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Background: This study seeks to investigate the association between the

triglyceride-glucose index (TyG), triglyceride glucose index to high-density

lipoprotein cholesterol ratio (TyG/HDL-c), and the risk of diabetes in individuals

with nonalcoholic fatty liver disease (NAFLD).

Methods: This retrospective study encompassed 457 NAFLD patients from The

Central Hospital of Shaoyang, monitored over a three-year period. Missing data

were addressed using multiple imputation, and the Synthetic Minority Over-

sampling Technique (SMOTE) was employed to balance the dataset.

Multicollinearity analysis was conducted to evaluate the collinearity among

variables, while principal component analysis was utilized to examine the

distribution of variables in both the original and balanced datasets. A

multivariate logistic regression model was used to assess the association

between TyG, TyG/HDL-c, and the risk of diabetes in NAFLD patients, adjusting

for various covariates. Subgroup analysis was performed to identify differences

across diverse populations, and restricted cubic splines (RCS) were used to

explore potential non-linear relationships. The receiver operating characteristic

(ROC) curve examined the diagnostic value of individual and combined indicators

in assessing the risk of diabetes in NAFLD patients.

Results: Upon adjustment for all covariates, TyG was found to significantly

elevate the risk of diabetes among patients with NAFLD (OR = 1.96, 95% CI:

1.67-2.30, P < 0.001), with a notable non-linear relationship observed (threshold:

2.39, P-nonlinear = 0.002). Similarly, TyG/HDL-c significantly increased diabetes

risk (OR = 1.90, 95% CI: 1.60-2.26, P < 0.001), also demonstrating a distinct non-

linear association (threshold: 2.20, P-nonlinear < 0.001). Subgroup analyses

revealed significant interactions between TyG and TyG/HDL-c across different

gender subgroups (P for interaction < 0.05). The ROC curve analysis indicated

that the combined use of TyG and TyG/HDL-c provided superior diagnostic

performance for assessing diabetes risk in NAFLD patients (Area Under the Curve
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[AUC]: 0.703, 95% CI: 0.665-0.740), compared to the use of TyG (AUC: 0.694,

95% CI: 0.656-0.732) or TyG/HDL-c (AUC: 0.693, 95% CI: 0.655-

0.731) independently.

Conclusion: Both TyG and TyG/HDL-c are significantly associated with an

increased risk of diabetes in NAFLD patients, exhibiting non-linear

relationships. Furthermore, these associations vary significantly across gender

subgroups, their combined use enhances risk assessment, supporting their

clinical utility in evaluating diabetes risk.
KEYWORDS

non-alcoholic fatty liver disease (NAFLD), triglyceride glucose index (TyG), TyG to high-
density lipoprotein cholesterol ratio (TyG/HDL-c), diabetes mellitus, restricted cubic
spline (RCS), subgroup analysis, risk prediction
1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a metabolic-

associated hepatic disorder characterized by the abnormal

accumulation of lipids within hepatocytes (1, 2). Its global

prevalence has surged in recent years, establishing it as a leading

cause of chronic liver diseases (3). A substantial body of research has

demonstrated that NAFLD is intricately linked to metabolic-related

conditions, including cardiovascular diseases and chronic kidney

diseases, and significantly elevates the risk of developing type 2

diabetes mellitus (T2DM) (4, 5). Insulin resistance (IR) is a critical

factor in the onset and progression of NAFLD and is acknowledged as

a fundamental mechanism driving the transition from NAFLD to

T2DM (6). The identification of simple and effective indicators for

assessing the future risk of T2DM in patients with NAFLD is of

paramount importance for the early screening and intervention of the

disease. Recent studies have increasingly emphasized the heterogeneity

in the pathophysiological links between NAFLD, insulin resistance,

and cardiovascular risk. Variability in genetic backgrounds, hepatic fat

content distribution, metabolic flexibility, and inflammatory responses

contributes to this heterogeneity, which can affect disease progression

and treatment responses (7–9). For instance, some individuals with

NAFLD exhibit preserved insulin sensitivity and minimal

cardiovascular risk, while others experience rapid metabolic

deterioration despite similar levels of hepatic steatosis. These

findings suggest that understanding such heterogeneity is essential

for developing more targeted diagnostic and therapeutic strategies in

NAFLD management. Conventional diabetes risk predictors (e.g.,

fasting glucose) may fail to capture this complexity, whereas TyG

and TyG/HDL-c, as integrative indicators of glucose-lipid metabolism,

could provide enhanced stratification in NAFLD. Therefore, this study

specifically targets NAFLD patients to address unmet needs in

precision risk assessment.

In recent years, the triglyceride-glucose index (TyG) has gained

widespread application in assessing the risk of insulin resistance and
02
associated metabolic disorders, owing to its high feasibility and

predictive accuracy (10, 11). TyG, derived from fasting plasma

glucose (FPG) and fasting triglycerides (TG), serves as an effective

indicator of the body’s insulin sensitivity (12). Empirical studies have

established a significant correlation between TyG and the risk of

T2DM in both the general population and specific disease cohorts,

underscoring its robust predictive value (13). However, insulin

resistance is frequently accompanied by dyslipidemia, and HDL-c, a

key anti-atherosclerotic lipoprotein, is intimately linked to insulin

sensitivity (14). Consequently, the ratio of TyG to HDL-c (TyG/HDL-

c) has been proposed as a novel metabolic risk assessment metric,

potentially offering a more comprehensive reflection of the interplay

between glucose and lipid metabolism disorders in the pathogenesis of

T2DM than TyG alone (15, 16). Despite this, research on the

predictive efficacy of TyG and TyG/HDL-c for T2DM risk

specifically within the NAFLD population remains sparse, and its

clinical significance warrants further investigation.

