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Establishment and evaluation of
a model for clinical feature
selection and prediction in gout
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diseases: a retrospective cohort
study
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Meishan Lu2, Weihong Cong1* and Fang Ma1*

1Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China, 2Graduate School,
Beijing University of Chinese Medicine, Beijing, China, 3Graduate School, Heilongjiang University of
Chinese Medicine, Harbin, China
Background: Gout is a chronic inflammatory condition increasingly recognized

as a risk factor for cardiovascular events (CVE). Early identification of high-risk

individuals is crucial for targeted prevention and management. However,

conventional risk stratification approaches often fall short in accuracy and

clinical utility. This study aimed to develop and validate a robust, interpretable

machine learning (ML)-based model for predicting CVE in patients with gout.

Methods: This retrospective cohort study included 686 hospitalized gout

patients at Xiyuan Hospital (Beijing, China) between January 1, 2013, and

December 31, 2023. We applied Synthetic Minority Oversampling Technique

(SMOTE) combined with random undersampling of the majority class. Then,

patients were randomly divided into training (70%) and testing (30%) sets. A

comprehensive set of clinical and biochemical variables (n = 39) was collected.

Feature selection was performed using Boruta algorithms and Lasso to identify

the most predictive variables. Multiple ML algorithms—including Decision Tree

Learner, LightGBM Learner, K Nearest Neighbors Learner, CatBoost Learner,

Gradient Boosting Desicion Tree Learner—were implemented to construct

predictive models. SHAP values were used to assess model interpretability, and

robustness was evaluated through 10-fold bootstrap resampling with enhanced

standard error estimation.

Results: Of the 686 patients, 263 experienced cardiovascular events during

follow-up (incidence rate: 38.3%). A logistic regression model was constructed

based on eight variables selected using the Boruta feature selection algorithm:

sex, age, PLT, EOS, LYM, CO2, GLU and APO-B. Among the five models

evaluated, the CatBoost classifier achieved the best performance, with the

highest area under the ROC curve (AUC) of 0.976 and the recall of 0.971.

Furthermore, SHAP (SHapley Additive exPlanations) values were employed to

provide both global and individual-level interpretability of the CatBoost model.

To assess the model’s generalization performance, bootstrap resampling was

performed 10 times. Based on these results, the standard error was improved

using machine learning-based enhancement methods, thereby optimizing the

model’s robustness and predictive stability.
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Conclusion: The logistic regression analysis revealed that age (OR=1.351,

p<0.001), CO2 (OR=0.603, p=0.004), eosinophil count (OR=2.128, p=0.001),

and platelet count (OR=0.961, p<0.001) were significantly associated with the

outcome, indicating their potential roles as independent predictors. Notably,

while APO_B (p=0.138) and sex (p=0.132) showed no significant association,

glucose levels (OR=2.1, p=0.066) exhibited a marginal trend toward significance,

warranting further investigation. This tool may support clinicians in identifying

high-risk individuals, enabl ing early interventions and optimized

management strategies.

Limitations: This study has several limitations. First, the analysis was based on a

single-center dataset, which may limit the generalizability of the findings.

External validation in multi-center and prospective cohorts, along with an

expanded sample size, is warranted to confirm these results. Second, key

confounding factors such as medication use, lifestyle habits, and gout flare

frequency were not included in the analysis; future studies should incorporate

these variables to provide a more comprehensive assessment.
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Introduction

