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Background: The prevalence of hypertension in children is rising globally, with 
early-onset high blood pressure linked to future cardiovascular risk. Identifying 
early risk markers beyond obesity and high salt intake is necessary. Although 
cost-effective indicators of insulin resistance (IR), such as TyG and METS-IR, have 
been associated with new-onset hypertension in adults, their links with pediatric 
hypertension, particularly specific phenotypes of hypertension remain unclear. 

Methods: 12,087 individuals aged 7–17 years from the 2017 China National 
Nutrition and Health Surveillance of Children and Lactating Women were 
included. Hypertension was defined as systolic blood pressure (SBP) and/or 
diastolic blood pressure (DBP) ≥95th percentile for sex, age, and height. 
Isolated systolic hypertension (ISH), defined as SBP ≥95th and DBP <95th 
percentile. Isolated diastolic hypertension (IDH), defined as DBP ≥95th and SBP 
<95th percentile. Systolic-diastolic hypertension (SDH), defined as both SBP and 
DBP ≥95th percentile. The associations of TyG and METS-IR with hypertension 
phenotypes were investigated using multivariable logistic regression and 
restricted cubic spline regression. 

Results: TyG and METS-IR were positively associated with hypertension and all its 
phenotypes after multivariable adjustment. Treated as continuous variables, each 
1-unit rise in TyG corresponds to 44%, 47%, and 61% higher chance of ISH, IDH, 
and SDH, respectively (odds ratio [OR]: 1.44, 95% confidence interval [CI]: 1.31– 
1.59; OR: 1.47, 95%CI: 1.21–1.79; OR: 1.61, 95%CI: 1.35–1.91); each 1-unit rise in 
METS-IR corresponds to 10%, 6%, and 12% higher chance of ISH, IDH, and SDH, 
respectively (OR: 1.10, 95%CI: 1.09–1.12; OR: 1.06, 95%CI: 1.03–1.08; OR: 1.12, 
95%CI: 1.10–1.14). Consistent positive associations were observed across 
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different subgroups for ISH and SDH, whereas this association for IDH was not 
statistically significant in several subgroups (e.g., age ≥12 years, sufficient sleep, 
daily exercise). TyG and METS-IR exhibited linear dose-response relationships 
with all hypertension phenotypes (p-nonlinear >0.10). 

Conclusion: TyG and METS-IR show strong relationships with three kinds of 
hypertension phenotypes. They are promising markers that may contribute to the 
primary prevention of hypertension in pediatric populations. 
KEYWORDS 

adolescents, children, insulin resistance, TyG, METS-IR, hypertension, blood pressure 
Introduction 

Hypertension is a leading global risk factor for mortality (1). 
Since 1990, the prevalence of hypertension among children and 
adolescents has shown an upward trend, which is expected to persist 
(2, 3). A 2019 meta-analysis in JAMA Pediatrics reported that 
global childhood hypertension peaks in pubertal children aged 
14– 15 years, with an estimated prevalence of 7.9% in 2015 (3). 
Alarmingly, evidence indicates that children as young as 11 years 
can exhibit organ damage due to hypertension (4). Moreover, 
increased blood pressure (BP) in childhood can be tracked into 
adulthood, and is associated with elevated BP levels and 
cardiovascular diseases in late life (5–8). These findings highlight 
the importance of early prevention and intervention for childhood 
hypertension. While obesity and high salt intake are well-
acknowledged modifiable risk factors for pediatric hypertension 
(9), most pediatric patients with primary hypertension do not have 
these factors (10–12), and obese children can still maintain normal 
BP (13, 14). Identifying additional risk indicators presents more 
chances for early screening and intervention for pediatric 
hypertension, reducing future cardiovascular risk. 

Insulin resistance (IR) is a significant factor in the 
pathophysiology of hypertension (15). Recent studies have shown 
that several non-insulin-based insulin resistance (NI-IR) indices are 
associated with hypertension and various cardiovascular diseases, 
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serving as independent predictors of cardiovascular mortality (15– 
18). Among these indices, the triglyceride-glucose index (TyG) and 
the metabolic score for insulin resistance (METS-IR) have gained 
much attention, which show a high consistency with IR (18–21). 
Although the hyperinsulinemic-euglycemic clamp (HEC) is the 
gold standard for assessing IR, its high cost and technical 
complexity restrict its application in small-scale studies (18, 22). 
In contrast, NI-IR indices offer a cost-effective alternative suitable 
for large epidemiological research (23), and can be used in primary 
healthcare settings and resource-limited regions (24, 25). 

Though previous studies have examined the relationship 
between NI-IR markers and hypertension (15, 26–28), the 
majority have focused on adult populations, with limited research 
on pediatric populations. Moreover, hypertension is a 
heterogeneous condition, and different phenotypes—including 
isolated systolic hypertension, isolated diastolic hypertension, and 
systolic-diastolic hypertension—demonstrate distinct prevalence 
patterns and clinical implications (29–33). To our knowledge, no 
studies have investigated the association of TyG and METS-IR with 
various hypertension phenotypes in underage individuals. 
Recognizing risk indicators for different hypertension subtypes 
might offer incremental prevention information and guide 
targeted interventions, especially in pediatric populations where 
early intervention and management potentially alleviate the future 
disease burden of hypertension in the overall population. Thus, this 
study aims to comprehensively evaluate the associations of TyG and 
METS-IR with hypertension and its phenotypes in children and 
adolescents using a relevant dataset. 
Materials and methods 

Data and study subjects 

This study utilized data from the 2017 China National Nutrition 
and Health Surveillance of Children and Lactating Women (34). 
This surveillance employed a stratified multi-stage cluster random 
sampling design to select participants. A total of 125 survey sites 
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were systematically selected across 31 provinces in China. Site 
selection took into account the distribution balance of regional 
and urban-rural stratification factors, existing work basis and 
conditions.  These  125  monitoring  sites  were  allocated  
proportionally to four types of regions based on population size: 
5 large cities, 57 medium/small cities, 50 rural areas, and 13 
impoverished rural areas. In each survey site (city/district/ 
county), two townships or sub-districts were randomly selected, 
and two villages or neighborhood committees were randomly 
chosen from each township or street district. For children and 
adolescents, students from 10 grades were surveyed at each site, 
including grades 1–6 in two primary schools, grades 7–8 in two 
junior high schools, and grades 10–11 in one senior high school (the 
schools were randomly selected from each monitoring site). 
Considering the academic load and the poor compliance, grade 9 
and grade 12 were not included in this surveillance. Subsequently, 
one class was randomly selected for each grade, and 28 students 
with equal numbers of males and females were chosen from each 
selected class. The collected surveillance data is representative at 
both the provincial and national levels. 

