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Background: Patients with type 2 diabetes mellitus (T2DM) have an increased

susceptibility to urinary tract infections (UTIs), caused by uropathogenic

Escherichia coli (UPEC). Asymptomatic bacteriuria (ASB) is a significant

contributor, but lots of patients are difficult to distinguish. Distinguishing

between ASB and symptomatic UTIs can greatly assist clinicians in rational use

of antimicrobials.

Methods: Patients with T2DM and UTIs caused exclusively by UPEC were

recruited from the Second Hospital of Tianjin Medical University between 2018

and 2023. Demographic and clinical data were systematically collected for these

patients through a retrospective electronic chart review, in accordance with the

inclusion and exclusion criteria. We utilized this dataset as training set to develop

an ASB predictive model called ASBPredictor.

Results: A total of 337 cases were collected, comprising 158 cases (46.9%) of ASB

and 179 cases (53.1%) of symptomatic UTIs. Based on the optimal predictive

model, ASBPredictor exhibited a remarkable level of precision, achieving an area

under the curve score of 0.82. The identification of ASB is influenced by several

crucial factors, including urinary bacteria, urinary white blood cell clusters, C-

reactive protein, alanine aminotransferase, glucose, gamma-glutamyl

transpeptidase, sodium ions (Na+), and eosinophils.
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Conclusion: The ASBPredictor is an accurate, efficient, and reliable tool that

helps doctors differentiate between ASB and symptomatic UTIs. This precise

differential diagnosis has the potential to enhance the quality of

antimicrobial prescribing.
KEYWORDS
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Introduction

Type 2 diabetes mellitus (T2DM) is a significant global health

issue. According to a survey conducted by the International Diabetes

Federation (IDF) in 2021, there are approximately 537 million DM

patients worldwide, and this number is predicted to rise to 783

million by 2045 (1). T2DM accounts for the vast majority (> 90%) of

diabetes worldwide (2, 3). Urinary tract infections (UTIs) are the

second most common infection among hospitalized patients (4, 5),

which are commonly caused by uropathogenic Escherichia coli

(UPEC) (6–8). UTIs in patients with T2DM are more than 4 times

as common as in normal people (9), and the increased risk of UTIs in

individuals with T2DM can be attributed to various factors, including

hyperglycemia, impaired immune function, and structural changes in

the urinary tract (10).

The term ‘UTIs’ typically includes both symptomatic UTIs and

asymptomatic bacteriuria (ASB). In patients with T2DM, ASB

typically has a higher prevalence compared to symptomatic UTIs

(11). Multiple guidelines (12, 13) typically recommend against

intervening in cases of ASB, except for pregnant individuals (14)

and patients requiring urological surgery, compared to symptomatic

UTIs. Instead, treating ASB may expose patients to the risks

associated with antimicrobials, including adverse drug reactions

and antimicrobials resistance, potentially leading to prolonged

hospital stays for those who are hospitalized (15–17). Despite the

existence of guidelines (12, 13) and measures (15, 18–20) aimed at

improving the management of ASB, up to 80% hospitalized patients

with ASB are still treated with antimicrobials (4). In addition to

doctors having limited clinical experience (21) and not following

guidelines, another significant factors is the difficulty in

distinguishing between UTIs and ASB based on clinical symptoms

in some patients, such as those with vague consciousness or unclear

expression (22, 23), elderly patients with decreased sensitivity

(24, 25), and patients with prostatitis (26) or prostatic hyperplasia

(27). Several biomarkers have been researched to assist clinicians in

identifying ASB, but their effectiveness is limited (28, 29).

Machine learning (ML) algorithms can identify patterns and

risk factors, leading to earlier and more accurate diagnoses and

personalized treatment plans. In case of UTIs, ML has been used to

predict UTI presence (30) and antimicrobial susceptibility test
02
(AST) results (31). For instance, Xiong et al. achieved a

remarkable area under the curve (AUC) score of 0.979 in

predicting UTIs in T2DM by employing a gradient boosting

algorithm (32). Nevruz et al. found that a random forest

algorithm had the highest accuracy in predicting uropathogen

antimicrobial resistance, with AUCs ranging from 0.777 to 0.884

for different antimicrobials (33). Other models like XGBoost (34),

PittUDT (35), and NoMicro models (36) have also been trained.