While previous studies have preliminarily investigated the

association between TyG and the risk of T2DM, the majority

have relied solely on linear regression analysis, thereby

overlooking the potential non-linear relationship between TyG,

TyG/HDL-c, and T2DM risk (17, 18). In clinical research, the

influence of various metabolic indicators frequently does not adhere

to a simple linear progression but rather operates within specific

thresholds, with their risk effects potentially varying across different

ranges. Moreover, variables such as sex, age, and metabolic status

may modulate individuals’ sensitivity to insulin resistance,

consequently impacting the predictive value of TyG and TyG/

HDL-c across diverse populations (19–21). Therefore, it is

imperative to further explore the non-linear relationship between

TyG, TyG/HDL-c, and T2DM risk, as well as to assess their

applicability across different subgroups, to enhance diabetes risk

assessment in patients with NAFLD.

This study employs a retrospective cohort design to investigate

the association between TyG, TyG/HDL-c, and the prospective risk
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of T2DM in individuals with NAFLD. It also aims to determine the

presence of non-linear correlations and specific thresholds.

Furthermore, the study evaluates the predictive utility of TyG and

TyG/HDL-c across various subpopulations, stratified by gender,

age, and metabolic status, through subgroup analyses to elucidate

their clinical relevance. To enhance the robustness of the data,

multiple imputation techniques are used to address missing data

(22), and SMOTE is applied to balance the dataset (23). The

relationship between TyG, TyG/HDL-c, and T2DM risk is

assessed using multivariate logistic regression analysis, while

restricted cubic spline (RCS) analysis is employed to explore non-

linear trends. Subgroup analyses are further conducted to examine

variations in predictive performance across different populations.

This study is anticipated to refine the risk assessment framework for

T2DM in patients with NAFLD, thereby equipping clinicians with

more efficient and practical predictive tools. Additionally,

identifying key thresholds for TyG and TyG/HDL-c will aid in

more accurately assessing the risk of T2DM, providing a scientific

basis for individualized interventions. Moreover, through the

analysis of different subgroups, the applicability of these

indicators in diverse populations can be further clarified, offering

strong support for the advancement of precision medicine in the

future. This study aims to provide a new scientific basis for early

prediction of diabetes risk in patients with NAFLD and offer

theoretical support for clinical decision-making and the

development of individualized prevention strategies.
2 Materials and methods

2.1 Data source

This investigation utilized a retrospective cohort study design

conducted at The Central Hospital of Shaoyang. The study initially

enrolled 611 patients diagnosed with NAFLD at the hospital

between February 2019 and February 2022. Participants were

monitored over a three-year period to assess the incidence of

diabetes. T2DM was diagnosed at baseline and during the follow-

up period according to the 2023 American Diabetes Association

(ADA) criteria (24), FPG levels were measured using the AU5800

automatic biochemical analyzer (Beckman Coulter, USA), and

HbA1c was assessed using the VARIANT II analyzer (Bio-Rad,

USA), based on high-performance liquid chromatography (HPLC).

Medical records were also reviewed to identify new diabetes

diagnoses and medication use. NAFLD diagnoses were confirmed

via abdominal ultrasonography, and all participants were required

to have a minimum of three years of follow-up data. The inclusion

criteria were as follows: (1) initial diagnosis of NAFLD at The

Central Hospital of Shaoyang, (2) absence of a diabetes diagnosis at

baseline, and (3) availability of comprehensive clinical information

and follow-up data. The exclusion criteria included: (1) age under

18 years, (2) presence of other chronic liver diseases (such as viral

hepatitis, autoimmune liver disease, alcoholic liver disease, etc.), (3)

presence of malignant tumors, pregnancy, or severe organ failure,

(4) comorbid diabetes or use of hypoglycemic medications at
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baseline, and (5) loss to follow-up or incomplete critical data

during the follow-up period. Ultimately, 457 eligible NAFLD

patients were included in the analysis, of whom 99 (21.66%)

developed diabetes over the three-year follow-up period. The

detailed data screening process is illustrated in Figure 1. All data

used in this study were approved by the ethics committee and met

privacy protection requirements. As this was a retrospective study,

the ethics committee approved our request for waiver of

informed consent.
2.2 Study variables

2.2.1 Exposure factors
The primary exposure factors in this study were TyG and TyG/

HDL-c. The TyG index was calculated using the formula (25):

TyG = ln(
FPG   (mg=dL)� TG   (mg=dL)

2
)

The TyG/HDL-c index was calculated using the formula (26):

TyG=HDL − c =
TyG

HDL − c   (mg=dL)

The determination of FPG, TG, and HDL-c was conducted

using the Beckman Coulter AU5800 series fully automated

biochemical analyzer.

2.2.2 Covariates
To account for potential confounding variables, this study

incorporated a comprehensive set of covariates, encompassing

demographic characteristics, lifestyle factors, blood pressure

indicators, underlying disease conditions, and laboratory test

results. The demographic variables included age, sex, and marital

status. Lifestyle factors were assessed through smoking and drinking

status. Smoking status was categorized into three groups based on

medical history records: non-smokers, ex-smokers, and smokers.

Due to limitations in the electronic medical record system, alcohol

consumption status could only be obtained as binary data (yes/no).