Due to limited access to the entire national dataset, we used data 
from five provinces: Shandong, Jiangsu, Guangdong, Guizhou, and 
Inner Mongolia, which are geographically located in the East, South, 
Southwest, and North of China. The initial dataset of the five 
provinces included 15,673 children and adolescents. As our study 
focused on participants aged 7 to 17 years, we excluded 866 
individuals who fell outside this age range. Additionally, 259 
participants lacked laboratory data for calculating TyG and 
METS-IR, and 193 participants missing variables necessary to 
determine BP status were excluded. Subsequently, 2,268 
individuals were excluded due to missing covariates. A flowchart 
of the subjects’ exclusion process is presented in Supplementary 
Figure 1. A total of 12,087 participants entered the final analysis. 
Informed consent was obtained from all participants or their 
legal guardians. 
Questionnaire surveys, anthropometric 
measurements, and laboratory tests 

The participants received a standardized questionnaire to 
obtain  their  demographic,  health-related,  and  l ifestyle  
information. All questionnaires were asked and completed in 
person by uniformly trained investigators. 

Measurements were taken using uniform instruments at each 
monitoring site. Height was measured in the standing position with 
shoes removed using a metal TZG-type stadiometer with an 
accuracy of 0.1 cm. Body weight was measured in the fasted state, 
with the subjects in underwear and without shoes, using an 
electronic scale (TANITA, HD-390) that was accurate at 0.01 kg. 
Waist circumference (WC) was measured horizontally at the 
midpoint between the inferior edge of the rib cage and the iliac 
crest along the mid-axillary line in the fasting state using a tape. 
Systolic blood pressure (SBP) and diastolic blood pressure (DBP) 
were measured three times at one-minute intervals using an 
Frontiers in Endocrinology 03 
electronic sphygmomanometer (Omron HBP 1300, Tokyo, Japan) 
in the morning on the left arm (unless otherwise specified). The 
mean of the two closest readings among the three measurements 
was taken. The participants were instructed to avoid intense 
physical activity, eating, or drinking within one hour before 
the measurement. 

Fasting blood samples (6 ml) were collected for biochemical 
parameters. Fasting plasma glucose (FPG) was measured using the 
glucokinase method (Roche P800 automatic biochemical 
analyzer). Triglyceride (TG), total cholesterol (TC), low-density 
lipoprotein cholesterol (LDL-C), and high-density lipoprotein 
cholesterol (HDL-C) were measured using a Roche Cobas C701 
automatic analyzer. 
Definitions 

TyG was calculated using the formula: ln[TG (mg/dL) × FPG 
(mg/dL)/2] (15). The METS-IR was calculated as ln[(2 × FPG (mg/ 
dL) + TG (mg/dL)) × BMI (kg/m2)/ln[HDL-C (mg/dL)] (15). 

The current definition of pediatric hypertension is based on the 
normative distribution of BP in healthy children (6, 35). According 
to sex, age, and height percentiles, normal blood pressure (NBP) 
was defined as SBP and DBP < 90th percentile, prehypertension as 
SBP and/or DBP ≥ 90th and < 95th percentile. Prehypertension is 
previously referred to as “high normal blood pressure”, a term now 
replaced by “elevated blood pressure” (EBP) (6), and they are 
equivalent. Hypertension was defined as SBP and/or DBP ≥ 95th 
percentile for sex, age, and height (35). To align our definition with 
the China National Health Industry Standard for children and 
adolescents, this study refers to SBP and/or DBP ≥ 95th percentile 
as high blood pressure (HBP) in later text (36). Isolated systolic 
HBP (ISH) was defined as SBP ≥ 95th and DBP < 95th percentile. 
Isolated diastolic HBP (IDH) was defined as DBP ≥ 95th and SBP < 
95th percentile. Systolic-diastolic HBP (SDH) was defined as both 
SBP and DBP ≥ 95th percentile. 
Covariates 

The covariates included in this study were demographic 
variables (age, sex, parental education level, residence), health-
related and lifestyle variables [abdominal obesity, estimated 
glomerular filtration rate (eGFR), moderate-vigorous physical 
activity (MVPA), sleep sufficiency, passive smoking, alcohol 
intake, unhealthy dietary quality score, and family history of 
hypertension], and biochemical indicators (serum uric acid, total 
protein, TC, LDL-C). 

Age was calculated by subtracting the date of birth from the 
survey date, and the full years were taken. Parental education level 
was categorized into three groups based on the highest level of 
education attained by both parents: Low—both parents had a 
primary school education/lower, or one had a primary school 
education/lower and the other had a secondary school education/ 
diploma; Medium—both parents had a secondary school education/ 
frontiersin.org 
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diploma, or one had a primary school education/lower and the 
other had a bachelor’s degree/higher; High—both parents had a 
bachelor’s degree/higher, or one had a secondary school education/ 
diploma and the other had a bachelor’s degree/higher. 

Abdominal obesity was defined as a WC at or above the 90th 
percentile for age and sex, determined according to the cutoff points 
specified in the National Health Industry Standard of China for 
children and adolescents (37). The eGFR was calculated using the 
formula recommended by the Chinese guideline for early screening 
of pediatric chronic kidney disease (38): K × height (cm) × 88.4/ 
serum-creatinine (mmol/L). The constant K is defined as follows: for 
children aged 2–12 years, K = 0.55; for individuals aged >12 years, 
K = 0.77 for boys and 0.55 for girls. 