However, there is currently no research on ML for differentiating

ASB from symptomatic UTIs. The objective of this study is to

develop a personalized ASBPredictor model that can accurately

distinguish between ASB and symptomatic UTIs by using a

comprehensive clinical variables dataset. The implementation of

this model has the potential to improve clinical decision-making,

reduce unnecessary antimicrobial usage, and lower healthcare costs.
Materials and methods

Data collection and preprocessing

In this study, T2DM UTI patients infected only by UPEC were

recruited from the Second Hospital of Tianjin Medical University

(Tianjin, China) between 2018 and 2023. Patients with positive

urine cultures for UPEC were diagnosed with either symptomatic

UTIs or ASB, depending on whether they had signs or symptoms

meeting UTI diagnostic criteria (12, 13). Specifically, ASB patients

could not have any of the following documented signs or symptoms:

dysuria, urinary frequency/urgency, suprapubic pain, fever

(temperature ≥ 38°C), costovertebral pain/tenderness, hematuria,

autonomic dysreflexia, or increased spasticity in patients with spinal

cord injury. Patients with acute alterations in mental status often

cannot communicate symptoms and were categorized as suffering

ASB if they had none of the aforementioned signs or symptoms and

no systemic signs of possible infection. Otherwise, the patients

would be assigned to the symptomatic UTIs group. Meanwhile,

patients were not eligible for inclusion if they met any of the

following criteria: (1) pregnant; (2) urinary stent, nephrostomy,

altered urinary tract anatomy, or urologic surgery before UC; (3)

intensive care unit (ICU) admission within 3 days before or after
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UC; (4) concomitant infection that results in unclear UTIs

symptoms; (5) active treatment and/or prophylaxis for UTIs on

admission (4).

Demographic and clinical data were systematically collected for

the two groups of patients by retrospective electronic chart review.

The following clinical data were recorded: (1) the diabetes control

condition and complications; (2) the presence of typical urinary

tract symptoms (dysuria, increased urinary frequency, urgency,

etc.); (3) all laboratory results obtained on the day (± 1 day) of

the first urine sample testing positive for UPEC; (4) antimicrobial

sensitivity results for the first urine culture-positive UPEC isolate,

which were interpreted using the breakpoints outlined in the 2023

Clinical & Laboratory Standards Institute guidelines.

The data were preprocessed to ensure accuracy and consistency.

First, missing values were identified and imputed using the mean

values separately calculated for the ASB and symptomatic UTI

groups. Next, outliers were detected and removed using statistical

methods. Finally, the data were standardized to eliminate the

influence of measurement units and enhance comparability

between variables. To address missing values in the dataset, we

evaluated two imputation strategies: mean imputation and K-

nearest neighbors (KNN) imputation. Mean imputation involved

replacing missing values with the mean values calculated separately

for the ASB and symptomatic UTI groups. KNN imputation

utilized the k-nearest neighbors algorithm to estimate missing

values based on similar patients’ data patterns. A comparative

analysis was performed to determine the optimal imputation

method for our dataset (Supplementary Figure 1). Mean

imputation demonstrated superior performance with an area

under the ROC curve of 0.82 and precision-recall AUC of 0.78,

compared to KNN imputation which achieved ROC AUC of 0.70

and PR AUC of 0.65. Based on these results, mean imputation was

selected as the primary imputation strategy for the ASBPredictor

model development. The processed dataset used for machine

learning training is provided in Supplementary Table 1.

To ensure data quality, differential diagnosis of ASB, data entry,

and cleaning were performed by two independent researchers. In

cases of discrepancies, a third researcher was consulted to resolve

differences. All data were stored securely and analyzed using

appropriate statistical software.
External validation dataset

To assess the temporal generalizability of the ASBPredictor

model, we collected an independent validation dataset from the

same institution covering the period from January 1, 2024, to June

25, 2025. This validation cohort included 103 patients, applying

identical inclusion and exclusion criteria as the training dataset. The

same data collection procedures, laboratory measurement

protocols, and clinical assessment methods were employed to

ensure consistency. Detailed characteristics of the validation

dataset are provided in Supplementary Table 2.
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Feature selection

Feature selection was meticulously carried out to identify the

most significant predictors of ASB versus symptomatic UTIs. We

employed a variety of methods for this purpose, including

correlation analysis, univariate logistic regression, and recursive

feature elimination (RFE). Antibacterial drug sensitivity and

laboratory features demonstrating strong correlations with the

outcome variable were preserved, whereas those exhibiting

minimal correlations were excluded from further analysis. In

addition to these techniques, advanced methods such as Shapley

Additive exPlanations (SHAP) (37) and Uniform Manifold

Approximation and Projection for Dimension Reduction

(UMAP) (38) were utilized to further elucidate the relationships

and importance of the selected features.
Machine learning methods

In this investigation, we utilized an array of machine learning

algorithms to accurately predict the diagnosis based on the

extracted features. The algorithms tested included Support Vector

Machine (SVM), Decision Trees, Random Forest, K-Nearest

Neighbors (KNN), Neural Networks, XGBoost, LightGBM. These

models were implemented using the SciKit-learn library in

Python (39).