Gout, a chronic crystal arthropathy pathologically characterized

by monosodium urate (MSU) crystal deposition in synovial fluid

and periarticular tissues (1), manifests during acute flares as a

classic triad of symptoms: abrupt-onset excruciating pain (visual

analog scale [VAS] score ≥7), localized hyperthermia (DT≥2.1 °C),

and erythematous swelling (≥15% periarticular circumference

expansion) (2). Data from the Global Burden of Disease Study

reveal a persistent upward trajectory in gout prevalence from 1990

to 2025, with projections indicating that the total global prevalence

of gout will escalate to 95.8 million cases by 2050 (3, 4). Notably,

East Asians exhibit the highest age-standardized prevalence rates,

demonstrating statistically significant elevation compared to high-

incomeWestern demographic cohorts (5). The diagnostic threshold

for hyperuricemia (HUA) (6), defined by international guidelines as

serum uric acid (SUA) concentration ≥420 mmol/L (7 mg/dL),

demonstrates a global prevalence of 13.4% (7, 8). This metabolic

aberration exhibits dose-response relationships with multiorgan

dysfunction: each 60 mmol/L SUA increment corresponds to 47%

elevated metabolic syndrome risk. Crucially, HUA-gout-

cardiovascular diseases (CVDs) forms a vicious triad through

interconnected mechanisms (9). Firstly, direct crystal-mediated

vascular injury: MSU crystals within vascular walls activate

NLRP3 inflammasomes, inducing 3.8-fold IL-1b hypersecretion

and enhancing neutrophil extracellular trap (NET) formation to

71.3% (vs. 9.8% in healthy controls). These processes synergistically

degrade endothelial glycocalyx (42% thickness reduction) and

elevate platelet activation markers (2.8-fold sP-selectin increase).

This chronic low-grade inflammation (10, 11), compounded by
02
oxidative stress (157% malondialdehyde elevation), accelerates

atherosclerotic plaque progression (12) (annual volume growth

rate +18.7%). Furthermore, endothelial dysfunction cascade:

Chronic HUA reduces nitric oxide bioavailability by 62% while

elevating von Willebrand factor (vWF) levels 2.3-fold, collectively

promoting atherosclerotic plaque formation (12) (annual volume

growth rate +22.4%). Then, metabolic synergy amplification: Gout

patients with comorbid hypertension and diabetes demonstrate 3.1-

fold higher cardiovascular mortality risk compared to

uncomplicated gout cases (13–15). Although consensus exists

regarding elevated CVDs risks in gout (17% increased all-cause

mortality, 29% CVDs-specific mortality), current risk prediction

tools remain suboptimal. Our study addresses this gap through

multidimensional parameter integration, developing a visual

nomogram model demonstrating superior predictive accuracy

versus conventional scoring systems. This instrument enables

rapid high-risk patient identification (risk threshold ≥15%) in

outpatient settings, establishing a novel paradigm for precision

medicine implementation.
Methods

Study design and population

This retrospective cohort study included 686 hospitalized

patients diagnosed with gout at Xiyuan Hospital in Beijing,

China, between January 1, 2013, and December 31, 2023. The

study protocol was approved by the Ethics Committees of Xiyuan

Hospital, China Academy of Chinese Medical Sciences
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(2023XLA026-3) with a waiver for informed consent. Inclusion

criteria comprised patients with a confirmed clinical diagnosis of

gout and complete hospitalization records. The primary outcome

was the occurrence of CVDs during hospitalization or follow-up.

The inclusion criteria were as follows: The chief complaint was

acute gouty arthritis, and the first visit records were selected for the

patients hospitalized for multiple times. The exclusion criteria are as

follows:(a) patients who are at risk of death from a critical illness,

and (b) those whose examination is incomplete. Data collected from

the enrolled neonates included the general status of gout patients

(age, sex), previous history (whether they had kidney stones,

hypertension, diabetes), blood routine, liver function, kidney

function, electrolytes, and lipid profile.
Data preprocessing and statistical analysis

All data processing and statistical analyses were conducted using

the DecisionLinnc platform (DecisionLinnc Core Team, 2023;

Hangzhou, China (16), Configure the environment to

Python3.10.6). Categorical variables were summarized as

frequencies and percentages, and continuous variables were

expressed as mean ± standard deviation (SD), and group

comparisons were conducted using the Kruskal–Wallis or Mann–

Whitney U tests, depending on distribution normality. K-nearest

neighbors (KNN) imputation was used to handle below 25% missing

laboratory data (e.g., serum creatinine, LDL cholesterol), as these

biomarkers often correlate with other variables (e.g., age, BMI). For

each missing value, the algorithm imputed estimates based on the k

most similar patients (neighbors) using Euclidean distance.
Class imbalance handling