Sleep sufficiency was defined based on recommendations by the 
Ministry of Education of the People’s Republic of China (39), with 
sleep duration greater than 8 hours for high school students, greater 
than 9 hours for middle school students, and greater than 10 hours 
for primary school students. Participants meeting these criteria 
were classified as “yes” for sufficient sleep, and “no” otherwise. 
Family history of hypertension was defined as having at least one of 
the following family members diagnosed with hypertension: father, 
mother, paternal grandparents, or maternal grandparents. 

The unhealthy dietary quality score was calculated based on data 
from a food frequency questionnaire recording the various foods 
consumed by participants over the past month and the Chinese Food 
Guide Pagoda issued by the Chinese Nutrition Society (40). The 
detailed scoring process for unhealthy dietary quality score can be 
found in our previous article (41). The remaining covariates were 
simple self-reports, investigator reports, or laboratory tests. 
Statistical analysis 

All the statistical analyses were conducted using R Project for 
Statistical Computing version 4.2.3 (Vienna, Austria). A two-sided 
p-value <0.05 was considered statistically significant. Continuous 
variables were presented as medians and interquartile ranges, 
whereas categorical variables were reported as frequencies 
(percentages). Kruskal-Wallis tests, Welch’s ANOVA, and chi-
square tests were used to compare variable differences across 
groups where appropriate. Post hoc pairwise comparisons with 
Bonferroni correction were performed between the NBP group 
and the EBP group, as well as between the NBP group and the HBP 
group, yielding a statistically significance threshold of p-value 
<0.025 (0.05/2). For pairwise comparisons, the Mann-Whitney U 
tests with a Bonferroni correction were applied to continuous 
variables, while the chi-square tests with a Bonferroni correction 
were used for categorical variables. 

Multinomial logistic regression analyses were performed to 
evaluate the associations of TyG and METS-IR with different BP 
groups, with the NBP group as the reference group. The results were 
expressed as odds ratios (ORs) and 95% confidence intervals (CIs). 
Multicollinearity was evaluated with the Variance Inflation Factor 
(VIF), ensuring all variables had VIF values below 5. Restricted 
cubic spline (RCS) regression was used to explore potential non­
Frontiers in Endocrinology 04
linear relationships, with the number of knots set to 3 for smooth 
curve fitting. 

Stratified analysis by age, sex, sleep sufficiency, MVPA, and 
family history of hypertension was  performed to  investigate
potential heterogeneity across subgroups. Sensitivity analysis was 
conducted using data after propensity score matching (PSM) with a 
1:1 nearest-neighbor matching algorithm and a caliper width of 
0.20. The propensity score was estimated using a logistic regression 
model, and the variables used in calculating the score included age, 
abdominal obesity, MVPA, sleep sufficiency, alcohol intake, family 
history of hypertension, parental education level, serum creatinine, 
total protein, TC, and LDL-C, which were covariates with p<0.05 in 
baseline table, excluding those used to calculate TyG and METS-IR. 
Results 

General characteristics of children and 
adolescents 

This study analyzed data for 12,087 subjects (50.24% girls and 
49.76% boys) aged 7–17 years and their basic characteristics by BP 
status are presented in Table 1. The median age of the participants 
was 11 years. Compared with the NBP group, both the EBP group 
and the HBP group had a significantly greater proportion of 
individuals with abdominal obesity (p<0.025). Furthermore, BMI, 
total protein, TG, FPG, TyG, and METS-IR levels were significantly 
higher in both the EBP and HBP groups than in the NBP group 
(p<0.025). TC and LDL-C in the HBP group were significantly 
higher than those in the NBP group (p<0.025) but showed no 
statistically significant differences between EBP and NBP (p>0.025). 
In contrast, the serum creatinine level was significantly higher in the 
NBP group than in the other two groups (p<0.025). Additionally, 
sleep sufficiency, MVPA, alcohol intake, family history of 
hypertension, and parental education level differed significantly 
across groups (p<0.05). 
Associations of TyG and METS-IR with 
elevated blood pressure and high blood 
pressure 

Table 2 presents the associations of TyG and METS-IR with 
EBP and HBP. TyG and METS-IR were divided into quartiles, with 
the lowest quartile (Q1) as the reference group. In the fully adjusted 
Model 2, the ORs for EBP and HBP was 1.2-fold and 1.4-fold higher 
in the highest quartile groups of TyG (OR: 1.24, 95%CI: 1.06–1.45, 
p<0.01; OR: 1.44, 95%CI: 1.26–1.65, p<0.001) and 2.3-fold and 3.1­
fold higher in the highest quartile groups of METS-IR (OR: 2.32, 
95%CI: 1.88–2.86, p<0.001; OR: 3.06, 95%CI: 2.56–3.66, p<0.001), 
compared with the lowest quartile groups of TyG and METS-IR. 
Higher quartiles of METS-IR were more strongly linked to the 
presence of EBP and HBP than the corresponding quartiles of TyG. 
Supplementary Figure 2 illustrated that TyG and METS-IR had 
linear relationships with EBP and HBP (p for non-linear >0.10). 
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TABLE 1 Baseline characteristics of children and adolescents included in this study. 