We systematically evaluated seven state-of-the-art machine

learning algorithms to identify the optimal approach for ASB

prediction (Table 1). The algorithm selection encompassed

traditional machine learning methods (SVM, Decision Trees,

KNN), ensemble methods (Random Forest), deep learning

approaches (Neural Networks), and advanced gradient boosting

frameworks (XGBoost, LightGBM).

Each algorithm was chosen based on its specific strengths and

applicability to clinical data. Traditional methods provided

interpretability and baseline performance, ensemble methods

offered improved robustness and reduced overfitting, while

gradient boosting frameworks provided state-of-the-art predictive

performance. The comprehensive evaluation ensured that the

selected model (Random Forest, ROC AUC = 0.82) represented

the optimal balance between predictive accuracy, interpretability,

and clinical applicability for the ASBPredictor system.

Each model was meticulously trained utilizing a subset of

selected features enhanced through hyperparameter optimization.

Their performance was assessed using a suite of evaluation metrics,

including accuracy, precision, recall, F1 score, and the AUC. By

analyzing the performance outcomes across these diverse

algorithms, we were able to ascertain the most efficacious model

for discriminating ASB from symptomatic UTIs. To address

potential class imbalance concerns and ensure model robustness,

we evaluated the Synthetic Minority Oversampling Technique

(SMOTE) for data augmentation. Although our dataset showed

relatively balanced distribution between ASB (46.9%) and
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symptomatic UTI (53.1%) cases, we performed comparative

analysis using SMOTE to generate synthetic samples and assess

potential performance improvements. The SMOTE analysis

(Supplementary Figure 2) demonstrated nearly identical

performance between the original Random Forest model (ROC

AUC = 0.86, PR AUC = 0.83) and the SMOTE-augmented model

(ROC AUC = 0.86, PR AUC = 0.85), indicating that our original

model was not significantly affected by class imbalance.
Frontiers in Endocrinology 04
Evaluation metrics

In our research, the primary objective was to predict the

likelihood of either ASB or symptomatic UTIs using a robust

machine learning framework. We implemented a tenfold cross-

validation technique to ensure the model ’s reliabil ity

and generalizability. The effectiveness of our predictive model

was quantitatively measured using several key evaluation metrics:
TABLE 1 Machine learning algorithms evaluated in ASBPredictor development.

Algorithm Principle Advantages Disadvantages Performance
in study

Support Vector
Machine (SVM)

Finds optimal hyperplane to separate classes using
kernel trick

1. Effective in high
dimensions
2. Memory efficient
3.Versatile kernel functions
4.Good generalization

1. Poor performance on
2. large datasets
3. Sensitive to feature scaling
4. No probabilistic output
5.Difficult to interpret

ROC AUC:
0.62
PR AUC:
0.58

Decision Trees Creates tree-like model of decisions based on
feature values

1.Highly interpretable
2.Handles both numerical
3.and categorical data
4.No assumptions about
5.data distribution
6.Feature selection built-in

1.Prone to overfitting
Unstable (high variance)
2.Biased toward features with many
levels
3.Poor performance on
linear relationships

ROC AUC:
0.57
PR AUC:
0.66

Random Forest Ensemble of decision trees with bootstrap
aggregating and random feature selection

1.Reduces overfitting
2.Handles missing values
3.Provides feature
importance
4.Good performance without
tuning
5.Handles large datasets well

1.Less interpretable than single trees
2.Memory intensive
3.May overfit with very noisy data
4.Biased toward 5.categorical
variables with many categories

ROC AUC: 0.82
PR AUC: 0.78
Selected as
optimal model

K-Nearest
Neighbors (KNN)

Classifies based on majority class of k nearest
neighbors in feature space

1.Simple and intuitive
2.No assumptions about data
distribution
3.Effective for local patterns
4.Naturally handles multi-
class problems

1.Computationally expensive for
large datasets
2.Sensitive to irrelevant features
3.Requires feature scaling
4.Poor performance in
high dimensions