Blood pressure indicators comprised systolic blood pressure (SBP)

and diastolic blood pressure (DBP). Hypertension and coronary

heart disease (CHD) were considered as underlying disease

conditions. Furthermore, biochemical indicators such as total

bilirubin (TBIL), alanine aminotransferase (ALT), aspartate

aminotransferase (AST), urea, creatinine (CREA), and uric acid

(UA) were collected to evaluate liver and kidney function. Blood

routine indicators, including white blood cell count (WBC), red

blood cell count (RBC), hemoglobin (HB), and platelet count (PLT),

were also included. All covariates were obtained from patients’

electronic medical records and biochemical test results, with

standardized measurements conducted in the clinical laboratory

of The Central Hospital of Shaoyang.

2.2.3 Outcome events
The primary outcome event of the study was the occurrence of

T2DM, defined according to the 2023 standards of the American
frontiersin.org
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Diabetes Association (ADA). This included: (1) FPG ≥ 7.0 mmol/L

(126 mg/dL); (2) Glycosylated hemoglobin (HbA1c) ≥ 6.5%; (3)

Clinically diagnosed diabetes and taking hypoglycemic medications.
2.3 Ethics statement

This study is a retrospective analysis, and its design and

methodology have been approved by the Medical Ethics

Committee of The Central Hospital of Shaoyang (Ethics Approval

Number: KY2025-002-04). Given the retrospective nature of this

study and the exclusive use of anonymous clinical data that neither

reveals patient privacy nor poses any direct risks to participants, the

requirement for informed consent has been waived according to

applicable ethical guidelines and regulations.
2.4 Statistical methods

The data analysis was executed utilizing R software (version

4.2.2) and Matlab software (version 2021a). Initially, a normality

test was applied to continuous variables. Variables adhering to a

normal distribution were reported as mean ± standard deviation

(Mean ± SD) and inter-group comparisons were conducted using

the t-test. Conversely, non-normally distributed data were

presented as median (interquartile range) and analyzed via the

Mann-Whitney U test. Categorical variables were described as

frequencies (percentages) and compared using either the chi-

square test or Fisher’s exact test. To address the issue of missing

data, Multiple Imputation by Chained Equations (MICE) was

employed to mitigate potential biases arising from missing values.
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Post-imputation, outlier detection and removal were conducted to

ensure data integrity. To ensure data quality and minimize the

impact of extreme values, outlier detection was performed using the

Z-score method. For each continuous numerical variable, a

standardized Z-value was calculated. Values with absolute Z-

scores greater than 3 (|Z| > 3) were defined as outliers, and

participants containing such outliers were excluded from the

analysis, resulting in the removal of 69 cases. The quantity and

distribution of these outliers across various variables are presented

in Supplementary Table S1. After removing outliers, the SMOTE

was implemented in Matlab 2021a to address the sample imbalance

between groups with and without diabetes occurrence, thereby

ensuring a balanced dataset for subsequent analyses. Prior to

conducting the formal analysis, multicollinearity among all

variables was evaluated using the Variance Inflation Factor (VIF),

with a VIF greater than 10 indicating severe multicollinearity, which

required adjustment. Additionally, PCA was employed to examine

the distribution of variables in both the balanced and original

datasets, assessing the impact of SMOTE on the data structure.

The primary analytical approach in this study was multivariate

logistic regression analysis, designed to evaluate the relationship

between TyG, TyG/HDL-c, and the risk of diabetes in patients with

NAFLD. Three regression models were developed: Model 1 assessed

the crude association between TyG, TyG/HDL-c, and diabetes risk

without adjusting for any covariates; Model 2 adjusted for age, sex,

marital status, smoking, alcohol consumption, SBP, DBP, body

mass index (BMI), hypertension, and CHD. In Model 3,

adjustments were made for TBIL, ALT, AST, urea, CREA, UA,

WBC, RBC, HB, and PLT, building upon Model 2, to enhance the

control of confounding variables. A subgroup analysis was

performed to assess the stability of TyG and TyG/HDL-c across
FIGURE 1

Flowchart of data processing.
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different populations, stratified by variables such as sex, marital

status, and pre-existing conditions. Interaction terms were

incorporated to examine potential interactions between variables.

Furthermore, RCS analysis was utilized to explore the nonlinear

relationship between exposure factors and the risk of T2DM,

identify threshold values, and evaluate P-nonlinear. A P-

nonlinear value of less than 0.05 was considered indicative of a

statistically significant nonlinear relationship. For optimal

knot selection in the RCS, models with 3 to 7 knots were

evaluated, and the model with the lowest Akaike Information

Criterion (AIC) value was chosen as the final model. All

analytical results were deemed statistically significant at a P-value

of less than 0.05.
3 Results

3.1 Baseline characteristics of patients

Initially, our study enrolled 611 patients. Following the

exclusion of six patients under the age of 18 and 79 patients with

missing TyG or TyG/HDL-c values, the missing rates for each

variable were calculated, as depicted in Supplementary Figure S1. A

total of 74 participants (16.2%) were identified to have at least one

missing value. The highest missing rates were observed for marital

status, smoking, and drinking history (each 3.80%), while core

clinical variables such as age, sex, liver function parameters, and

outcome variables had no missing data. Missing values were

subsequently estimated using multiple imputation techniques.

After addressing outliers and excluding 69 patients with

anomalous values, the final analysis included 457 patients

diagnosed with nonalcoholic fatty liver disease, among whom 99

(21.66%) developed diabetes during the follow-up period. To

address the class imbalance in the original dataset, the SMOTE

was employed. A baseline characteristic analysis was conducted on

both the balanced dataset (N = 716) and the unbalanced dataset (N

= 457), comparing the clinical features between patients with

nonalcoholic fatty liver disease who developed diabetes and those

who did not. To ensure the robustness of the analysis, a

multicollinearity assessment was performed on variables from

both datasets. The results, presented in Supplementary Table S2,

indicated that the VIF for all variables in both datasets was below 5,

suggesting no significant multicollinearity issues and confirming the

suitability of the variables for subsequent analyses.