Variables NBP (n=7804) EBP (n=1639) HBP (n=2644) P-value 

Age, years 11.0 (9.0, 14.0) 11.0 (9.0, 13.0) 11.0 (9.0, 13.0) <0.001 

Males 3908 (50.08%) 804 (49.05%) 1303 (49.28%) 0.643 

BMI, kg/m2 17.6 (15.7, 19.9) 18.4 (16.0, 21.1) 18.7 (16.2, 22.1) <0.001 

Abdominal obesity 906 (11.61%) 309 (18.85%) 684 (25.87%) <0.001 

MVPA, days/week 3.0 (1.0, 5.0) 3.0 (1.0, 5.0) 3.0 (1.0, 5.0) <0.001 

Sufficient sleep 2418 (30.98%) 546 (33.31%) 932 (35.25%) <0.001 

Passive smoking, days/week 0.177 

almost none 5653 (72.44%) 1204 (73.46%) 1939 (73.34%) 

1-3 1006 (12.89%) 174 (10.62%) 324 (12.25%) 

4-6 329 (4.22%) 68 (4.15%) 102 (3.86%) 

7 816 (10.46%) 193 (11.78%) 279 (10.55%) 

Alcohol intake <0.001 

never drank 6780 (86.88%) 1500 (91.52%) 2422 (91.60%) 

more than 30 days ago 725 (9.29%) 97 (5.92%) 154 (5.82%) 

in the last 30 days 299 (3.83%) 42 (2.56%) 68 (2.57%) 

Unhealthy dietary quality score 6.0 (5.0, 7.0) 6.0 (5.0, 7.0) 6.0 (5.0, 7.0) 0.777 

Family history of hypertension 2691 (34.48%) 539 (32.89%) 910 (34.42%) 0.001 

Parental education level <0.001 

low 2414 (30.93%) 493 (30.08%) 789 (29.84%) 

medium 4526 (58.00%) 998 (60.89%) 1643 (62.14%) 

high 789 (10.11%) 134 (8.18%) 190 (7.19%) 

unknown 75 (0.96%) 14 (0.85%) 22 (0.83%) 

Rural residence 3381 (43.32%) 739 (45.09%) 1137 (43.00%) 0.359 

Serum uric acid, mmol/L 320.6 (269.0, 384.2) 317.0 (267.1, 379.0) 319.0 (267.5, 381.0) 0.279 

Serum creatinine, mmol/L 52.0 (45.0, 63.0) 51.0 (44.0, 61.0) 50.0 (43.0, 59.0) <0.001 

eGFR, ml/(min·1.73m2) 144.2 (128.5, 160.9) 144.0 (128.6, 160.6) 146.1 (130.8, 162.2) 0.098 

Total protein, g/L 75.5 (72.2, 78.9) 76.0 (73.0, 79.5) 76.7 (73.4, 80.0) <0.001 

TG, mg/dL 70.0 (55.8, 92.1) 73.5 (57.6, 94.8) 75.3 (59.3, 99.2) <0.001 

TC, mg/dL 152.4 (134.6, 171.7) 152.7 (135.3, 171.9) 155.1 (136.9, 175.6) <0.001 

LDL-C, mg/dL 80.0 (66.1, 95.1) 80.8 (66.5, 96.7) 82.4 (66.9, 98.7) <0.001 

HDL-C, mg/dL 56.1 (48.3, 65.0) 56.5 (48.7, 65.0) 56.8 (48.7, 66.5) 0.074 

FPG, mg/dL 93.2 (87.7, 98.3) 94.1 (88.3, 99.3) 94.3 (88.7, 99.9) <0.001 

TyG 8.1 (7.8, 8.4) 8.1 (7.9, 8.4) 8.2 (7.9, 8.5) <0.001 

METS-IR 24.3 (21.3, 28.1) 25.2 (21.7, 29.9) 25.8 (22.1, 31.4) <0.001 
F
rontiers in Endocrinology 
05 
NBP, normal blood pressure; EBP, elevated blood pressure; HBP, high blood pressure; BMI, body mass index; MVPA, moderate-vigorous physical activity; eGFR, estimated glomerular filtration
 
rate; TG, triglyceride; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; FPG, fasting plasma glucose; TyG, triglyceride-glucose index;
 
METS-IR, metabolic score for insulin resistance.
 
P-values were based on Kruskal-Wallis tests, Welch’s ANOVA, or Chi-square tests, as appropriate. Data were expressed as median (interquartile range) or number (percentage).
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Associations of TyG and METS-IR with 
different high blood pressure phenotypes 

Table 3 shows the associations of these two NI-IR indices with 
various HBP subtypes. Both Model 1 and Model 2 indicated that the 
third quartile (Q3) and the highest quartile (Q4) of TyG and METS­

IR were positively associated with all HBP phenotypes, as were 
continuous TyG and METS-IR. After adjusting for potential 
confounders in Model 2, the ORs for ISH, IDH and SDH in the 
highest TyG quartile groups compared with the lowest groups were 
1.39 (95%CI: 1.19–1.63, p<0.001), 1.56 (95%CI: 1.13–2.16, p<0.01), 
and 1.53 (95%CI: 1.16–2.01, p<0.01), respectively. For METS-IR, 
the ORs for ISH, IDH and SDH were 3.5-fold, 1.9-fold and 3.0-fold 
higher in the highest quartile groups than in the lowest quartile 
groups (OR: 3.46, 95%CI: 2.81–4.26, p<0.001; OR: 1.85, 95%CI: 
1.23–2.80, p<0.01; OR: 3.02, 95%CI: 2.12–4.32, p<0.001). The RCS 
analysis indicated linear relationships between TyG, METS-IR, and 
all HBP phenotypes (p for non-linear >0.10), as illustrated 
in Figure 1. 
Stratified and sensitivity analyses 

Figure 2 consistently demonstrates a significantly positive 
association of TyG and METS-IR with ISH across all strata. The 
results for SDH are similar. However, for IDH, in the strata where 
individuals were aged 12 years and older, had sufficient sleep, and 
engaged in daily MVPA, neither the TyG nor the METS-IR showed 
a statistically significant association with IDH. The subgroup 
sample sizes are detailed in Supplementary Table 1. 

