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Impact of per- and
polyfluoroalkyl substances
on diabetic kidney disease
Siyuan Song1, Liji Huang1, Xiqiao Zhou1, Yuan Han2*

and Jiangyi Yu1*

1Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of
Nanjing University of Chinese Medicine, Nanjing, China, 2Department of Nephrology, Children’s
Hospital of Nanjing Medical University, Nanjing, China
Purpose: This study aims to elucidate the mechanistic role of Per- and

Polyfluoroalkyl Substances (PFAS) in the pathogenesis and progression of

diabetic kidney disease (DKD).

Methods: This study systematically evaluated the toxicity profiles of PFAS

compounds utilizing PubChem, ProTox 3.0, and ChEMBL databases. Potential

PFAS-related targets were predicted through SwissTargetPrediction and

SuperPred platforms. Gene targets associated with DKD were compiled from

the GeneCards and OMIM databases. Intersection analysis of PFAS and DKD-

related targets was performed to identify candidate genes. A protein-protein

interaction network was constructed using STRING to delineate hub targets.

Functional enrichment analyses were subsequently conducted via DAVID to

elucidate underlying biological processes and pathways. Validation of hub

targets encompassed immunohistochemical staining, single-cell expression

profiling, subcellular localization assays, and gene expression analyses using

external datasets from the Human Protein Atlas (HPA) and Gene Expression

Omnibus (GEO). Furthermore, correlations between immune cell infiltration and

gene set enrichment analysis (GSEA) were performed to investigate potential

mechanistic links. Finally, molecular docking simulations of PFAS compounds

with hub proteins were executed using Discovery Studio and CDOCKER to

predict binding interactions.

Results: A total of 424 PFAS-associated targets were identified, alongside 9,999

potential toxic targets related to DKD. KEGG pathway enrichment analysis

revealed that PFAS toxicity in DKD is implicated in critical signaling pathways,

including nitrogen metabolism, peroxisome proliferator-activated receptor

(PPAR) signaling, endocrine resistance, insulin resistance, and AMP-activated

protein kinase (AMPK) signaling. Hub targets identified comprised MMP9, BCL2,

CYP3A43, ACE, HNF4A, HSP90AA1, AGTR1, MMP2, AGTR2, and HMGCR. GSEA

further indicated that these hub targets may contribute to immune-mediated

renal injury. Molecular docking simulations substantiated strong binding affinities

between PFAS compounds and the identified hub proteins, supporting their

potential mechanistic involvement.
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Conclusion: This study provides a theoretical framework for elucidating the toxic

targets and underlying mechanisms through which PFAS contribute to the

pathogenesis of DKD.
KEYWORDS

per-and polyfluoroalkyl substances, network toxicology, diabetic, molecular docking,
diabetic kidney disease
1 Introduction

Per- and Polyfluoroalkyl Substances (PFAS) are a class of

synthetic organic compounds characterized by the substitution of

all or part of the hydrogen atoms on the carbon chain with fluorine

atoms, forming highly stable C–F covalent bonds (1). Owing to the

exceptionally high bond energy of the carbon–fluorine (C–F) bond,

PFAS demonstrate remarkable thermal and chemical stability, as

well as pronounced resistance to hydrolysis, photolysis, and

biodegradation. These unique physicochemical properties have

facilitated their extensive use across a wide range of industrial

applications, including textiles, chemical manufacturing,

electronics, and electroplating (2). However, PFAS can be released

into the environment during production, processing, and daily use,

resulting in their persistence in various environmental media and

biological systems (3). Due to their environmental persistence and

resistance to degradation, PFAS have become a pressing global

concern as pollutants with significant implications for public health.

Recent toxicological investigations have demonstrated that PFAS

can bioaccumulate and biomagnify along the food chain in various

organisms, including fish and mammals, thereby exerting

detrimental toxic effects (4).

Since the 1990s, China’s rapid industrial expansion has been

accompanied by significant growth in the fluorochemical industry,

resulting in a marked increase in the production and consumption of

fluorinated compounds. The Bohai Sea, China’s largest semi-enclosed

inland sea, is characterized by a unique natural ecosystem and holds

considerable geopolitical and strategic significance. It plays a vital role

in supporting the socio-economic development of Beijing, Tianjin,

and the broader Bohai Rim region. The Bohai Sea is also the

confluence of more than 40 rivers, including major waterways such

as the Haihe, Yellow, and Liao Rivers (5). The continuous discharge

of substantial volumes of industrial wastewater and domestic sewage

from fluorochemical industrial parks in the Bohai region has resulted

in widespread PFAS contamination in adjacent inland rivers,

atmospheric environments, and surface waters (6). Once

introduced into the marine environment, a portion of PFAS

compounds adsorb to sediments and bioaccumulate in marine

organisms through direct filter-feeding, ultimately posing risks to

human health.