In the balanced dataset (Table 1), no statistically significant

differences were observed between the two groups concerning age,

Sex, BMI, smoking, CHD, SBP, ALT, AST, urea, WBC, RBC, HB,

and PLT. Nevertheless, the diabetes group exhibited a higher

proportion of unmarried individuals (14.80% vs. 8.10%, P =

0.005), a lower proportion of alcohol consumption (4.75% vs.

8.66%, P = 0.036), a significantly elevated prevalence of

hypertension (37.15% vs. 20.39%, P < 0.001), reduced DBP (80 ±

9 vs. 82 ± 11, P = 0.024), significantly lower levels of CREA (P <

0.001) and UA (P = 0.002), and significantly higher levels of TyG

(P < 0.002) and TyG/HDL-c (P < 0.001). In the unbalanced dataset
Frontiers in Endocrinology 05
(Supplementary Table S3), the overall trends were consistent with

those observed in the balanced dataset, demonstrating a

significantly higher proportion of unmarried individuals in the

diabetes group (16.16% vs. 8.10%, P = 0.017), a significant

increase in the prevalence of hypertension (39.39% vs. 20.39%, P

< 0.001), and significantly elevated levels of TyG (P < 0.001) and

TyG/HDL-c (P < 0.001). Taken together, across both balanced and

unbalanced datasets, the proportion of hypertension, unmarried

status, and the indicators of TyG and TyG/HDL-c were significantly

elevated in the NAFLD with diabetes group, suggesting that these

factors may play important roles in the development and

progression of NAFLD with diabetes.
3.2 Results of principal component analysis

In this study, PCA was utilized to assess the impact of the

SMOTE on the distribution of variables within the dataset. Principal

component loadings were calculated for both the unbalanced and

balanced datasets, and their variations were compared to evaluate

the effect of SMOTE on the data structure. The findings, presented

in Supplementary Table S4, reveal that in the unbalanced dataset,

the first principal component (PC1) was predominantly influenced

by variables such as TyG (0.7909), HB (0.7407), TyG/HDL-c

(0.6937), and RBC (0.6479). In the balanced dataset, the primary

contributing variables for PC1 remained largely consistent (TyG:

0.7931, HB: 0.7499, TyG/HDL-c: 0.6813, RBC: 0.6566), indicating

that the influence of these variables did not experience substantial

changes following SMOTE processing. Furthermore, the

contributions of WBC, ALT, and AST to PC2 were largely

unchanged, suggesting that the SMOTE method did not

significantly alter the principal component distribution of these

variables. In the PC3 dimension, CREA, Urea, and UA exhibited

higher loadings in the unbalanced dataset (CREA: 0.8156, Urea:

0.7355, UA: 0.5847). However, in the balanced dataset, the loading

for CREA increased markedly to 0.9596, whereas the loadings for

urea and UA exhibited only minor changes (urea: 0.7250, UA:

0.7244). This variation suggests that the application of the SMOTE

may have influenced the distribution of renal function-related

variables within this principal component dimension.

Additionally, SBP and DBP contributed to the second principal

component (PC2) in the balanced dataset (SBP: -0.3971, DBP:

0.4565), while the loading of PLT in the third principal

component (PC3) decreased from 0.9664 in the unbalanced

dataset to 0.6311. This indicates that the SMOTE method may

have adjusted the principal component distribution of certain blood

pressure and platelet-related variables. Overall, the PCA results

indicate that SMOTE processing did not substantially alter the

contribution patterns of most variables to the principal

components, and the overall data structure remained stable. Only

minor adjustments were observed in specific variables, such as

CREA and PLT. This suggests that while SMOTE effectively

balances the dataset, it exerts a limited impact on the global

structure of the data, thereby enhancing the stability and

reliability of subsequent modeling efforts.
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TABLE 1 Baseline information table for balanced dataset.

Variables Overall, N = 7161 NAFLD without DM, N
= 3581

NAFLD with DM, N
= 3581 p-value

Age 47 (37, 57) 48 (37, 57) 47 (37, 57) 0.9172

Sex 0.2733

Female 252 (35.20%) 133 (37.15%) 119 (33.24%)

Male 464 (64.80%) 225 (62.85%) 239 (66.76%)

BMI 26.2 (24.4, 28.7) 26.6 (24.5, 28.8) 26.0 (24.4, 28.3) 0.0572

Marital 0.0053

Married 634 (88.55%) 329 (91.90%) 305 (85.20%)

Unmarried 82 (11.45%) 29 (8.10%) 53 (14.80%)

Smoking 0.7663

Ex-smoker 131 (18.30%) 62 (17.32%) 69 (19.27%)

Non-smoker 514 (71.79%) 259 (72.35%) 255 (71.23%)

Smoker 71 (9.92%) 37 (10.34%) 34 (9.50%)

Drinking 0.0363

No 668 (93.30%) 327 (91.34%) 341 (95.25%)

Yes 48 (6.70%) 31 (8.66%) 17 (4.75%)

Hypertension <0.0013

No 510 (71.23%) 285 (79.61%) 225 (62.85%)

Yes 206 (28.77%) 73 (20.39%) 133 (37.15%)

CHD 0.4693

No 684 (95.53%) 340 (94.97%) 344 (96.09%)

Yes 32 (4.47%) 18 (5.03%) 14 (3.91%)