Sensitivity analysis was conducted using data after PSM. The 
results of matching and the characteristics of the new sample are 
presented in Supplementary Table 2. Utilizing the new dataset, we 
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re-explored the associations between TyG, METS-IR, and different 
HBP subtypes, and it remained consistent with our previous 
findings, suggesting that TyG and METS-IR may link to increased 
risk of all kinds of HBP phenotypes in children and adolescents 
(Supplementary Table 3). 
Discussion 

To  our knowledge, this is the  first study to examine the 
associations of TyG and METS-IR with various HBP phenotypes 
in children and adolescents. It revealed that TyG and METS-IR 
were positively associated with HBP and its three phenotypes, with 
particularly robust associations observed for ISH and SDH. Linear 
dose-response relationships existed between these two indices and 
all HBP phenotypes. The findings imply that TyG and METS-IR 
may be significant predictors of HBP in children and adolescents, 
contributing to primary prevention strategies. 

IR plays a critical role in the pathophysiology of HBP, 
contributing to increasing BP through multiple proposed 
mechanisms, including enhanced tissue angiotensin II and 
aldosterone activities, increased sympathetic nervous system 
activity, and oxidative stress (42–44). A study in 2010 provided 
the basis for accepting the TyG as a surrogate tool for assessing IR 
(23). TyG performs as well as, or better than, the homeostasis model 
assessment of IR (HOMA-IR), which requires insulin measurement 
(18, 20). Previous cohort studies have affirmed that high TyG levels 
are associated with a greater risk of new-onset hypertension 
(27, 45–47). However, those studies focused only on adults. Only 
a cross-sectional study conducted on individuals 6–15 years in 
Mexico stated that elevated TyG was significantly related to 
pediatric hypertension (48),  but  it did  not explore  the dose­

response relationship nor further examine the association 
TABLE 2 Association of insulin resistance index with elevated blood pressure and high blood pressure (OR (95%CI)). 

Insulin resistance indices 
Elevated blood pressure High blood pressure 

Model 1 Model 2 Model 1 Model 2 

TyG 

Q1 (≤7.85) 1 (reference group) 1 (reference group) 1 (reference group) 1 (reference group) 

Q2 (7.85-8.11) 1.07 (0.92, 1.25) 1.04 (0.89, 1.22) 1.16 (1.01, 1.32)* 1.09 (0.95, 1.24) 

Q3 (8.11-8.39) 1.30 (1.12, 1.52)‡ 1.22 (1.04, 1.43)* 1.58 (1.39, 1.80)‡ 1.39 (1.22, 1.59)‡ 

Q4 (≥8.39) 1.41 (1.21, 1.64)‡ 1.24 (1.06, 1.45)† 1.88 (1.65, 2.13)‡ 1.44 (1.26, 1.65)‡ 

continuous 1.43 (1.25, 1.63)‡ 1.27 (1.15, 1.40)‡ 1.89 (1.69, 2.11)‡ 1.48 (1.35, 1.61)‡ 

METS-IR 

Q1 (≤21.53) 1 (reference group) 1 (reference group) 1 (reference group) 1 (reference group) 

Q2 (21.53-24.71) 1.25 (1.07, 1.47)† 1.24 (1.06, 1.46)† 1.42 (1.24, 1.62)‡ 1.37 (1.20, 1.57)‡ 

Q3 (24.72-28.97) 1.49 (1.26, 1.77)‡ 1.49 (1.24, 1.78)‡ 1.78 (1.54, 2.06)‡ 1.65 (1.42, 1.92)‡ 

Q4 (≥28.97) 2.44 (2.05, 2.90)‡ 2.32 (1.88, 2.86)‡ 3.87 (3.35, 4.47)‡ 3.06 (2.56, 3.66)‡ 

continuous 1.06 (1.05, 1.07)‡ 1.07 (1.06, 1.08)‡ 1.10 (1.09, 1.11)‡ 1.10 (1.09, 1.11)‡ 
 

Model 1: adjusted for age, sex; Model 2: adjusted for age, sex, abdominal obesity, moderate-vigorous physical activity, sleep sufficiency, passive smoking, alcohol intake, parental education level,
 
unhealthy dietary quality score, family history of hypertension, residence, serum uric acid, estimated glomerular filtration rate, total protein, total cholesterol, and low-density
 
lipoprotein cholesterol.
 
OR, odds ratio; CI, confidence interval; TyG, triglyceride-glucose index; METS-IR, metabolic score for insulin resistance.
 
*indicating P < 0.05, †indicating P < 0.01, ‡indicating P < 0.001.
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between TyG and specific subtypes of hypertension. Introduced in 
2018, METS-IR offers a new reliable non-insulin-based approach to 
assess IR (21). It shows good agreement with HEC and frequently 
sampled intravenous glucose tolerance tests (21), outperforming 
TyG in predicting IR (19). Up to now, there have been no studies on 
the association of METS-IR with hypertension and its phenotypes 
in pediatric populations. Concerning adults, a recent meta-analysis 
that included 8 cohort studies and 305,341 individuals 
demonstrated that elevated METS-IR is tied to hypertension in 
the general adult population (49). Our findings align with most 
existing studies investigating the association of TyG and METS-IR 
with hypertension. 

However, it is important to note that both indices are non-
insulin-based surrogate markers for IR. We compared our results 
with studies examining the relationship between insulin-based 
indices and hypertension. Two commonly used insulin-based 
indices for IR are the Homeostatic Model Assessment of Insulin 
Resistance (HOMA-IR) and the Quantitative Insulin Sensitivity 
Check Index (QUICKI). Vizzuso et al. recruited 70 obese White 
children and adolescents aged 7–16 years and used ambulatory 
blood pressure monitoring to examine the relationship between IR 
and hypertension. They found that both HOMA-IR and QUICKI 
were associated with the presence of hypertension and were thus 
helpful in identifying hypertensive obese pediatric patients (50). 
Similarly, a study based on the Jackson Heart cohort by Kaze et al. 
reported that among blacks both HOMA-IR and QUICKI were 
associated with the risk of blood pressure progression and incident 
hypertension (51). Moreover, a systematic review encompassing 38 
studies demonstrated that higher HOMA-IR values significantly 
increased the risk of developing hypertension, indicating its 
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potential as a predictor (52). The direction of our findings is 
consistent with the above evidence, supporting the idea that IR 
indices may help recognize individuals at risk of hypertension. 
Other evidence has shown that both HOMA-IR and QUICKI are 
correlated with SBP and DBP in children and adolescents (53, 54), 
which suggests their relevance to different hypertension subtypes in 
this age group. However, we did not find studies that explored the 
associations between these two insulin-based indices and specific 
hypertension phenotypes in pediatric populations. 