Diabetic kidney disease (DKD) is among the most prevalent and

severe complications of diabetes mellitus (DM), significantly
02
contributing to increased morbidity and mortality in affected

patients (7). Currently, over 400 million people worldwide are

affected by diabetes, and this number is projected to rise to 600

million by 2035 and further to 700 million by 2045 (8). Among

individuals with DM, approximately 20% are expected to develop

DKD (9). Data from the National Health and Nutrition Examination

Survey (NHANES) have demonstrated that individuals with elevated

PFAS concentrations exhibit significantly reduced estimated

glomerular filtration rates (eGFR) (10). While several studies have

indicated that chronic exposure to PFAS may elevate the risk of

developing DKD (11), the precise molecular mechanisms driving this

association remain poorly understood.

Traditional toxicological approaches encounter considerable

challenges in evaluating the complex biological impacts of

emerging environmental pollutants, particularly regarding the

timeliness and comprehensiveness of exposure assessment (12).

Conventional toxicity assessments predominantly concentrate on

exposure metrics and often evaluate the isolated effects of one or a

limited number of molecular targets, frequently neglecting the

broader systemic impacts and intricate toxicological pathways

involved. In contrast, environmental pollutants commonly

perturb multiple signaling targets across diverse biological

systems, disrupting complex molecular networks and ultimately

eliciting multifaceted toxic responses (13). Therefore, the

development of rapid and robust evaluation methods to assess the

toxicity of emerging environmental contaminants is imperative.

Network toxicology, an approach derived from network

pharmacology and grounded in systems biology, leverages

network-based analyses to comprehensively characterize the

interactions within biological systems (14). It utilizes the design

of multi-target drug molecules based on selected signaling

molecules and integrates bioinformatics with high-throughput

omics data to identify active compounds or design novel

therapeutic agents. As such, it represents a new interdisciplinary

approach combining pharmacology and information technology

(15). The fundamental principle of network toxicology involves

predicting the toxicological targets of environmental pollutants

based on their chemical structures through the integration of

multiple databases. This is followed by comprehensive functional

and signaling pathway analyses of gene targets obtained from

genomic repositories. Ultimately, this approach enables the

construction of an interactive network that delineates the
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relationships among toxicity, toxic chemical components,

molecular targets, and associated effect pathways (16).

Therefore, this study adopts a network toxicology approach that

integrates computational modeling of toxicological pathways with

mechanistic network predictions to identify and analyze potential

toxic targets (17). This strategy is applied to elucidate the nephrotoxic

pathways implicated in exposure-related DKD, with the objective of

characterizing the toxicological properties of PFAS and predicting their

associated toxicity and molecular mechanisms. Ultimately, this work

aims to provide valuable insights into efficient methods for assessing

environmental pollutant toxicity and to establish a foundational

framework for investigating diseases linked to such exposures.
2 Method

2.1 Toxicity assessment of PFAS
compounds

The SMILES representations for twenty principal PFAS

compounds (Table 1) were obtained from the PubChem repository

(https://pubchem.ncbi.nlm.nih.gov/) (18). These molecular

identifiers were subsequently analyzed using ProTox version 3.0

(https://tox.charite.de/protox3/) (19) and the ChEMBL database

(https://www.ebi.ac.uk/chembl/) (20) to enable comprehensive

computational assessment of their toxicological profiles.
2.2 Identification of PFAS-associated
molecular targets

The selected PFAS compounds, represented in SMILES format and

sourced from the PubChem database, were analyzed using the

SwissTargetPrediction platform (http://www.swisstargetprediction.ch/)

(21) and the SuperPred tool (https://prediction.charite.de) (22). In

both systems,Homo sapiens was designated as the target organism to

ensure biological relevance to humans, with a screening threshold set

at “Probability ≥ 0.” SwissTargetPrediction utilizes machine learning

algorithms that analyze molecular fingerprints alongside curated

ligand–protein interaction datasets to predict probable targets.

Likelihood scores are assigned based on structural and chemical

feature comparisons. To maximize the inclusivity of potential targets,

a minimum probability cutoff of zero was applied, thereby

prioritizing sensitivity in target identification (23). Subsequently,

target specificity was enhanced through systematic refinement and

enrichment processes. These computational tools collectively enabled

the prediction, filtration, and validation of molecular targets

potentially interacting with PFAS compounds.
2.3 Identification of DKD-associated
targets

To uncover genes implicated in DKD, searches were conducted

in the GeneCards database (https://www.genecards.org/) (24) and
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the Online Mendelian Inheritance in Man (OMIM) resource

(https://omim.org/) (25) using the keyword “diabetic kidney

disease.” After removing duplicate entries, a comprehensive set of

DKD-related targets was compiled by integrating data from both

databases. To enhance dataset relevance, the median “Relevance

score” across all identified targets was used as a threshold for

filtering (26). Employing the median as a cutoff ensures

uniformity and facilitates the integration of heterogeneous gene

expression datasets. This strategy strikes a balance between

selectivity and biological significance, while mitigating potential

biases arising from variable data volumes across platforms (27).