SBP 131 (121, 141) 130 (120, 142) 131 (123, 140) 0.8562

DBP 81 (74, 88) 82 (75, 89) 79 (74, 86) 0.0212

TBIL 14 (11, 18) 14 (10, 19) 14 (11, 18) 0.5642

ALT 30 (19, 48) 30 (19, 48) 30 (19, 48) 0.6762

AST 26 (20, 34) 25 (20, 35) 27 (20, 33) 0.8092

Urea 4.73 (3.80, 5.91) 4.84 (3.71, 6.00) 4.65 (3.84, 5.66) 0.5202

CREA 64 (53, 80) 68 (57, 85) 60 (49, 75) <0.0012

UA 332 (277, 408) 349 (287, 426) 323 (269, 397) 0.0052

WBC 8.4 (6.5, 11.6) 7.8 (6.3, 11.0) 9.0 (6.6, 12.0) 0.0102

RBC 4.79 (4.41, 5.10) 4.79 (4.36, 5.18) 4.80 (4.46, 5.06) 0.7962

HB 142 ± 20 141 ± 19 142 ± 21 0.4354

PLT 232 (196, 270) 232 (197, 274) 232 (195, 269) 0.9502

TyG 2.38 (1.62, 3.86) 1.99 (1.30, 3.03) 2.94 (2.10, 4.51) <0.0012

TyG/HDL-c 2.14 (1.28, 3.17) 1.72 (1.04, 2.61) 2.56 (1.76, 3.69) <0.0012
F
rontiers in Endocrinology
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1Median (Q1, Q3), n (%), Mean ± SD;
2Wilcoxon rank sum test;
3Pearson’s Chi-squared test;
4Welch Two Sample t-test.
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3.3 Association between TyG, TyG/HDL-c,
and the risk of diabetes in patients with
NAFLD

In the balanced dataset, both TyG and TyG/HDL-c exhibited a

significant dose-response relationship with the risk of diabetes

among patients with NAFLD (Table 2). For instance, when TyG

was analyzed as a continuous variable, its unadjusted OR was 1.66

(95% CI: 1.48-1.87). Upon multivariable adjustment, the effect size

progressively increased, reaching an OR of 1.96 (95% CI: 1.67-2.30)

in Model 3. Following standardization, the OR for Model 3 further

escalated to 2.63 (95% CI: 2.09-3.31). Quartile analysis revealed that

the risk of diabetes in the highest quartile (Q4) was 12.93 times

greater than that in the lowest quartile (Q1) (95% CI: 6.94-24.12),

with a significant dose-response trend (P for trend < 0.001). TyG/

HDL-c demonstrated a comparable pattern, with an OR of 1.90

(95% CI: 1.60-2.26) as a continuous variable in Model 3, which

increased to 2.47 (95% CI: 1.94-3.14) following standardization.

The risk in the Q4 group was elevated by 7.57 times compared to

the Q1 group (95% CI: 4.34-13.22).

In the unbalanced dataset, the fundamental trends remained

consistent, albeit with slightly diminished effect sizes. The OR for

TyG as a continuous variable in Model 3 was 1.90 (95% CI: 1.52-

2.39), increasing to 2.44 (95% CI: 1.78-3.34) after standardization.
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In the fourth quartile (Q4) group, the risk was 6.37 times greater

than that observed in the first quartile (Q1) group (95% CI: 2.68-

15.16). Regarding TyG/HDL-c, the OR as a continuous variable in

Model 3 was 1.68 (95% CI: 1.34-2.10), which increased to 2.09 (95%

CI: 1.52-2.87) following standardization. The risk in the Q4 group

was elevated by 5.67 times relative to the Q1 group (95% CI: 2.45-

13.12). Although the overall trends observed in the unbalanced

dataset were consistent with those in the balanced dataset, certain

subgroups did not achieve statistical significance. As detailed in

Supplementary Table S5, when TyG was analyzed as a continuous

variable, the unadjusted OR in Model 1 was 1.60 (95% CI: 1.36-1.89,

P < 0.001), which increased to 1.76 (95% CI: 1.45-2.14, P < 0.001)

and 1.90 (95% CI: 1.52-2.39, P < 0.001) in Models 2 and 3,

respectively. The standardized TyG variable exhibited an OR of

2.44 (95% CI: 1.78-3.34, P < 0.001) in Model 3. In the quartile

analysis, the Q4 group demonstrated the highest risk of diabetes in

Model 3 (OR = 6.37, 95% CI: 2.68-15.16, P < 0.001), whereas the Q2

group did not exhibit a statistically significant difference (P > 0.05).

The analysis results from the unbalanced dataset also corroborated

the positive association between TyG/HDL-c and diabetes risk. In

Model 3, the OR for TyG/HDL-c as a continuous variable was 1.68

(95% CI: 1.34-2.10, P < 0.001), rising to 2.09 (95% CI: 1.52-2.87, P <

0.001) after standardization. Quartile analysis revealed an OR of

5.67 for the Q4 group (95% CI: 2.45-13.12, P < 0.001).
TABLE 2 Association between TyG, TyG/HDL-c and the risk of diabetes in patients with NAFLD in the balanced dataset.