ROC AUC: 0.67
PR AUC: 0.67

Neural Networks Multi-layer perceptrons with non-linear
activation functions

1.Captures complex non-
linear relationships
Universal function
2.approximator
3.Flexible architecture
Good performance on
large datasets

1.Black box (low interpretability)
2.Requires large datasets
3.Prone to overfitting
Sensitive to 4.hyperparameters
Computationally intensive

ROC AUC: 0.70
PR AUC: 0.61

XGBoost Gradient boosting framework with advanced
regularization and optimization

1.High predictive
performance
2.Handles missing values
3.Built-in regularization
4.Feature importance scores
5.Efficient implementation

1.Many hyperparameters to tune
2.Can overfit with small datasets
3.Less interpretable than simple
models
4.Sensitive to outliers

ROC AUC: 0.79
PR AUC: 0.75

LightGBM Gradient boosting framework optimized for speed
and memory efficiency

1.Fast training speed
2.Lower memory usage
3.High accuracy
4.Handles categorical features
natively
5.Good parallel
learning support

1.Prone to overfitting on small
datasets
2.Sensitive to hyperparameters
2.May be unstable with small
datasets
4.Less mature than XGBoost

ROC AUC: 0.77
PR AUC: 0.73
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the true positive rate (TPR, recall) (1), false positive rate (FPR)

(2), and positive predictive value (PPV, precision) (3) calculate

as follows:

Recall   =  TPR   =  
TP

TP + FN
  (1)

FPR   =  
FP

FP + TN
(2)

Precision   =   PPV   =  
TP

TP + FP
(3)
Results

Overview of ASBPredictor performance
and selection criteria

In the study, a total of 337 cases were collected, comprising 158

cases (46.9%) of ASB and 179 (53.1%) cases of symptomatic UTIs.

Extensive feature engineering was conducted utilizing laboratory

data, and the ML models mentioned above were evaluated. These

models underwent a rigorous 10-fold cross-validation process to

ascertain their performance. The evaluation metrics focused on the

area under the precision-recall curve (auPRC) and receiver

operating characteristic (ROC) curve to select the best performing

model. The selected model demonstrated promising capabilities in

dis t inguishing between ASB and symptomat ic UTIs

effectively (Figure 1).
Frontiers in Endocrinology 05
Clinical and laboratory features

The Shapley values (SHAP) and UMAP were utilized to explain

the feature selected. The SHAP summary plot provides insights into

the contribution of each feature towards the prediction of ASB

presence. Features such as C-reactive protein (CRP), bacterial

particle of automated urine flow cytometry (BACT), urine white

blood cell clusters (UWBCC), alanine aminotransferase (ALT) and

blood glucose (GLU) show higher SHAP values, suggesting a

significant impact on the model’s output (Figure 2A). Figure 2B

illustrates the correlation between various features and ASB based

on SHAP values, offering deeper insights into the relationships

between the variables and ASB. Upon analysis, certain features,

such as BACT, sodium ions (Na+), and eosinophil percentage (EOS

%), displayed a strong positive correlation with ASB, while negative

correlations were observed for CRP and GLU. These findings

suggest that these variables may collectively contribute to the

predictive capabilities of the model ASBPredictor. This UMAP

scatter plot visualizes the multidimensional data used to predict

the presence ASB of developing (Figure 2C). The plot reveals

distinct clusters, indicating potential subgroups among patients

based on their laboratory profiles.
Performance of machine learning models

The AUC values from the ROC analysis are 0.82, 0.52, and 0.59

for data1_test (laboratory dataset), data2_clinical (clinical dataset),

and data3_sensitivity (antimicrobial sensitivity dataset),

respectively (Figure 3A). These values demonstrate that the
FIGURE 1

Performance metrics and machine learning model selection flowchart for distinguishing ASB and symptomatic UTIs using various classification
techniques and comprehensive laboratory datasets.
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laboratory dataset exhibits the highest capability in cases evaluation,

as evidenced by its superior true positive rate against an increasing

false positive rate. For the precision-recall curves (PR curves), the

AUC scores are 0.78 for data1_test, 0.56 for data2_clinical, and 0.60

for data3_sensitivity (Figure 3B). These results highlight that the

ASBPredictor using data1 not only predicts more true positives but

also maintains a commendable precision across the predicted

positives, which is vital in clinical applications where avoiding

false negatives is critical. Interestingly, the joint detection did not

show significant superiority. This portion underscores the efficacy

of integrating specific sensitivity features into the predictive models,

enhancing their diagnostic precision for identifying patients likely

to develop ASB.