Additionally, Venn diagram analysis was performed to identify

overlapping targets shared between PFAS-associated and DKD-

related gene sets. These intersecting targets were designated as

candidate toxicological targets through which PFAS may

contribute to the pathogenesis of DKD.
2.4 Construction of protein-protein
interaction network and identification of
hub targets

The intersecting targets identified as potential mediators of

PFAS-induced DKD-represented by the overlapping region of the

Venn diagram-were submitted to the STRING database (https://

string-db.org/) using the “Multiple Proteins” analysis function. The

species parameter was set to Homo sapiens, and the minimum

required interaction score was configured to “high confidence”

(>0.7). Additionally, the false discovery rate (FDR) threshold was

set to a stringent level to minimize false positives. Applying a high

confidence cutoff (>0.7) effectively excludes low-quality or

speculative interactions, retaining only experimentally validated

or strongly supported associations (28, 29). Concurrently,

stringent FDR control significantly reduces the likelihood of false-

positive signals arising from random errors, thereby enhancing the

reliability and reproducibility of the interaction network.

The results obtained from the STRING database were imported

into Cytoscape software (version 3.10.3) to calculate network

parameters for each node and to optimize the visualization of

molecular interactions (30). A PPI network was constructed based

on the topological characteristics of the nodes. Using the CytoNCA

plugin “Centiscape”, key topological parameters for each gene node

were calculated, including Closeness Centrality, Betweenness

Centrality, and Degree Value. Hub targets were identified based

on the following three criteria:
1. Closeness centrality > average value;

2. Betweenness centrality > average value;

3. Degree value > average value.
The selection of these three parameters reflects their

complementary roles in network topology analysis: degree

centrality quantifies the importance of a node based on the

number of its direct connections, thereby identifying locally dense

hub nodes (31); betweenness centrality measures the extent to
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which a node functions as a critical intermediary facilitating global

information flow within the network (32); and closeness centrality

evaluates the ability of a node to efficiently disseminate information

across the entire network (33). The combined application of these

metrics enables a more comprehensive and nuanced assessment of

node significance. By integrating multiple topological indicators,

this approach minimizes selection bias and enhances the robustness

and reliability of the identified hub targets (34).
2.5 Functional enrichment analysis

To elucidate the biological functions of potential targets involved

in PFAS-induced DKD, Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analyses were

performed using the DAVID database (https://david.ncifcrf.gov). The

GO analysis encompassed three domains: biological processes (BP),

cellular components (CC), and molecular functions (MF),

providing a comprehensive overview of the primary biological

roles of these targets. KEGG enrichment analysis identified key

signaling pathways associated with PFAS-induced DKD targets,

applying a FDR threshold of < 0.05 to ensure statistical robustness.

Furthermore, KEGG pathway enrichment was specifically

conducted on the subset of selected hub targets to delineate their
Frontiers in Endocrinology 04
involvement in DKD-related pathways, thereby underscoring

critical signaling cascades implicated in disease pathogenesis.
2.6 Validation of the hub targets in the
different databases

To validate the expression patterns of the identified hub targets,

immunohistochemical (IHC) staining data were retrieved from the

Human Protein Atlas (HPA; https://www.proteinatlas.org/).

Protein expression levels were evaluated across various organs by

examining staining intensity, the identity of positively stained cell

types, and tissue-specific distribution. Additionally, single-cell

transcriptomic analyses were conducted to characterize target

gene expression across distinct cell populations, including

endocrine and epithelial cells. Uniform Manifold Approximation

and Projection (UMAP) was employed to visualize gene expression

distribution among heterogeneous cell types. Subcellular

localization of the corresponding proteins was further assessed

using fluorescence microscopy, providing spatial resolution of

protein enrichment within key cellular compartments such as the

nucleus, cytoplasm, mitochondria, and endoplasmic reticulum.

Differential expression of hub genes between normal renal

tissues and those affected by chronic kidney disease (CKD) was
TABLE 1 Molecular formula, molecular weight and SMILES structure of PFAS.

Name
Molecular
formulas

Molecular
weights (g/mol)

SMILES structures

PFOA C8HF15O2 414.07 C(=O)(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)O

PFHxA C6HF11O2 314.05 C(=O)(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)O

PFHxS C6HF13O3S 400.12 C(C(C(C(F)(F)S(=O)(=O)O)(F)F)(F)F)(C(C(F)(F)F)(F)F)(F)F

PFBA C4HF7O2 214.04 C(=O)(C(C(C(F)(F)F)(F)F)(F)F)O

FTOH C10H5F17O4S 544.18 C(COS(=O)(=O)O)C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F

FTS C22H30O2S 358.5 CC(=CCCC(=CCCC(=CCSC1=CC=CC=C1C(=O)O)C)C)C

PFPeA C5HF9O2 264.05 C(=O)(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)O

PFHpA C7HF13O2 364.06 C(=O)(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)O

PFNA C9HF17O2 464.08 C(=O)(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)O

PFDA C10HF19O2 514.08 C(=O)(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)O

6:2 FTSA C8H5F13O3S 428.17 C(CS(=O)(=O)O)C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F

PFPrA C3HF5O2 164.03 C(=O)(C(C(F)(F)F)(F)F)O

GenX C6HF11O3 330.05 C(=O)(C(C(F)(F)F)(OC(C(C(F)(F)F)(F)F)(F)F)F)O

FTOH C10H5F17O4S 544.18 C(COS(=O)(=O)O)C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F