Clinical impacts of different hypertension phenotypes vary. 
Compared with other phenotypes, ISH poses a higher risk of stroke 
and coronary heart disease (29, 30). SDH is associated with increased 
cardiovascular risk but is less prevalent (30). While IDH is recognized 
as a risk factor for cardiovascular disease, its impact on incident 
cardiovascular outcomes is questioned by some studies (32, 55). To 
date, relatively few studies have investigated the relationships of TyG 
and METS-IR with detailed hypertension subtypes, and all of them 
pay attention to adults. In China, elevated TyG levels have been 
significantly associated with ISH in middle-aged and elderly adults 
(56), and with increased risks of IDH and SDH (57). Additionally, a 
cohort study among young military adults observed that TyG was 
associated with the risk of IDH and SDH, whereas METS-IR was 
linked only to IDH (15). 

In our study, TyG and METS-IR showed robust positive 
associations with ISH and SDH. Although significant association 
with IDH was observed in the overall sample, the association was 
not detected in certain subgroups. Specifically, neither TyG nor 
METS-IR was significantly associated with IDH among participants 
aged ≥ 12 years, those with sufficient sleep, or those engaging in 
daily MVPA. Most notably, the simultaneously non-significant 
TABLE 3 Association of insulin resistance index with different high blood pressure phenotypes (OR (95%CI)). 

Insulin resistance indices 
ISH IDH SDH 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

TyG 

Q1 (≤7.85) 
1 

(reference group) 
1 

(reference group) 
1 

(reference group) 
1 

(reference group) 
1 

(reference group) 
1 

(reference group) 

Q2 (7.85-8.11) 1.15 (0.99, 1.35) 1.08 (0.92, 1.27) 1.35 (0.98, 1.85) 1.25 (0.91, 1.72) 1.04 (0.78, 1.38) 0.96 (0.72, 1.28) 

Q3 (8.11-8.39) 1.54 (1.32, 1.79)‡ 1.34 (1.14, 1.56)‡ 1.89 (1.39, 2.56)‡ 1.71 (1.25, 2.33)‡ 1.55 (1.18, 2.02)† 1.37 (1.04, 1.80)* 

Q4 (≥8.39) 1.86 (1.60, 2.16)‡ 1.39 (1.19, 1.63)‡ 1.82 (1.33, 2.49)‡ 1.56 (1.13, 2.16)† 1.98 (1.52, 2.57)‡ 1.53 (1.16, 2.01)† 

continuous 1.90 (1.67, 2.15)‡ 1.44 (1.31, 1.59)‡ 1.68 (1.30, 2.16)‡ 1.47 (1.21, 1.79)‡ 2.03 (1.63, 2.54)‡ 1.61 (1.35, 1.91)‡ 

METS-IR 

Q1 (≤21.53) 
1 

(reference group) 
1 

(reference group) 
1 

(reference group) 
1 

(reference group) 
1 

(reference group) 
1 

(reference group) 

Q2 (21.53-24.71) 1.50 (1.28, 1.77)‡ 1.44 (1.23, 1.70)‡ 1.21 (0.90, 1.62) 1.20 (0.89, 1.62) 1.35 (1.03, 1.76)* 1.32 (1.00, 1.73)* 

Q3 (24.72-28.97) 1.89 (1.59, 2.25)‡ 1.72 (1.43, 2.06)‡ 1.54 (1.12, 2.11)† 1.58 (1.14, 2.20)† 1.67 (1.25, 2.25)‡ 1.62 (1.19, 2.21)† 

Q4 (≥28.97) 4.63 (3.91, 5.48)‡ 3.46 (2.81, 4.26)‡ 1.81 (1.29, 2.54)† 1.85 (1.23, 2.80)† 3.51 (2.64, 4.67)‡ 3.02 (2.12, 4.32)‡ 

continuous 1.11 (1.10, 1.12)‡ 1.10 (1.09, 1.12)‡ 1.04 (1.02, 1.06)‡ 1.06 (1.03, 1.08)‡ 1.10 (1.09, 1.12)‡ 1.12 (1.10, 1.14)‡ 
Model 1: adjusted for age, sex; Model 2: adjusted for age, sex, abdominal obesity, moderate-vigorous physical activity, sleep sufficiency, passive smoking, alcohol intake, parental education level,
 
unhealthy dietary quality score, family history of hypertension, residence, serum uric acid, estimated glomerular filtration rate, total protein, total cholesterol, and low-density
 
lipoprotein cholesterol.
 
OR, odds ratio; CI, confidence interval; ISH, isolated systolic high blood pressure; IDH, isolated diastolic high blood pressure; SDH, systolic-diastolic high blood pressure; TyG, triglyceride-glucose
 
index; METS-IR, metabolic score for insulin resistance.
 