To address class imbalance in the dataset, we applied Synthetic

Minority Oversampling Technique (SMOTE) combined with

random undersampling of the majority class. This hybrid

approach generated synthetic minority-class samples in the

feature space while reducing majority-class instances to achieve a

1:1 class ratio, thereby improving model sensitivity without

compromising data integrity. The resampling was exclusively

performed on the training set (prior to variable selection) to

prevent information leakage into validation cohorts.
Feature selection

Feature selection was conducted in two sequential steps

(Figure 1): First, Boruta Algorithm, a random forest-based

wrapper method was applied to identify the most relevant

predictors. This method leverages shadow features and recursive

elimination to capture all potential predictive features while

minimizing overfitting. Subsequently, least absolute shrinkage and

selection operator (LASSO) regression with 10-fold cross-validation

was applied to identify the eight most influential predictors,
Frontiers in Endocrinology 03
optimizing the penalty parameter (l) to minimize classification

error while maintaining model parsimony. These selected variables

were incorporated into a multivariable logistic regression model to

generate predictive probabilities. The final model was visualized as a

clinically interpretable nomogram.
Model selection rationale

Each model was trained using the training cohort and evaluated

on the independent testing cohort. In this study, five machine

learning algorithms were implemented for predictive modeling,

each configured with specific hyperparameters as follows (17):

Decision tree
A decision tree classifier was constructed using the Gini impurity

criterion as the splitting metric. The model was trained with a fixed

random state of 1. The splitting strategy was set to “best”, with a

maximum depth of 3. The minimum number of samples required to

split an internal node was set to 2, and the minimum number of

samples required to be at a leaf node was set to 1. The maximum

number of features considered during a split was limited to 100, and

the maximum number of leaf nodes was also set to 100.

Light gradient boosting machine
LGBM was implemented with the GBDT (Gradient Boosting

Decision Tree) booster type and a fixed random seed of 1. The

learning rate was set to 0.1 to control the contribution of each tree in

the ensemble.

K-nearest neighbors classifier
The k-nearest neighbors model used the uniform weighting

scheme, meaning each of the k neighbors contributes equally to the

classification. The number of nearest neighbors (k) was set to 5, and

the algorithm type was set to “auto”, which automatically selects the

most appropriate algorithm based on the input data.

CatBoost
CatBoost, a gradient boosting algorithm optimized for categorical

features, was applied with 100 boosting iterations and a tree depth of

10. The learning rate was set to 0.1. The evaluation metric used

during training was Logloss, and the random seed was fixed at 1.
Gradient boosting decision tree
The GBDT model was trained with a log loss function and a

learning rate of 0.1. The number of boosting stages was set to 100.

The model used a subsample rate of 1.0, indicating that all training

samples were used in each boosting iteration. The splitting quality

was evaluated using the Friedman MSE criterion. The minimum

number of samples required to split an internal node was set to 2,

and the minimum number of samples required at a leaf node was set

to 1. The maximum tree depth was 200, with both the maximum

number of features and the maximum number of leaf nodes set to

100. A fixed random state of 1 was used for reproducibility.
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Model interpretation

Clarified the Model Used: We now explicitly state that the

SHAP values were computed using the final trained model, which

was evaluated on the test (or external validation) set. SHapley

Additive exPlanations (SHAP) values were used to quantify and

visualize each variable’s contribution to model output. SHAP

summary plots, force plots, and dependence plots were used to

visualize how each feature affected the model’s prediction. This

interpretability allows for both clinician understanding and

potential clinical decision-making.
Model evaluation and bootstrap validation

To assess the performance and generalizability of the machine

learning models, a bootstrap resampling procedure was conducted.

Specifically, the bootstrap process was repeated for 10 iterations,

with 80% of the original dataset randomly sampled with

replacement in each iteration to form the training set, while the

remaining 20% was used for testing. A fixed random seed of 1 was

applied to ensure reproducibility.

Performance evaluation was conducted using multiple

classification metrics, including accuracy, precision, recall, F1-

score, and the area under the receiver operating characteristic

curve (AUC). These metrics were calculated for each iteration

and averaged to obtain a robust estimate of model performance.

Model validation was primarily based on the best-performing

algorithm—CatBoost—and bootstrap-based error estimates were

used to evaluate the stability and robustness of the predictive

outcomes across resampling iterations.

To perform the SE data task, the dataset was randomly split into

training and test sets with a training ratio of 0.7, using a fixed

random seed of 123 to ensure reproducibility. For model training,

the CatBoost algorithm was applied with manual hyperparameter

tuning. The number of computational threads was set to 4. Model

evaluation was conducted using 10-fold cross-validation (CV) to

ensure robust performance estimation. The evaluation metrics

included accuracy (ACC), Cohen’s Kappa coefficient (Kappa), and

the area under the receiver operating characteristic curve (AUC). In

addition, a portion of the data was used for SE prediction.