PFOSA C8H2F17NO2S 499.15 C(C(C(C(C(F)(F)S(=O)(=O)N)(F)F)(F)F)(F)F)(C(C(C(F)(F)F)(F)F)(F)F)(F)F

ADONA C7H2F12O4 378.07 C(C(C(=O)O)(F)F)(OC(C(C(OC(F)(F)F)(F)F)(F)F)(F)F)F

NMeFOSA C9H4F17NO2S 513.169 CNS(=O)(=O)C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F

NEtFOSA C10H6F17NO2S 527.2 CCNS(=O)(=O)C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F

6:2 FTOH C8H5F13O 364.1 C(CO)C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F

6:2 FTSAAm C13H18F13N2O2S+ 513.34 C[NH+](C)CCCNS(=O)(=O)CCC(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F
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va l i d a t ed u s i ng th e Neph ro s eq da t aba s e ( h t t p s : / /

www.nephroseq.org/). To corroborate these findings in the

context of DKD, gene expression datasets were obtained from the

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/

geo/), with particular focus on the GSE30122 dataset comprising 19

DKD samples and 50 normal controls, enabling assessment of

differential gene expression between diseased and healthy

renal tissues.
2.7 Correlation of immune cell infiltration

To explore the relationships among immune cells during

infiltration, the immune microenvironment was profiled using

CIBERSORT (35), enabling comparison of relative immune cell

subsets and immune scores in the GSE30122 dataset. A significance

threshold of P < 0.05 was applied for selecting features for further

analysis. Correlation matrices of immune infiltration were then

generated, categorizing correlation strength as weak (absolute

coefficients between 0.10 and 0.39), moderate (0.40 to 0.69), and

strong (ranging from 0.70 to 0.89).
2.8 GSEA

GSEA was performed using GSEA software (version 3.0), obtained

from the Broad Institute website (http://software.broadinstitute.org/

gsea/index.jsp) (36). Based on the expression levels of core genes,

samples were stratified into high-expression (≥50%) and low-

expression (<50%) groups. Curated gene sets (c2.cp.kegg.v7.

4.symbols.gmt) were sourced from the Molecular Signatures

Database (MSigDB, http://www.gsea-msigdb.org/gsea/

downloads.jsp) (37) for pathway and molecular mechanism

analyses. The minimum and maximum gene set sizes were set to

5 and 5000, respectively, with 1,000 permutations performed to

ensure robust statistical assessment. Pathways achieving a nominal

P < 0.05 and a FDR < 0.25 were considered statistically significant.
2.9 Molecular docking

Discovery Studio, a specialized software for molecular

simulations in the life sciences, is commonly employed in drug

development and biomacromolecular modeling, particularly for

analyzing protein and antibody structures (38). In this study, PFAS

compounds were employed as ligands for molecular docking

simulations. Receptor proteins were selected based on hub targets

exhibiting the highest degree centrality within the PPI network.

Three-dimensional structures of the PFAS molecules were obtained

from the PubChem database in SDF format. Corresponding 3D

protein structures of the primary toxic targets were retrieved from

the RCSB Protein Data Bank (http://www1.rcsb.org/), specifying

Homo sapiens as the source organism and restricting resolution

to 0–3.0 Å. Using Discovery Studio 2019, receptor structures were

preprocessed by adding hydrogen atoms, removing crystallographic
Frontiers in Endocrinology 05
water molecules, and reconstructing missing loop regions. Potential

binding pockets were subsequently predicted. Ligands were

prepared through hydrogenation and conformational analysis.

Molecular docking simulations were performed with the

CDOCKER module to predict the optimal binding orientations

between PFAS ligands and selected targets (39). CDOCKER

interaction energies were calculated, with higher scores indicative

of stronger ligand–receptor binding affinities.
3 Results

3.1 Target screening for PFAS-induced
DKD

Targets for 20 major PFAS compounds were predicted using the

SwissTargetPrediction and SuperPred databases. Following data

integration and removal of duplicates, a total of 424 unique

PFAS-related targets were identified. Gene targets associated with

DKD were obtained from the GeneCards and OMIM databases,

resulting in 9,999 unique targets after filtering. Intersection analysis

using Venny 2.1.0 revealed 86 overlapping targets (Figure 1A),

which represent potential toxicological mediators through which

PFAS may contribute to the pathogenesis of DKD.
3.2 Construction of PPI network and
identification of hub targets

To analyze these common targets, a PPI network was

constructed by submitting the 86 shared targets to the STRING

database (Figure 1B), with parameters set to “Multiple proteins,”

species designated as Homo sapiens, and a high-confidence

minimum interaction score. This yielded a network comprising

83 nodes and 572 edges (Figure 1C), illustrating the intricate

interactions between PFAS-associated toxic targets and the

pathophysiology of DKD. To further elucidate the mechanisms

underlying PFAS-induced toxicity in DKD, the network was

imported into Cytoscape 3.9.0, where the CytoHubba plugin was

employed for clustering analysis. The top 10 hub targets, identified

based on degree centrality, included MMP9, BCL2, CYP3A43, ACE,

HNF4A, HSP90AA1, AGTR1, MMP2, AGTR2, and HMGCR

(Figure 1D), suggesting their pivotal roles in mediating PFAS-

induced DKD toxicity.
3.3 Functional enrichment analysis

GO and KEGG pathway enrichment analyses were conducted

on the 86 candidate targets associated with PFAS-induced DKD

toxicity. GO analysis revealed that, in terms of BP, these targets are

primarily involved in transport, regulation of biological processes,

and lipid metabolic processes (Figure 1E). Regarding CC, the targets

are predominantly associated with intrinsic components of

membranes and plasma membrane parts (Figure 1F). For MF, the
frontiersin.org
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FIGURE 1