Variables Model 1 Model 2 Model 3

OR (95% CI) P OR (95% CI) P OR (95% CI) P

TyG (continuous) 1.66 (1.48-1.87) <0.001 1.79 (1.56-2.05) <0.001 1.96 (1.67-2.30) <0.001

TyG (standardized) 2.08 (1.76-2.46) <0.001 2.31 (1.90-2.81) <0.001 2.63 (2.09-3.31) <0.001

TyG

Q1

Q2 2.61 (1.67-4.07) <0.001 3.39 (2.10-5.46) <0.001 3.72 (2.26-6.12) <0.001

Q3 3.25 (2.08-5.08) <0.001 3.73 (2.30-6.07) <0.001 4.55 (2.69-7.67) <0.001

Q4 7.56 (4.72-12.09) <0.001 10.51
(6.09-18.14)

<0.001 12.93 (6.94-24.12) <0.001

P for trend <0.001 <0.001 <0.001

TyG/HDL-
c (continuous)

1.74 (1.52-1.99) <0.001 1.87 (1.60-2.19) <0.001 1.90 (1.60-2.26) <0.001

TyG/HDL-
c (standardized)

2.18 (1.80-2.64) <0.001 2.41 (1.93-3.01) <0.001 2.47 (1.94-3.14) <0.001

TyG/HDL-c

Q1

Q2 1.79 (1.16-2.78) 0.009 1.85 (1.17-2.92) 0.009 1.84 (1.14-2.98) 0.013

Q3 3.08 (1.99-4.76) <0.001 3.83 (2.38-6.17) <0.001 4.25 (2.56-7.07) <0.001

Q4 5.81 (3.68-9.15) <0.001 6.98 (4.16-11.70) <0.001 7.57 (4.34-13.22) <0.001

P for trend <0.001 <0.001 <0.001
1OR, Odds Ratio, CI, Confidence Interval; Model 1: no covariates were adjusted; Model 2: adjusted for Age, Sex, Marital, Smoking, Drinking, SBP, DBP, BMI, Hypertension, and CHD; Model 3:
adjusted for Age, Sex, Marital, Smoking, Drinking, SBP, DBP, BMI, Hypertension, CHD, TBIL, ALT, AST, Urea, CREA, UA, WBC, RBC, HB, and PLT.
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3.4 Subgroup analysis results

To further elucidate the relationship between TyG, TyG/HDL-

c, and diabetes risk among patients with NAFLD, we performed

stratified analyses across various subgroups within a balanced

dataset. The findings are illustrated in Figure 2. In the overall

cohort, TyG demonstrated a significant positive association with

diabetes risk (OR = 1.66, 95% CI: 1.48-1.87, P < 0.001). Gender-

stratified analysis indicated a more pronounced association in

females compared to males (females: OR = 2.26, 95% CI: 1.73-

2.94, P < 0.001; males: OR = 1.52, 95% CI: 1.33-1.74, P < 0.001; P-

interaction = 0.01), suggesting a potential gender-modulating effect

on this relationship. Analyses of subgroups defined by marital

status, smoking habits, alcohol consumption, hypertension, and

CHD also revealed significant associations between TyG and

diabetes risk (P < 0.001); however, interaction analyses did not

identify statistically significant interactions (P > 0.05). Subgroup

analysis stratified by obesity status (BMI ≥ 30.0 kg/m²)

demonstrated that obese individuals exhibited a stronger

association between diabetes risk in NAFLD patients (OR = 1.85,

95% CI: 1.32-2.60, P < 0.001) compared with non-obese individuals

(OR = 1.64, 95% CI: 1.45-1.86, P < 0.001), however, no statistically

significant interaction was observed (P-interaction = 0.518).

Similarly, TyG/HDL-c was significantly positively associated with

diabetes risk in the overall population (OR = 1.74, 95% CI: 1.52-

1.99, P < 0.001). In the gender-stratified analysis, the impact of

TyG/HDL-c on diabetes risk was stronger in females than in males

(females OR = 2.62, 95% CI: 1.90-3.60, P < 0.001; males OR = 1.57,

95% CI: 1.35-1.83, P < 0.001; P-interaction = 0.005), further

supporting the potential influence of gender on this relationship.
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Additionally, analysis results from subgroups based on marital

status, smoking, alcohol consumption, hypertension, and CHD

were consistent with the overall trend, indicating that TyG/HDL-

c is an important predictor of diabetes risk (P < 0.05), although the

interactions did not reach statistical significance (P > 0.05). In obese

individuals, the association was notably stronger (OR = 2.49, 95%

CI: 1.64–3.79, P < 0.001) than in non-obese individuals (OR = 1.68,

95% CI: 1.45–1.94, P < 0.001), though the interaction did not reach

statistical significance (P-interaction = 0.081).
3.5 The nonlinear relationship between
TyG, TyG/HDL-c, and the risk of diabetes
in patients with NAFLD

In the overall population, the analysis using a restricted cubic

spline curve (Figure 3A) demonstrated a nonlinear association

between TyG values and outcome events (P-nonlinear < 0.001).

As TyG values increased from 0 to 2.39, the OR value progressively

rose, indicating a positive correlation between elevated TyG levels

and an increased risk of outcome events. However, within the range

of TyG values from approximately 2.40 to 3.20, the rate of increase

in the curve began to decelerate, suggesting a reduced rate of risk

escalation. Beyond a TyG value of 3.20, the curve continued to

ascend, signifying an enhanced impact of TyG on outcome events.

In the male cohort (Figure 3B), the relationship between TyG and

outcome events similarly exhibited a nonlinear pattern (P-

nonlinear = 0.046). With rising TyG values, the OR value

consistently increased, with an inflection point occurring at a

TyG of approximately 2.64, where the rate of increase slightly
FIGURE 2

Forest map for subgroup analysis.
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diminished, yet the risk continued to escalate thereafter. In the

female cohort (Figure 3C), the RCS analysis revealed a multiphasic

alteration in the relationship between TyG and outcome events,

characterized by a local peak at a TyG of approximately 1.20,

followed by a slight reduction in the OR. However, the risk rose

again after TyG 1.7, particularly above TyG 3.0, where the odds

continued to increase. This result suggests that the impact of TyG

on outcome events in the female population may be modulated by

other factors, exhibiting a more complex risk pattern.