The research was supported by the Key Research Project of the

China Academy of Chinese Medical Sciences(CI2021A01514). All

authors have full access to all data in the study and accept

responsibility for submitting it for publication.
Results

General characteristics

This study included a total of 686 patients, among whom 263

experienced cardiovascular events (CVE group) and 423 did not

(non-CVE group). The mean age of the overall cohort was 57.56

years, with CVE patients significantly older than non-CVE patients
Frontiers in Endocrinology 04
(67.1 ± 13.7 vs. 51.63 ± 14.53 years, P < 0.01, SMD = 1.10). Sex

distribution revealed a higher proportion of males in both groups,

although the difference was statistically significant (P = 0.03).

Comparison of baseline laboratory parameters showed that

patients in the CVE group had significantly lower platelet counts

(PLT), lymphocyte percentages (LYM), total protein (TP), albumin

(ALB), prealbumin (PA), and calcium (Ca), and higher blood urea

(UREA), blood urea nitrogen (BUN), creatinine (CREA), uric acid

(UA), glucose (GLU), low-density lipoprotein cholesterol (LDL-C),

and comorbidity burden (P < 0.05 for all). Additionally, statistically

significant differences were observed in CO2, sodium (Na), and

several lipid-related markers such as LDL-C and GLU levels.

Among categorical variables, comorbidity profiles were markedly

different between groups: a higher proportion of CVE patients had

fewer comorbidities, particularly those without hypertension or

diabetes conditions (P < 0.01, SMD = 0.75). Detailed comparisons

are presented in Table 1.
Predictor screening

Figure 2 displays the distribution of variable importance scores

across multiple iterations, comparing original features with

synthetic shadow features (random noise variables).Representative

features such as age, PLT, BUN demonstrated stable importance

across iterations (narrow boxplot ranges), suggesting their strong

association with the outcome. Four variables (not shown in figure)

fell below the shadowMin threshold and were rejected as irrelevant.

The Lasso regression analysis identified a parsimonious set of 8

clinically relevant predictors from the initial 39 variables (Figure 2):

sex, age, PLT, EOS, LYM, CO2, GLU, APO-B. APO-B (b=−0.02,
negative association), suggesting a potential protective role in the

disease progression, EOS (b=+0.22) and GLU (b=+0.06), indicating
their positive correlations with adverse outcomes.

The logistic regression analysis (Figure 2) identified four

significant predictors of [outcome]: AGE (OR=1.351, 95%

CI:1.215–1.581, P<0.001), CO2 (OR=0.603, 95% CI:0.406–0.792,

P=0.004), EOS (OR=2.128, 95% CI:1.428–3.496, P=0.001), and PLT

(OR=0.961, 95% CI:0.941–0.976, P<0.001). Notably, AGE and EOS

exhibited strong positive associations, while higher CO2 and PLT

levels were protective. Variables such as APO_B (P=0.138) and SEX

(P=0.132) did not reach statistical significance, possibly due to limited

effect sizes or sample heterogeneity. The logistic regression model

demonstrated excellent discriminative ability, with an area under the

ROC curve (AUC) of 0.987. Decision curve analysis demonstrated

that the logistic regression model provided superior net benefit

compared to the ‘Treat All’ or ‘Treat None’ strategies across a

clinically relevant risk threshold range (0.2–0.6). For example, at a

threshold probability of 30% (a common cutoff for clinical

intervention), the model yielded a net benefit of 0.45, whereas

‘Treat All’ and ‘Treat None’ resulted in 0.25 and 0, respectively.

This suggests that using the model to guide decisions could prevent

unnecessary treatments for 20% of patients without missing high-risk

cases. The nomogram (Figure 3) integrated eight clinically accessible

variables, with AGE and EOS contributing the highest point weights.
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TABLE 1 Baseline characteristics of patients in the CVE and non-CVE cohort.