Target screening for PFAS-induced DKD and functional enrichment analysis. (A) Venn diagram of PFAS targets and DKD-related targets; Red represents
PFAS-related targets, and blue represents DKD-related targets. (B) PPI network of the intersection targets through STRING database; (C) PPI Network of
the intersection targets through Cytoscape 3.9.0; Darker blue nodes indicate higher degree in the PPI network. (D) Top 10 hub targets through
CytoHubba plugin; (E) Biological process analysis of hub targets; (F) Cellular Components analysis of hub targets; (G) Molecular function analysis of hub
targets; (H) KEGG analysis of hub targets; The size of each bubble represents the number of enriched genes (Count), while the color gradient from light
to deep blue indicates increasing −log10(P value), with darker colors representing higher enrichment significance. (I) Lollipop Plot of KEGG analysis;
The size of each bubble represents the number of enriched genes (Count), while the horizontal axis shows −log10(P value), where larger values denote
more significant enrichment. (J) Circular plot of KEGG analysis; Each color represents a different pathway, and the shift toward yellow reflects an
increase in −log10(P value), indicating stronger enrichment.
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targets are mainly linked to transition metal ion binding, zinc ion

binding, and lyase activity (Figure 1G). KEGG pathway enrichment

identified the top 10 significantly enriched pathways, with the most

prominent including nitrogen metabolism, PPAR signaling,

endocrine resistance, insulin resistance, and AMPK signaling

pathways (Figure 1H). Notably, the majority of these pathways

are related to metabolic regulation (Figures 1I, J). Collectively, these

findings provide valuable insights into the potential mechanisms by

which PFAS contribute to DKD toxicity, emphasizing key biological

processes and signaling pathways involved in disease progression.
3.4 Validation of the hub targets in the
different databases

Validation using the HPA database revealed that the hub targets

implicated in PFAS-induced DKD toxicity-namely MMP9, BCL2,

CYP3A43, ACE, HNF4A, and HMGCR-were predominantly

localized in renal tubules, with no detectable expression in

glomeruli. HSP90AA1 and AGTR1 were undetected in both

tubules and glomeruli. MMP2 demonstrated moderate expression

in the renal tubules but was expressed at low levels in the glomeruli.

Immunohistochemical data for AGTR2 are currently unavailable in

the HPA database (Figure 2A). Single-cell transcriptomic analysis

indicated the expression of these targets across germ cells, neuronal

cells, blood immune cells, and endocrine cells (Figure 2B).

Subcellular localization analysis further showed that HSP90AA1,

MMP9, and CYP3A43 were primarily localized in the cytosol; BCL2

was enriched in mitochondria; AGTR1, ACE, and MMP2 were

predominantly found in vesicles; and HNF4A was localized within

the nucleoplasm (Figure 2C).

Analysis of the Nephroseq database revealed that MMP9,

HSP90AA1, BCL2, and CYP3A43 were significantly upregulated

in CKD, whereas AGTR1, ACE, HNF4A, MMP2, and HMGCR

exhibited significant downregulation, with all differences reaching

statistical significance (P < 0.05). Expression data for AGTR2 were

not available in this database (Figure 2D). In the GSE30122 dataset,

several genes-including MMP9, HSP90AA1, BCL2, MMP2,

AGTR1, and HMGCR-were upregulated in DKD, whereas ACE,

HNF4A, CYP3A43, and AGTR2 were downregulated. Among

these, the differential expression of CYP3A43, ACE, MMP2, and

AGTR2 was statistically significant (P < 0.05) (Figure 2E).
3.5 Correlation of immune cell infiltration
and GSEA

The immune microenvironment was characterized using

CIBERSORT to assess correlations of immune cell infiltration

within the GSE30122 dataset (Figure 3A). Moderate correlations

were observed between plasma cells and resting mast cells, as well as

between regulatory T cells (Tregs) and resting dendritic cells. Weak

correlations were detected between activated natural killer (NK)

cells and M1 macrophages, and between monocytes and M1

macrophages. Additionally, CD8+ T cells, activated mast cells,
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and follicular helper T cells were significantly decreased in DKD

compared to controls (P < 0.05) (Figure 3B).

GSEA was performed on hub targets to elucidate potential

pathogenic mechanisms. MMP9 was predominantly enriched in

the allograft rejection pathway, while HSP90AA1 was associated

with limonene and pinene degradation. BCL2 showed significant

enrichment in the TGF-b signaling pathway. High CYP3A43

expression correlated with enrichment in olfactory transduction,

whereas AGTR1 was primarily enriched in nitrogen metabolism.

Elevated ACE expression was linked to maturity onset diabetes of

the young, and HNF4A was enriched in pyruvate metabolism.