In the overall population, as depicted in Figure 3D, a significant

nonlinear association was observed between TyG/HDL-c values and

outcome events (P-nonlinear < 0.001). As TyG/HDL-c values

increased, there was a general upward trend in risk, with an

inflection point identified between 1.2 and 2.2, suggesting a more

intricate variation in risk within this range. Beyond a value of 2.8,

the OR exhibited a relatively stable upward trend, further

corroborating the nonlinear influence of TyG/HDL-c on outcome

events. In the male cohort, shown in Figure 3E, the relationship

between TyG/HDL-c and outcome events also exhibited nonlinear

characteristics. Around a TyG/HDL-c value of 2.4, the curve

displayed slight fluctuations before stabilizing; however, when the

value surpassed 3.3, the risk increased markedly. In the female

cohort, as illustrated in Figure 3F, the risk associated with TyG/

HDL-c initially demonstrated a rapid increase followed by a slower

upward trend. At approximately 1.79, the OR value increased

significantly. Although the risk continued to rise thereafter, the

rate of increase decelerated, particularly as it approached a value of
Frontiers in Endocrinology 09
3.0. This suggests that the impact of TyG/HDL-c on outcome events

in the female population may reach a saturation point at

higher levels.
3.6 Analysis of the ROC curve

In this research, ROC curve analysis was utilized to assess the

ability of TyG and TyG/HDL-c to distinguish outcome events. As

shown in Figure 4, the AUC for TyG alone was 0.694 (95% CI:

0.656-0.732). For TyG/HDL-c, the AUC was 0.693 (95% CI: 0.655-

0.731), indicating similar predictive capabilities. When TyG and

TyG/HDL-c were combined, the AUC rose to 0.703 (95% CI: 0.665-

0.740), suggesting enhanced predictive performance. These results

show that TyG and TyG/HDL-c can predict diabetes risk in NAFLD

patients, and their combination may improve prediction.
4 Discussion

Utilizing a retrospective cohort from The Central Hospital of

Shaoyang, this study conducted a systematic analysis of the association

between TyG, its derivative index TyG/HDL-c, and the risk of diabetes

mellitus in patients with NAFLD. The findings revealed that both TyG

and TyG/HDL-c significantly elevated the prospective risk of DM in

individuals with NAFLD, demonstrating a nonlinear relationship.

Additionally, subgroup analysis by gender indicated variations in
FIGURE 3

Nonlinear relationship between TyG, TyG/HDL-c, and the Risk of Diabetes in Patients with NAFLD. (A) TyG for total crowd; (B) TyG for male; (C) TyG
for female; (D) TyG/HDL-c for total crowd; (E) TyG/HDL-c for male; (F) TyG/HDL-c for female.
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the predictive value of these indices between males and females. These

results suggest that TyG and its derivative index, TyG/HDL-c, are

significantly associated with the future risk of diabetes in patients with

NAFLD and may provide Supplementary Information for risk

stratification in clinical practice. Furthermore, their associations with

diabetes risk may reflect underlying metabolic disturbances that

warrant further investigation.

The study identified a significant positive correlation between

TyG and the risk of DM in NAFLD patients (OR = 1.96, 95% CI:

1.67-2.30, P < 0.001). This implies that TyG is not solely a metabolic

marker of insulin resistance but may also contribute directly to the

pathogenesis of DM (27). Previous research has demonstrated a

strong association between elevated TyG levels and disruptions in

insulin signaling pathways, notably the inhibition of the IRS-1/

PI3K/Akt pathway (28). This disruption results in diminished

insulin-mediated glucose uptake and contributes to the

development of insulin resistance. Furthermore, elevated TyG

levels are frequently linked to chronic inflammatory responses,

characterized by increased concentrations of proinflammatory

cytokines such as TNF-a and IL-6, which may further impede

insulin receptor signaling and exacerbate insulin resistance (29, 30).

Recent studies have also suggested that TyG may have potential

predictive value beyond diabetes, such as in cancer development.

For example, in bladder cancer—a common malignancy in elderly

populations—TyG was shown to be elevated and significantly

associated with insulin resistance and NAFLD, implying a

potential link between metabolic dysfunction and tumorigenesis

(31). This is supported by evidence from a cross-sectional study

demonstrating increased NAFLD prevalence in non-metastatic

bladder cancer patients and its correlation with TyG levels.

Furthermore, diabetes itself has been identified as a risk factor for

bladder cancer, as shown by meta-analyses demonstrating a

statistically significant increased incidence of bladder cancer in

individuals with diabetes compared to those without (32). These

findings collectively suggest that TyG may serve not only as a
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marker of insulin resistance but also as an indicator of broader

metabolic and oncological risks, especially in NAFLD populations.

Conversely, TyG/HDL-c has been shown to significantly elevate

the risk of developing diabetes mellitus (OR=1.90, 95% CI: 1.60-

2.26, P<0.001). HDL-c is known for its antioxidant (33), anti-

inflammatory (34, 35), and cholesterol reverse transport-

promoting properties (36), and it plays a crucial role in

preserving insulin sensitivity (37). Reduced HDL-c levels may

diminish its protective effects on insulin signaling pathways,

thereby worsening insulin resistance (38). Additionally, low HDL-

c levels may enhance adipose tissue inflammation and lipotoxicity

by affecting the PPAR-g signaling pathway, thus accelerating the

progression of insulin resistance (39). Therefore, TyG/HDL-c may

provide a more comprehensive reflection of the combined effects of

insulin resistance and lipid metabolism abnormalities than

TyG alone.