The ROC analysis reveals the following AUC values: SVM at

0.62, Decision Tree at 0.57, Random Forest at 0.82 (Supplementary

Figure 3), KNN at 0.67, and Neural Network at 0.70, XGBoost at

0.80 and LightGBM at 0.80. Notably, the Random Forest model

demonstrates the highest capability in differentiating between ASB

and symptomatic UTIs cases, indicative of its robustness in

handling this predictive task (Figure 3C). The PR curve analysis

further supports these findings with AUC values as follows: SVM at

0.58, Decision Tree at 0.66, Random Forest at 0.78, KNN at 0.67,

Neural Network at 0.61, XGBoost at 0.79 and LightGBM at 0.78

(Figure 3D). These results suggest that the Random Forest model

not only predicts a higher proportion of true positives but also

maintains higher precision across its predictions, which is

particularly crucial for clinical settings where the consequences of
Frontiers in Endocrinology 06
false negatives can be significant. This segment of the analysis

highlights the superior performance of the Random Forest

algorithm over others, confirming its effectiveness in leveraging

complex patterns and interactions within the data to improve

diagnostic accuracy for ASB.

To evaluate the temporal generalizability of ASBPredictor, we

tested the trained model on an independent validation dataset of

103 patients collected from January 2024 to June 2025. The

validation results demonstrated robust model performance with

an ROC AUC of 0.76 and PR AUC of 0.89 (Figures 3E, F). These

validation metrics, while slightly lower than the training

performance (ROC AUC: 0.82, PR AUC: 0.78), remain within an

acceptable range and suggest good temporal stability of the model’s

predictive capabilities.
Important features in ASB and
symptomatic UTIs

Figure 4 presents the comparative distribution of biomarker

concentrations between patients with ASB and those diagnosed

with symptomatic UTIs. The Y-axis has been carefully scaled to

effectively highlight the broad spectrum of biomarker

concentrations, clearly delineating the distinctions between the

ASB group and the symptomatic UTI group. Notably, BACT,

Na+, and EOS% show significantly higher levels in ASB cases

compared to symptomatic UTIs, whereas the remaining five
FIGURE 2

Visualization of Machine Learning Analysis Predicting the Presence of ASB. (A) SHAP summary plot demonstrating the impact of individual features
on the prediction model. The color gradient from blue to red indicates the value magnitude of each feature. (B) Correlation heatmap showing
Pearson correlation coefficients between SHAP values of features. The color scale transitions from red (negative correlation) to blue (positive
correlation), illustrating both synergistic and antagonistic relationships among features influencing model predictions. (C) UMAP scatter plot
showcasing the clustering of patient data based on drug sensitivity and laboratory markers.
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biomarkers (CRP, UWBCC, ALT, GLU, and GGT) exhibit

markedly elevated concentrations in symptomatic UTIs than in

ASB. These findings highlight the substantial variability in

biomarker levels between ASB and symptomatic UTIs, further

reinforcing their diagnostic relevance.
Frontiers in Endocrinology 07
Clinical case examples demonstrating
ASBPredictor decision-making

To enhance clinical interpretability of the ASBPredictor model,

Figure 5 presents four representative patient cases with individual
FIGURE 3

Performance evaluation of the machine learning models. ROC Curves (A) and PR Curves (B) for virous dataset performance. ROC Curves (C) and PR
Curves (D) for different machine learning models predicting ASB. External validation results showing ROC Curve (E) and PR Curve (F) on the
independent temporal validation dataset (n=103, January 2024 - June 2025) (Equations 1–3).
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SHAP waterfall plots illustrating how specific laboratory parameters