MMP2 was associated with extracellular matrix (ECM) receptor

interaction, and high AGTR2 expression correlated with Type II

diabetes mellitus pathways. Finally, HMGCR was enriched in

alanine, aspartate, and glutamate metabolism. Collectively, these

findings suggest that these hub targets may play critical roles in

immune-mediated renal injury (Figure 3C).
3.6 Molecular docking

Molecular docking heatmap analysis demonstrated strong

binding affinities between PFAS compounds and the top 10 hub

targets (Figure 4A), including MMP9 (PDB ID: 2OVX), HSP90AA1

(PDB ID: 2QF6), BCL2 (PDB ID: 4IEH), CYP3A43 (PDB ID:

4NY4), AGTR1 (PDB ID: 4YAY), ACE (PDB ID: 4X5K), HNF4A

(PDB ID: 1PZL), MMP2 (PDB ID: 3AYU), AGTR2 (PDB ID:

5UNF), and HMGCR (PDB ID: 1HW8). The top ten docking

poses with the lowest binding energies were selected for

visualization using PyMOL (40). Notably, perfluorooctanoic acid

(PFOA) interacted with MMP9 residues GLN-402, ALA-189, and

LEU-188, while perfluorononanoic acid (PFNA) engaged with

HSP90AA1 residues GLN-402, ALA-189, LEU-188, GLU-208,

HIS-411, and HIS-401. FTS bound to BCL2 at ARG-66 and GLY-

104 residues, and perfluoropropanoic acid (PFPrA) interacted with

AGTR1 residues ASN-117, LEU-77, LYS-126, THR-90, GLY-78,

CYS-79, ARG-85, GLY-87, and GLY-89. Perfluoroheptanoic acid

(PFHpA) bound CYP3A43 at TYR-35 and ARG-167 residues. The

interaction between NMeFOSA and ACE involved GLY-237,

whereas GenX engaged HNF4A at ILE-53, ARG-52, and ILE-19

residues. Perfluoropentanoic acid (PFPeA) bound AGTR2 at GLU-

559, HIS-63, ASN-755, LYS-691, ILE-746, SER-745, and TYR-749

residues. Perfluorodecanoic acid (PFDA) interacted with MMP2

residues GLU-202, ALA-205, GLN-206, and TYR-204, and

perfluorohexane sulfonate (PFHxS) bound HMGCR at LEU-

477 (Figure 4B).
4 Discussion

PFAS toxicity was initially evaluated using data from PubChem,

ProTox 3.0, and ChEMBL databases. Relevant PFAS targets were

predicted via SwissTargetPrediction and SuperPred tools, while

DKD-associated gene targets were retrieved from GeneCards and

OMIM databases. The intersection of PFAS and DKD targets was
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FIGURE 2

Validation of the hub targets in the different databases. (A) Immunohistochemical staining images depicting the expression of hub targets in renal
tubules and glomeruli in the HPA database; (B) Single-cell maps illustrating the distribution of hub targets across different cell types in the HPA
database; (C) Subcellular localization analysis of hub targets in the HPA database; (D) Boxplots depicting the differential expression of hub targets
between normal kidney and those affected by chronic kidney disease in the Nephroseq database; Red represents normal kidney, while blue
represents chronic kidney disease. A P value less than 0.05 was considered indicative of statistical significance. (E) Violin plots depicting the
differential expression of hub targets between DKD and Control in the GSE30122 dataset; Red represents the DKD, while blue represents the
Control. A P value less than 0.05 was considered indicative of statistical significance.
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FIGURE 3

Correlation of immune cell infiltration and GSEA. (A) Immune infiltration correlation matrix depicting the relationships between immune cell
fractions; positive correlations are indicated in red, while negative correlations are shown in blue. Only correlations with P < 0.05 were considered
statistically significant and included in the analysis; (B) Boxplots depicting the differential expression of hub targets between immune cells; (C) GSEA
of hub targets in the GSE30122 dataset. *P< 0.05,**P< 0.01,***P< 0.001,****P< 0.0001.
Frontiers in Endocrinology frontiersin.org09

https://doi.org/10.3389/fendo.2025.1594897
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Song et al. 10.3389/fendo.2025.1594897
4FIGURE

Molecular docking. (A) Heatmap of molecular docking between 20 types of PFAS and the top 10 hub targets; 1: MMP9 (PDB ID: 2OVX), 2: HSP90AA1
(PDB ID: 2QF6), 3: BCL2 (PDB ID: 4IEH), 4: CYP3A43 (PDB ID: 4NY4), 5: AGTR1 (PDB ID: 4YAY), 6: ACE (PDB ID: 4X5K), 7: HNF4A (PDB ID: 1PZL), 8:
MMP2 (PDB ID: 3AYU), 9: AGTR2 (PDB ID: 5UNF), 10: HMGCR (PDB ID: 1HW8). A: PFOA, C: PFNA, E: FTS, G: PFPrA, I: PFHpA, K: NMeFOSA, M: GenX,
O: PFPeA, Q: PFDA, S: PFHxS. (B) Molecular docking results with the lowest binding energy were selected for visualization using PyMOL; a: PFOA-
MMP9; b: PFNA-HSP90AA1; c: FTS-BCL2; d: PFPrA-AGTR1; e: PFHpA-CYP3A43; f: NMeFOSA-ACE; g: GenX-HNF4A; h: PFPeA-AGTR2; i: PFDA-
MMP2; j: PFHxS-HMGCR.
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used to construct a PPI network. Functional enrichment analyses,

including GO and KEGG, were performed using the DAVID

platform. Molecular docking simulations between PFAS

compounds and hub targets were conducted utilizing Discovery

Studio and the CDOCKER algorithm. Expression and localization

of hub targets were validated through immunohistochemical

staining, single-cell transcriptomics, and subcellular localization

analyses using the HPA database, with further confirmation of

gene expression in GEO datasets. Additionally, immune cell

infiltration correlations and GSEA were performed to investigate

potential mechanistic pathways.