This study conducted an in-depth examination of the nonlinear

relationship between TyG, TyG/HDL-c, and diabetes risk through

the application of RCS analysis. The findings revealed a significant

increase in diabetes risk when TyG surpassed 2.39 (p-

nonlinear=0.002), whereas the inflection point for TyG/HDL-c

was identified at 2.20 (p-nonlinear<0.001). This nonlinear

relationship indicates that once metabolic disorders reach a

specific threshold, the exacerbation of insulin resistance may

initiate a series of reactions, including b-cell dysfunction (40),

increased glucose toxicity (41), and abnormal glucagon secretion

(42), thereby expediting the onset of diabetes. The identification of

this threshold effect holds substantial implications for clinical

intervention strategies, underscoring the importance of intensified

metabolic management in patients with TyG or TyG/HDL-c values

nearing these thresholds to avert rapid diabetes progression.

The subgroup analysis demonstrated a significant influence of

gender on the predictive efficacy of TyG and TyG/HDL-c, as

indicated by a P-value for interaction of less than 0.05. This

observation may be explained by gender-specific endocrine

regulatory mechanisms (43). Prior to menopause, women

typically exhibit elevated estrogen levels, which can enhance

insulin sensitivity by activating the AMPK signaling pathway and

reducing visceral fat accumulation, thereby decreasing the risk of

insulin resistance (44, 45). Conversely, the postmenopausal decline

in estrogen levels may result in diminished insulin sensitivity,

increasing the susceptibility of women to diabetes (46, 47).

Furthermore, men generally present a higher risk of abdominal

obesity, which is associated with gender-specific differences in

testosterone levels, adipose tissue inflammation, and adiponectin

levels (48). Consequently, integrating gender-specific metabolic

characteristics into diabetes risk assessment models may improve

their clinical relevance and applicability.

With regard to lifestyle factors, this study classified smoking

status into three categories: non-smoker, ex-smoker, and smoker,

allowing for a more precise adjustment of smoking-related

confounding effects. However, data on alcohol consumption were

limited to a binary classification (yes vs. no) due to the restrictions

of the electronic medical record system. Despite this limitation, the

influence of alcohol on triglyceride metabolism cannot be ignored.
FIGURE 4

Analysis of the ROC curve.
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Moderate alcohol intake has been shown to elevate plasma

triglyceride levels and influence metabolic markers such as TyG

(49). Furthermore, evidence suggests that even moderate alcohol

consumption may accelerate fibrosis progression in NAFLD and

exert a synergistic effect with type 2 diabetes mellitus, further

complicating disease outcomes (50).

In addition, although NAFLD is traditionally considered non-

alcohol-related, growing evidence indicates that NAFLD and

alcoholic fatty liver disease (AFLD) share many common

pathogenic pathways. These include oxidative stress, endoplasmic

reticulum stress, mitochondrial dysfunction, and activation of

inflammatory signaling cascades. These overlapping mechanisms

suggest a convergent pathway of liver injury regardless of alcohol

involvement, and highlight the need to consider these similarities in

both mechanistic research and clinical management strategies (51).

Although the predictive performance of TyG and TyG/HDL-c

as independent biomarkers for T2DM is relatively modest, their

clinical utility may lie within a broader framework of metabolic

health risk assessment. As highlighted in a recent review by Stefan

and Schulze (2023), the current scientific focus is shifting toward

cardiometabolic risk clustering and metabolic health stratification,

aiming to better characterize subpopulations with distinct risk

profiles (52). In this context, TyG and its derivatives, by reflecting

hepatic lipid accumulation and insulin resistance, may serve as

convenient and cost-effective markers that complement existing

models. Their incorporation into cardiometabolic clustering

algorithms could facilitate the identification of high-risk

populations, particularly within specific BMI strata or among

patients with NAFLD, thereby enhancing the precision of diabetes

and CVD prevention and management strategies.

The present study demonstrates several strengths: (1) It utilized

a relatively large cohort of patients with NAFLD and conducted a 3-

year follow-up, thereby enhancing the reliability of the findings. (2)

The study employed multiple imputation methods to address

missing data and applied the SMOTE to balance the dataset,

thereby strengthening the model’s robustness. (3) Restricted cubic

spline analysis was used to investigate the nonlinear relationships of

TyG and TyG/HDL-c, elucidating their potential threshold effects.

Nonetheless, several limitations must be acknowledged. Firstly, as a

single-center retrospective study, there is a possibility of selection

bias, which necessitates further validation through multi-center

prospective studies. Secondly, despite adjustments for various

confounding factors, the potential influence of unmeasured

variables on the results cannot be entirely excluded. Furthermore,

the study did not explore the relationships between TyG and TyG/

HDL-c with other metabolic syndrome-related indicators (such as

insulin and homeostasis model assessment of insulin resistance

[HOMA-IR]), which presents an opportunity for future research.
5 Conclusion

This study substantiates that both TyG and TyG/HDL-c are

significantly correlated with the risk of diabetes onset in individuals
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with NAFLD, demonstrating nonlinear associations. Additionally,

the predictive efficacy of these indices may be modulated by gender,

indicating the necessity of incorporating gender considerations into

diabetes risk assessment protocols in clinical settings. Future

mechanistic investigations are warranted to elucidate the precise

roles of TyG and TyG/HDL-c in insulin signaling pathways,

inflammatory processes, and the regulation of lipid metabolism.

Such insights could enhance early screening and intervention

strategies aimed at mitigating diabetes risk among NAFLD patients.
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