

Elbert Hubbard once said “The world is moving so fast these days

that the person who says it can’t be done is generally interrupted by

someone doing it!” (24). Indeed, this can be said of the guardrails that

are attempting to be put into place by esteemed organizations, such as

the FDA, White House and most recently and perhaps most

comprehensively, the United Nations. Recent developments in AI

policy and procedures for healthcare in the US focus on balancing

innovation and speed with patient safety and ethical considerations.

The FDA is actively working on frameworks for regulating AI-

based medical devices and has issued a guidance document,

emphasizing the need for transparency and validation. Discussions

are ongoing regarding the use of AI in diagnostics, treatment

planning, and administrative tasks, with concerns about bias,

privacy, and the potential impact on healthcare professionals (25).

Organizations like the National Academy of Medicine are promoting

guidelines for responsible AI implementation in healthcare, while

various stakeholders are collaborating to address challenges and

ensure AI benefits all patients equitably (26, 27).

The United Nations issued “Governing AI for Humanity”, in

September 2024, as a collaborative, international effort to undertake

analysis and advance recommendations for the international

governance of artificial intelligence (28). In this report, the point

is made that “There is, today, a global governance deficit with

respect to AI. Despite much discussion of ethics and principles, the

patchwork of norms and institutions is still nascent and full of gaps.

Accountability is often notable for its absence, including for

deploying non-explainable AI systems that impact others.

Compliance often rests on voluntarism; practice belies rhetoric.”

Much work remains to be done in ensuring diligent process and

policy for the safe, judicious and valuable integration of AI into

healthcare delivery as we know it today.
2.7 Data governance

We are committed to understanding how AI can be leveraged to

power better connected care. This work is complex, requiring
Frontiers in Endocrinology 06
diligence in operationalizing extensive and diverse data sets,

clinical evidence, data governance, interoperability and a data

intelligence platform that ensures privacy, security and scalable

application in real-world settings. Databricks, with its Unity

Catalog, is an example of a platform that gives superior

centralized data governance capabilities. Unity Catalog allows

seamless governance of various data sources to be shared with

enterprise clients. Fairness and bias testing allows for inclusive

models to be built and operationalized. Good data governance

ensures the mitigation of potential harm and helps to build and

maintain public trust.
3 Combining architecture elements to
form an AI strategy: balancing risk and
value

Armed with data governance, a data intelligence platform,

person-generated health data and external data sets, it now

remains to build an AI strategy by organizing potential use case

opportunities into a framework defined by two principal

dimensions: Risk (high or low) and value/AI intent (operational

efficiencies or innovation/new capabilities) as illustrated in

Supplementary Figure S4. Use cases or features that utilize each

type of AI (Rules-based, ML, DL, Generative AI) can manifest in

any of the four quadrants. In the context of software as a medical

device (SaMD), the categorization of risk is nearly synonymous with

unregulated vs. regulated features and functionality.
3.1 A “Crawl-Walk-Run” approach

The opportunities in digital health created by AI can be

implemented in stages - aligned with the evolution of AI itself -

as outlined below, with inherent value-risk increasing across the

stages. At each stage there are constraints and considerations

including: regulatory oversight; the extent and size of data sets

required for learning; comprehensive research and algorithm

development; and robust testing and monitoring. As an

illustrative example, for a digital health solution that utilizes AI to

coach individuals who suffer from a chronic condition on how to

best manage their health based on data they enter into the solution,

the evolution can be as follows:
• Stage 1: Rules-based: Objective: Static digital coaching and

insights based on clinical guidelines.

• Stage 2: Dynamic: Objective: Enhanced digital coaching and

insights based on an individual’s data, to drive more

precision and personalization within what the clinical

guidelines allow for.

• Stage 3: Adaptive: Objective: Organic (i.e., living)

optimization of coaching and automation of actions

and insights.
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To orchestrate and implement a successful AI strategy, many

factors need to be taken into consideration:
Fron
• Availability of representative data to train AI models: There

is no model without data. A typical model training

approach will partition the available data in a 70:30 ratio;

that is, 70% of data is used for training the model and 30%

for testing the model. There are many variants for how

models can be trained, but it’s necessary to have the right

data, and plenty of it.

• Discipline in training and testing when it comes to bias,

fairness, and toxicity. Rigorous training and testing

methods, which invoke a series of metrics such as AUC

(area under the curve), ROC (receiver operating

characteristic curve), accuracy and MSE (mean square

error) can be used to ensure that model training and

testing iterations strive to optimize the solution to the

problem in consideration.

• Models that are trained on owned data to enable traceability

and data provenance. One of the core issues, asked

especially in regulated medical device use of AI, is

regarding data provenance; that is, a documented trail

that tracks the history of data, including its origin,

changes, and processes that are used to manipulate it.