*indicating P < 0.05, †indicating P < 0.01, ‡indicating P < 0.001.
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association of TyG and METS-IR was observed exclusively in 
specific subgroups of IDH. This possibly involves the distinct 
pathophysiological mechanisms underlying each HBP phenotype. 
Generally, it is thought that ISH may result from arterial stiffening, 
whereas IDH is related to an increase in peripheral vascular 
resistance (57–60). The association of both indices with ISH was 
robust across all subgroups, potentially indicating that in children 
the relationship between IR and arterial stiffness is almost 
unaffected by those stratification variables. SDH may benefit from 
the contribution of elevated SBP, and thus the association of the two 
indices with SDH was similar to that of ISH in all subgroups. 
However, these stratification factors might influence peripheral 
vascular resistance. Studies indicate that healthy lifestyle 
behaviors, such as adequate sleep and regular exercise, can reduce 
peripheral resistance (61–64), which may help mitigate the effects of 
IR on IDH. In addition, IDH is age-dependent and becomes less 
prevalent with age (31, 57), but the disappearance of the association 
of both indices with IDH in the participants ≥ 12 years here is 
unlikely to be attributable to aging, as this association can still be 
observed in adult populations (15, 57). We speculate that hormonal 
changes during puberty affect IR (65), obscuring the association 
between IR indices and IDH. Another possibility is insufficient 
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statistical power in certain subgroups, such as daily MVPA, due to 
the inadequate number of IDH cases (Supplementary Table 1). To 
verify the robustness of these non-significant associations, 
additional stratified analysis was performed using two 
approaches: adjusting for different sets of covariates and utilizing 
PSM-derived data. Interestingly, the results remained consistent 
(Supplementary Figure 3). Future studies are warranted to confirm 
these findings and to determine whether they reflect true 
heterogeneity or arise from limited cases. 

Our results on the linear dose-response relationship between two 
IR indices and hypertension are in accordance with the majority of 
findings on Asian adults (45, 66–70). However, some studies identified 
non-linear relationships between METS-IR and hypertension in 
American adults (25, 71). This discrepancy may be due to ethnic 
differences, as research suggests that insulin sensitivity varies by 
ethnicity. Specifically, East Asians exhibit higher insulin sensitivity 
and a lower insulin response than Africans and Caucasians (72). 

We also observed that in Model 2, among the three hypertensive 
subtypes, the ORs for TyG in the higher quartiles (Q2, Q3, and Q4) 
were greatest in IDH, whereas those for METS-IR were lowest in 
IDH. The results of the sensitivity analysis were consistent 
(Supplementary Table 3). It may indicate that in pediatric 
FIGURE 1 

Restricted cubic spline analysis for the relationship of insulin resistance indices with high blood pressure phenotypes. Knots were set to 3 for smooth 
curve fitting. Adjusted for age, sex, abdominal obesity, moderate-vigorous physical activity, sleep sufficiency, passive smoking, alcohol intake, 
parental education level, unhealthy dietary quality score, family history of hypertension, residence, serum uric acid, estimated glomerular filtration 
rate, total protein, total cholesterol, and low-density lipoprotein cholesterol. OR, odds ratio; CI, confidence interval; ISH, isolated systolic high blood 
pressure; IDH, isolated diastolic high blood pressure; SDH, systolic-diastolic high blood pressure; TyG, triglyceride-glucose index; METS-IR, 
metabolic score for insulin resistance. 
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populations, TyG has a greater advantage in identifying the risk of 
IDH than ISH, whereas METS-IR is more effective in identifying 
ISH and SDH. Some possible explanations are made. Calculated 
using FPG and TG, TyG primarily reflects glycolipid metabolic 
disorders, which can trigger oxidative stress (73). Oxidative stress, 
in turn, damages microvascular endothelial cells and reduces nitric 
oxide production and bioavailability, ultimately leading to 
microvascular dysfunction (74). In addition, the elevated FPG and 
abnormal lipid panel may enhance blood viscosity by increasing the 
rheological component of peripheral resistance, contributing to 
increased DBP (57). Since IDH is primarily associated with 
increased peripheral vascular resistance and lesions of arterioles 
(57, 59), the aforementioned pathophysiological mechanisms may 
underlie the stronger association between high TyG levels and IDH 
than ISH. The components of METS-IR include BMI, thus it takes 
into account obesity in addition to reflecting glycolipid metabolic 
disorders compared with TyG. METS-IR itself has a significant 
correlation with visceral fat (21), and the relationship between 
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visceral adiposity and arterial stiffness has been demonstrated (75, 
76). Visceral adiposity is often accompanied by abnormal secretion 
of pro-inflammatory factors (e.g., tumor necrosis factor alpha, 
interleukin 6) by adipocytes and increased free fatty acids, which 
promote endothelial dysfunction and vascular stiffness (71). 
Further, it seems that it is SBP but not DBP more correlated with 
visceral adiposity (77, 78). Therefore, the additional consideration 
of adiposity might be the cause of why METS-IR is more strongly 
associated with ISH and SDH than IDH. Differences in the 
superiority of TyG and METS-IR for the identification of various 
hypertension subtypes in children and adolescents may exist. 

Longitudinal follow-up of children and adolescents with 
elevated METS-IR and TyG values is warranted to assess their 
future incidence of hypertension, validating the predictive capacity 
of these two NI-IR indices for new-onset hypertension. This may 
provide valuable tools for the early identification of hypertension 
risk in children and help develop primary prevention strategies to 
reduce the future burden of hypertension in the whole population. 
FIGURE 2 

Associations between insulin resistance indices and high blood pressure phenotypes stratified by different factors. Adjusted for, if not stratified, age, 
sex, abdominal obesity, moderate-vigorous physical activity, sleep sufficiency, passive smoking, alcohol intake, parental education level, unhealthy 
dietary quality score, family history of hypertension, residence, serum uric acid, estimated glomerular filtration rate, total protein, total cholesterol, 
and low-density lipoprotein cholesterol. OR, odds ratio; CI, confidence interval; TyG, triglyceride-glucose index; METS-IR, metabolic score for insulin 
resistance; ISH, isolated systolic high blood pressure; IDH, isolated diastolic high blood pressure; SDH, systolic-diastolic high blood pressure; HBP, 
high blood pressure; MVPA, moderate-vigorous physical activity. 
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Strengths and limitations 