contribute to the differentiation between ASB and symptomatic

UTIs. Two ASB cases (Index ID 4 and 10) demonstrate prediction

scores of 0.06 and 0.14 respectively, characterized by high bacterial

counts (BACT = 3966.0 and 319.09) combined with minimal

inflammatory responses (low CRP and UWBCC values),

supporting asymptomatic bacteriuria diagnosis. In contrast, two

symptomatic UTI cases (Index ID 4 and 7) show prediction scores

of 0.79 and 0.86, driven by elevated inflammatory markers

including high CRP (29.448), poor glycemic control (GLU =

14.26-15.99), and liver enzyme elevation (ALT = 171.8-8.2, AST =

109.1), indicating active systemic infection. The SHAP waterfall

plots provide clinicians with transparent, feature-by-feature

explanations of model predictions, where red bars indicate factors

favoring symptomatic UTI diagnosis and blue bars support ASB

classification. This interpretable approach enables healthcare

providers to understand the underlying clinical reasoning behind

each prediction, validate model decisions against clinical judgment,

and confidently apply the ASBPredictor in routine practice for

optimizing antimicrobial stewardship decisions.
Discussion

To the best of our knowledge, there is currently no utilization of

machine learning algorithms for predicting ASB. The ASBPredictor

utilizes a few laboratory indicators to accurately predict the

likelihood of ASB by a simple and convenient script. It can assist

doctors in making more accurate judgments about ASB, avoiding
Frontiers in Endocrinology 08
the uncertainty caused by symptom descriptions. With the

intuitiveness and interpretability, ASBPredictor can monitor the

changes of laboratory data to predict the progression of ASB,

thereby prompting clinical doctors to take intervention measures

timely. It can also increase the efficiency of hospital managers in

ASB management.

The ASBPredictor model in T2DM incorporates several

important features, including inflammatory indicators (CRP),

urinary indicators (BACT and UWBCC), biochemical indicators

[ALT, GLU, (gamma-glutamyl transpeptidase, GGT), Na+], and

blood routine indicators (EOS%). In patients with T2DM, the

majority of UTIs, including ASB, are characterized by increased

levels of infection markers in urinalysis (40). This study further

suggests that BACT could be a promising indicator for ASB, while

UWBCC appears to be more closely associated with symptomatic

UTIs (Figures 4B, C). Bacterial virulence genes show no significant

differences between the two groups (data not shown); the bacterial

load disparity between ASB and UTIs may instead stem from

variations in human immune status, resulting in higher tolerance

of colonization in ASB but greater sensitivity to active infection in

UTIs. Additionally, patients with symptomatic UTIs tend to have

elevated blood sugar levels compared to individuals with ASB

(Figure 4E). Inadequate blood glucose control can lead to

increased glucose levels in the urine, creating a more conducive

environment for bacterial growth in the urinary tract, thereby

raising the risk of UTIs (41, 42). Furthermore, symptomatic UTIs

show a stronger correlation with low sodium levels and elevated

CRP levels (Figures 4A, E). Consistent with previous findings,

significant associations between CRP levels and hyponatremia
FIGURE 4

Distribution of Biomarker Concentrations in ASB and symptomatic UTI Cases. In panels labeled (A–H), the Y-axis represents biomarker
concentrations while the X-axis categorizes the conditions, distinguishing between ASB and symptomatic UTIs. The median concentrations of the
biomarkers are annotated in each plot, highlighting the significant differences in biomarker levels between the two patient groups. CRP (A), BACT (B),
UWBCC (C), ALT (D), GLU (E), GGT (F), Na+ (G) and EOS% (H).
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(Na+ < 135 mmol/L) have been identified (43, 44), and CRP’s

diagnostic utility for UTIs has been confirmed by multiple studies

(45, 46). It could be understood that CRP (and WBC count as

mentioned above), traditionally associated with inflammation, is

particularly relevant to symptomatic UTIs which involve a robust

host inflammatory response, unlike ASB. Moreover, ALT and GGT

exhibit higher concentrations in symptomatic UTIs (Figures 4D, F).

However, there are limited reports suggesting that UTIs themselves

(47) as well as the use of antimicrobials such as nitrofurantoin (48),

cephalosporins (49), quinolones (50), can lead to liver damage and

elevate enzymes such as ALT and GGT. Further observation and

validation are still needed to determine the impact of these two

indicators on ASB and symptomatic UTIs. Lastly, patients with

symptomatic UTIs generally have lower EOS% compared to

individuals with ASB (Figure 4H). However, there is currently no

research examining the correlation between EOS% and UTIs, which

necessitates further investigation.

This study has several inherent limitations. First, the stringent

data filtering process limits the generalizability of our model.

Additionally, missing data for inflammatory factors may affect the

accuracy of the predictions. Finally, the predictive model has not yet
Frontiers in Endocrinology 09
been externally validated, which is a crucial step in assessing its

generalizability and reliability.

Overall, the ASBPredictor effectively predicts the likelihood of

ASB using various clinical and laboratory indicators, leveraging

machine learning algorithms. This approach has the potential to

reduce unnecessary antimicrobial use and lower healthcare costs.
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