Metrics on accuracy will need to be traced back to data

sources, to ensure that models don’t unfairly classify

outcomes, or classify outcomes with bias. With increased

emphasis on inclusiveness, ensuring data provenance

becomes critical to successful model development

and deployment.

• Periodic retraining and re-testing of models to drive

continuous accuracy improvement. The concept of data

drift is important to embrace. Will a model, trained on the

current year’s data, be accurate in 5 years, with

advancements in drug therapies, coaching models, real

world insights, etc.? Will models behave the same way

over time? It is important to ensure that models are

periodically re-trained to accommodate for data drift

over time.

• Integrated algorithm development to minimize data

processing and infrastructure costs. It is said that less

than 10% of Fortune 500 companies have a data

lakehouse strategy (Accenture), which is a key element

required to even contemplate an AI strategy. Being able to

use one’s own data, within the data intelligence platform

will not only benefit issues such as provenance but will also

contribute to overall lower processing and infrastructure

cost (29).
And, let us not forget some of the foundational enablers for a

successful AI strategy, which can include basic macro-economic

factors such as access to digital technology, digital and Internet

connectivity and technology literacy (30).
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4 Looking to the future

The use of AI in healthcare is increasing, contributing to

improved diagnostic accuracy, optimized treatment plans, and

improved clinical outcomes. The rapid evolution of AI, especially

generative AI and the large language models (LLMs) have set off

discussions about the potential impact of AI on the healthcare

industry and the evolving role of the healthcare provider or

clinician in various disciplines. The question is frequently

raised, “will AI replace clinicians” or “will clinicians who use AI

replace clinicians who do not use AI?” (7, 31). AI is best used when

it augments or complements the clinician’s own judgment and

scientific training versus replacing them, thereby combining the

cognitive strengths of the clinician with the analytical capabilities

of AI. This concept has been described as a human-in-the-loop

approach to ensure that AI systems are guided and supervised by

human expertise to maintain safety and quality in healthcare

delivery (32). This approach is resulting in a paradigm shift in

healthcare by using AI to complement and enhance the skills of

clinicians, ultimately leading to improved service, quality, clinical

outcomes, and healthcare system efficiencies (see example

in Figure 2).

Healthcare organizations will increasingly become responsible

for providing AI tools that have undergone rigorous evaluation and

validation to ensure safety and effectiveness for clinical practice

(e.g., regulatory review and clearance). An example of this could be

the integration of augmented reality into chronic care management.

The potential impact that Augmented Reality (AR) may have on a

condition such as diabetes can be profound (33). An AR system

may push the envelope on lifestyle-enhancing benefits for users,

ultimately allowing them to make better choices. AR glasses/devices

could be used to visualize real-time changes in blood glucose levels

based on dietary choices, for example. For prognostic or feedback

purposes, data on glucose, insulin sensitivity, diet, and activity could

all be incorporated by the system. Thus, AR, large language models,

and machine learning, when integrated into one platform, have the

potential to offer personalized, intelligent, and interactive

experiences not fathomable today.

Finally, there is a growing need to develop education and

training on the fundamentals of AI and its effective

implementation in clinical practice and AI-supported healthcare

delivery, and such training will undoubtedly take on a grass-roots

flavor and end up in medical school training curricula. Critical to

success will be the thoughtful integration of AI-powered tools into

the clinical care process, a focus on user engagement, decision

support truly anchored to data, and incentives focused on health

outcomes and prevention.
5 Conclusion

Leveraging AI to fix a failing healthcare system will clearly

require interdisciplinary work by clinicians, healthcare executives,
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medical device companies, data scientists, ethicists, and public

health professionals, among others. It is up to clinicians to

recognize their important role in responsibly leveraging AI to fix

a failing healthcare system. While the potential impact of AI on

healthcare is still being determined, ongoing digital innovation is

ensuring an ever-growing toolbox of new solutions giving

momentum to AI interest and eventual adoption. Regulatory

guidance will need to accommodate the rapid and ongoing
Frontiers in Endocrinology 08
iteration of digital health tools including new ways of monitoring

health data. We are hopeful that by describing the overarching

architecture of our AI-powered digital health solution, that we will

serve to guide clinicians, healthcare systems, researchers, payers,

and other stakeholders in responsible adoption of AI technologies

that are rigorously developed and maintained to ensure

effectiveness and safety in the more efficient delivery of

healthcare, particularly for those with complex chronic conditions.
FIGURE 2

Example of a future AI-enabled weight management program. (A) The traditional approach to weight management includes a clinical assessment,
implementation of a treatment plan based on standards of care, and a follow-up assessment, at which point the treatment plan can be adjusted.
(B) The AI-enabled program also includes a clinical assessment, but then the model (as prescribed by the clinician) can make real-time adjustments
in the care plan based on person-generated health data.
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