Several strengths can be attributed to this study. Our 
surveillance data are representative at the provincial level and are 
collected with rigorous quality assurance and control. We have 
examined the multiplicative interaction between the province and 
the IR indices on hypertension prevalence and observed that the 
interaction was not statistically significant (p for interaction >0.05), 
which enhances the national generalization of our findings. In 
addition, this study extends the evidence on this research topic 
from adults to pediatric populations, thereby contributing to the 
validation of IR index in children. However, we acknowledge that 
the present study has several limitations. First, although BP was 
measured three times for each participant, all readings were 
obtained during a single visit, an unavoidable constraint in 
epidemiological studies, which may overestimate the prevalence 
of hypertension (79). Evaluating BP on three or more separate 
occasions is helpful, thereby reducing measurement variability. 
Second, despite extensive efforts to adjust for potential 
confounders, including demographic information, family history, 
health-related behaviors and status, diet, and kidney health, residual 
confounding from unmeasured or unknown factors, such as 
medication use, may still influence the results. Third, since the 
study population consisted solely of Chinese minors, the 
applicability of these findings to other ethnicities remains 
uncertain. Given that the relation between IR and BP differs 
among racial groups (80), we propose further research among 
diverse pediatric ethnic populations to improve the global 
generalizability of these observations. 

Finally, the cross-sectional design of this study limits causal 
inference, as it collects data on exposure and outcome at a single 
point in time. Consequently, it precludes establishing the temporal 
sequence of events—we cannot determine whether IR preceded BP 
elevation, vice versa, or whether they developed concurrently. This 
ambiguity poses challenges: reverse causality remains a possible 
alternative explanation, and the dynamic interplay between IR and 
BP over time cannot be tracked. This limitation could not be 
overcome through statistical methods. Therefore, the associations 
reported in this study should be interpreted with caution and not as 
direct evidence of causality. To address this, prospective cohort 
studies with repeated measurements of exposure and BP over time 
are essential. 
Conclusion 

TyG and METS-IR are positively associated with HBP and its 
three phenotypes in children and adolescents, exhibiting linear 
relationships. These associations were particularly robust for ISH 
and SDH, but less consistent for IDH in certain subgroups (age ≥12 
years, sufficient sleep, daily MVPA). This may indicate the 
modification effect of puberty and healthy lifestyles in the impact 
of IR on IDH. Maintaining relatively low levels of TyG and METS­

IR might reduce the risk of developing hypertension in children. In 
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summary, METS-IR and TyG hold potential as useful supplemental 
indicators for identifying children at high risk for hypertension and 
for informing targeted management strategies based on their levels, 
but further longitudinal studies are warranted. 
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SUPPLEMENTARY TABLE 1 

The cases of different high blood pressure phenotypes in each subgroup. ISH, 
isolated systolic high blood pressure; IDH, isolated diastolic high blood 
pressure; SDH, systolic-diastolic high blood pressure; MVPA, moderate­

vigorous physical activity. 

SUPPLEMENTARY TABLE 2 

Information of covariates after propensity score matching. NBP, normal
blood pressure; HBP, high blood pressure; SMD, standardized mean 
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difference; MVPA, moderate-vigorous physical activity; eGFR, estimated
glomerular filtration rate; TC, total cholesterol; LDL-C, low-density

lipoprotein cholesterol. P-values were based on Mann-Whitney U tests or 
Chi-square tests, as appropriate. Data were presented as median 
(interquartile) or number (percentage). *Variables used in calculating the 

†
propensity score. An SMD < 0.1 indicates a relatively good balance. 

SUPPLEMENTARY TABLE 3 

Associations between insulin resistance indices and high blood pressure 
phenotypes after propensity score matchingAdjusted for age, sex, 
abdominal obesity, moderate-vigorous physical activity, sleep sufficiency, 
passive smoking, alcohol intake, parental education level, unhealthy dietary 
quality score, family history of hypertension, residence, serum uric acid, 
estimated glomerular filtration rate, total protein, total cholesterol, and 
low-density lipoprotein cholesterol. ISH, isolated systolic high blood 
pressure; IDH, isolated diastolic high blood pressure; SDH, systolic-diastolic 
high blood pressure; OR, odds ratio; CI, confidence interval; TyG, 
triglyceride-glucose index; METS-IR, metabolic score for insulin resistance. 

† ‡
* indicating P < 0.05, indicating P < 0.01, indicating P < 0.001. 

SUPPLEMENTARY FIGURE 1 

Flowchart of inclusion and exclusion. *Participants were from five provinces 
(Shandong, Jiangsu, Guangdong, Guizhou, Inner Mongolia) within the 
Surveillance coverage. 

SUPPLEMENTARY FIGURE 2 

Restricted cubic spline analysis for the relationship of insulin resistance 
indices with elevated blood pressure and high blood pressure. Knots were 
set to 3 for smooth curve fitting. Adjusted for age, sex, abdominal obesity, 
moderate-vigorous physical activity, sleep sufficiency, passive smoking, 
alcohol intake, parental education level, unhealthy dietary quality score, 
family history of hypertension, residence, serum uric acid, estimated 
glomerular filtration rate, total protein, total cholesterol, and low-density 
lipoprotein cholesterol. OR, odds ratio; CI, confidence interval; EBP, elevated 
blood pressure; HBP, high blood pressure; TyG, triglyceride-glucose index; 
METS-IR, metabolic score for insulin resistance. 

SUPPLEMENTARY FIGURE 3 

Association between two insulin resistance indices and IDH stratified by 
different factors. (A) and (B) were adjusted for, if not stratified, age, sex, and 
abdominal obesity, using the entire dataset. (C) and (D) were adjusted for, if 
not stratified, age, sex, abdominal obesity, moderate-vigorous physical 
activity, sleep sufficiency, passive smoking, alcohol intake, parental 
education level, unhealthy dietary quality score, family history of 
hypertension, residence, serum uric acid, estimated glomerular filtration 
rate, total protein, and total cholesterol, using the dataset after propensity 
score matching. OR, odds ratio; CI, confidence interval; HBP, high blood 
pressure; IDH, isolated diastolic high blood pressure; TyG, triglyceride-
glucose index; METS-IR, metabolic score for insulin resistance. 
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