PFAS are ubiquitous environmental contaminants derived from

diverse industrial processes and consumer products, posing

substantial risks to human health and ecological systems (41).

Sources of PFAS contamination include industrial effluents,

packaging materials, and manufacturing processes, with these

compounds capable of bioaccumulating in plants and entering the

food chain (42). Elevated PFAS levels in aquatic environments

constitute a significant health hazard through water and dietary

exposure. Human exposure to PFAS is widespread, raising concerns

about associated health risks. Previous studies have demonstrated

that PFAS can induce neurotoxicity by disrupting calcium

homeostasis and altering neurotransmitter levels in neuronal cells

(43). Although regulatory measures have been implemented to

control the most toxic PFAS, their environmental persistence,

bioaccumulative properties, and capacity to cross physiological

barriers such as the blood-brain and placental barriers continue

to pose long-term health risks for current and future generations.

This study seeks to elucidate the mechanisms by which PFAS

contribute to the development of DKD.

MMP9, BCL2, CYP3A43, ACE, HNF4A, HSP90AA1, AGTR1,

MMP2, AGTR2, and HMGCR were identified as key hub targets

implicated in PFAS-induced DKD toxicity . MMP9 is

predominantly synthesized and secreted by glomerular mesangial

cells and renal tubular epithelial cells. Reduced serum levels of

MMP9 may reflect alterations in the composition of the glomerular

basement membrane (GBM), particularly changes in type IV

collagen turnover. Such dysregulation is characterized by

increased synthesis and decreased degradation of type IV

collagen, contributing to the progression of glomerulosclerosis

(44). BCL2 is a prototypical anti-apoptotic gene whose primary

function is to inhibit changes in mitochondrial outer membrane

permeability, thereby preventing the release of cytochrome C and

blocking the activation of the intrinsic apoptotic pathway. In DKD,

the high-glucose and high–advanced glycation end product (AGE)

microenvironment often induces apoptosis in glomerular mesangial

cells, podocytes, and renal tubular epithelial cells. Downregulation

of BCL2 expression is a key contributing factor in this apoptotic

process (45). CYP3A43 is involved in the metabolism of steroid

hormones, including testosterone, estrogen, and cortisol (46). The

kidney functions as a hormone-sensitive organ, where disruptions

in hormonal homeostasis can profoundly impact glomerular

filtration and tubular reabsorption. ACE plays a pivotal role in

the renin-angiotensin-aldosterone system (RAAS) by catalyzing the

conversion of angiotensin I to angiotensin II (Ang II). Ang II
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mediates potent vasoconstrictive, pro-oxidative, pro-inflammatory,

and pro-fibrotic effects, acting as a central driver of glomerular

hypertension, mesangial cell proliferation, glomerular basement

membrane thickening, and tubulointerstitial fibrosis in DKD (47).

Under hyperglycemic condit ions, the RAAS becomes

hyperactivated, resulting in elevated expression and enzymatic

activity of ACE. This exacerbates glomerular capillary

hypertension, induces podocyte injury, and aggravates

proteinuria. HNF4A is a critical transcriptional regulator involved

in glucose metabolism and pancreatic b-cell function, and

mutations in HNF4A are closely linked to maturity-onset diabetes

of the young type 1 (MODY1). Aberrant expression of HNF4A

within the kidney disrupts tubular metabolic homeostasis, leading

to lipid accumulation, metabolic derangements, and worsening

tubulointerstitial injury and fibrosis—hallmarks of both early and

progressive stages of DKD (48). HSP90AA1 functions as a

molecular chaperone that stabilizes crucial proteins involved in

pro-inflammatory signaling pathways, including NF-kB, STAT3,
and TLR4, all of which are activated in DKD. Under conditions of

high glucose and AGE stimulation, HSP90AA1 expression is

upregulated, thereby amplifying inflammatory responses in

macrophages and renal tubular epithelial cells. This enhanced

inflammation contributes to local tissue injury and promotes

fibrotic progression within the kidney (49). AGTR1, a key

receptor in RAAS, contributes to the progression of DKD by

promoting vasoconstriction, inflammation, oxidative stress, and

tissue fibrosis (50). Aberrant activation of AGTR1 in DKD is a

major driver of proteinuria and glomerulosclerosis. As such,

AGTR1 represents one of the central therapeutic targets in

current clinical strategies aimed at mitigating DKD progression

(51). MMP2, a matrix metalloproteinase involved in ECM

degradation, exerts a dual regulatory role in DKD by mediating

basement membrane remodeling, interstitial fibrosis, and

inflammatory responses. Dysregulation of MMP2 expression

disrupts ECM homeostasis, resulting in structural damage and

functional impairment of renal tissue. Consequently, MMP2 is

recognized as a critical pathological mediator driving the

progression of DKD (52). AGTR2 may exert renoprotective

effects in DKD by suppressing inflammatory responses, alleviating

glomerular hyperperfusion, and attenuating tissue fibrosis (53).

Excessive cholesterol synthesis and accumulation mediated by

HMGCR disrupt renal lipid metabolism, thereby exacerbating

oxidative stress and inflammatory responses that contribute to

structural damage and fibrotic progression in both the glomeruli

and renal tubules. Moreover, statins, through inhibition of HMGCR

activity, effectively reduce systemic lipid levels and exert

renoprotective effects that mitigate the progression of DKD.

These observations underscore the pivotal role of HMGCR in the

pathogenesis of DKD (54).

KEGG pathway enrichment analysis revealed that the potential

toxicity of PFAS in the pathogenesis of DKD is closely associated with

several key biological pathways, including nitrogenmetabolism, PPAR

signaling, endocrine resistance, insulin resistance, and AMPK

signaling pathways. Notably, nitrogen metabolism plays a critical

role in the pathophysiology of DKD, influencing renal function and
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metabolic homeostasis (55). Dysregulation of nitrogenous waste

products, such as urea and ammonia, arises from impaired renal

clearance and contributes to renal tubular toxicity and interstitial

fibrosis. Elevated levels of asymmetric dimethylarginine (ADMA), an

endogenous inhibitor of nitric oxide synthase, have been implicated in

endothelial dysfunction and the progression of DKD by disrupting

nitric oxide-mediated vasodilation and promoting oxidative stress.

Furthermore, aberrant amino acid metabolism in DKD exacerbates

inflammatory responses and oxidative damage, accelerating

glomerulosclerosis and tubular injury. PPAR signaling pathway

plays a crucial role in the pathogenesis of DKD by regulating lipid

metabolism, inflammation, and fibrosis within the kidney. Among the

PPAR isoforms, PPAR-g activation has been shown to improve insulin

sensitivity, reduce renal inflammation, and inhibit profibrotic

signaling, thereby attenuating glomerulosclerosis and

tubulointerstitial fibrosis in DKD (56). Activation of MAPK family

members-including ERK1/2, JNK, and p38 MAPK-has been

demonstrated to promote mesangial cell proliferation, ECM

accumulation, and pro-inflammatory cytokine production,

collectively contributing to glomerulosclerosis and tubulointerstitial

fibrosis in DKD (57). Persistent MAPK activation under diabetic

conditions leads to increased TGF-b1 expression and downstream

Smad signaling, exacerbating renal fibrosis.

The identified hub targets modulate renal inflammation and

fibrosis, representing promising immunotherapeutic candidates in

DKD. Hub targets-including MMP2, MMP9, BCL2, ACE, AGTR1,

AGTR2, HSP90AA1, HMGCR, HNF4A, and CYP3A43-are

implicated in immune dysregulation associated with DKD.

Specifically, MMP2 and MMP9 facilitate extracellular matrix

remodeling and promote immune cell infiltration, while BCL2 plays

a critical role in regulating apoptosis and maintaining immune cell

survival. ACE and AGTR1/2 mediate inflammatory responses via the

renin-angiotensin system (58). HSP90AA1 and HMGCR contribute

to oxidative stress and pro-inflammatory signaling, while HNF4A and

CYP3A43 affect immune-metabolic pathways.

The identification of toxicological targets of PFAS in the context

of DKD provides novel insights into environmental contributors to

renal injury. PFAS exposure has been linked to oxidative stress,

inflammation, disruption of lipid metabolism, and endothelial

dysfunction-pathogenic processes that accelerate DKD

progression. Elucidating the molecular interactions between PFAS

and critical renal pathways, including those mediated by PPAR,

MAPK, and immune regulators, enhances our understanding of

how environmental pollutants exacerbate DKD. Clinically, these

findings underscore the importance of incorporating environmental

exposure assessments into DKD risk stratification, foster the

development of biomarkers for PFAS-induced nephrotoxicity, and

open new avenues for preventive strategies and therapeutic

interventions targeting environmentally mediated kidney damage.

In summary, this study establishes a theoretical foundation for

developing treatment strategies that address the intricate relationship

between PFAS exposure and DKD pathogenesis. By adopting a

multifaceted approach-encompassing targeted therapies, early

interventions, and vaccine development-we can effectively slow DKD

progression and expand preventive and therapeutic options. Such
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advancements hold promise for enhancing public health initiatives

and strengthening global efforts in diabetes prevention and control.
5 Conclusion

This study integrates network toxicology, molecular docking, and

bioinformatics to advance the understanding of PFAS-related toxicity.

It provides novel insights into the pathogenic mechanisms by which

PFAS contribute to the development of DKD. Future therapeutic

strategies targeting PFAS-such as agents designed to eliminate these

compounds or inhibit their deleterious effects-may offer innovative

approaches for the prevention and treatment of DKD.
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