Variable names Level Overall 0 1 P

n 686 423 263

AGE 57.56 ± 16.08 51.63 ± 14.53 67.1 ± 13.7 <0.01

WBC(×109/L) 7.6 ± 2.41 7.72 ± 2.35 7.39 ± 2.51 0.08

PLT(×109/L) 267.43 ± 87.09 277.67 ± 82.68 250.97 ± 91.53 <0.01

NEU(%) 64.94 ± 10.29 64.6 ± 9.81 65.48 ± 11 0.28

LYM(%) 25.85 ± 9.03 26.47 ± 8.88 24.84 ± 9.2 0.02

MON(%) 6.35 ± 1.67 6.3 ± 1.56 6.44 ± 1.84 0.32

EOS(%) 2.22 ± 1.72 2.15 ± 1.59 2.34 ± 1.92 0.16

BAS(%) 0.46 ± 0.27 0.47 ± 0.27 0.45 ± 0.27 0.54

NEU(×109/L) 5.13 ± 2.96 5.11 ± 2.2 5.17 ± 3.9 0.79

LYM(×109/L) 1.9 ± 1.42 1.93 ± 0.61 1.86 ± 2.16 0.55

MON(×109/L) 0.48 ± 0.29 0.48 ± 0.18 0.49 ± 0.42 0.79

E0S(×109/L) 0.16 ± 0.13 0.15 ± 0.11 0.16 ± 0.17 0.27

BAS(×109/L) 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.09

ESR(mm/h) 26.04 ± 23.69 25.43 ± 22.44 27.03 ± 25.59 0.39

TP(g/L) 70.84 ± 5.51 71.58 ± 5.36 69.65 ± 5.56 <0.01

ALB(g/L) 41.2 ± 4.17 41.76 ± 3.97 40.31 ± 4.33 <0.01

G(g/L) 29.78 ± 4.49 29.97 ± 4.22 29.47 ± 4.9 0.16

A/G 1.43 ± 0.37 1.42 ± 0.24 1.43 ± 0.52 0.85

PA(mg/L) 261.87 ± 63.09 266.53 ± 61.24 254.38 ± 65.39 0.01

FFA(mmol/L) 0.77 ± 3.39 0.89 ± 4.32 0.57 ± 0.16 0.24

UREA(mmol/L) 5.37 ± 2.28 5 ± 1.65 5.97 ± 2.94 <0.01

BUN(mmol/L) 15.01 ± 6.24 14.02 ± 4.6 16.6 ± 7.97 <0.01

CREA(mmol/L) 92.93 ± 28.41 90.53 ± 22.08 96.81 ± 36.05 <0.01

UA(mmol/L) 476.89 ± 111.14 486.8 ± 111.76 460.94 ± 108.45 <0.01

K(mmol/L) 4.19 ± 0.36 4.19 ± 0.34 4.2 ± 0.39 0.59

Na(mmol/L) 140.92 ± 2.24 141 ± 2.08 140.79 ± 2.46 0.22

Cl(mmol/L) 102.79 ± 3.19 102.63 ± 3.06 103.05 ± 3.37 0.09

CO2(mmol/L) 25.11 ± 2.47 25.35 ± 2.28 24.72 ± 2.72 <0.01

Ca(mmol/L) 2.32 ± 0.12 2.34 ± 0.12 2.29 ± 0.1 <0.01

GLU(mmol/L) 5.9 ± 1.54 5.75 ± 1.44 6.14 ± 1.66 <0.01

LDL-C(mmol/L) 2.95 ± 0.79 3.02 ± 0.79 2.85 ± 0.79 0.01

VLDL(mmol/L) 0.7 ± 0.52 0.68 ± 0.45 0.72 ± 0.62 0.25

APO-A1(g/L) 1.11 ± 0.19 1.11 ± 0.19 1.12 ± 0.2 0.35

APO-B(g/L) 0.99 ± 0.24 1.01 ± 0.25 0.97 ± 0.23 0.08

Lpa(mg/L) 220.51 ± 351.16 225.16 ± 421.65 213.04 ± 189.61 0.66

CHOL(mmol/L) 4.74 ± 0.84 4.8 ± 0.83 4.64 ± 0.85 0.01

SEX (%) Female 48 (7.00) 22 (5.20) 26 (9.89) 0.03

(Continued)
F
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The experimental results demonstrate that CatBoost exhibited

superior classification performance, achieving near-perfect AUC

values of 0.976 (Figure 4). The 95% confidence intervals for

CatBoost (AUC range: 0.940-0.972) showed narrow bands

without overlap with other models, indicating statistically

significant superiority and high prediction stability. PR curve

analysis further validated the exceptional performance of
Frontiers in Endocrinology 06
CatBoost (AUC=0.971) and RF (AUC=0.969) in handling

potential class imbalance, while decision trees showed markedly

inferior performance (AUC=0.539). Calibration curve assessment

revealed that CatBoost produced the most accurate probability

estimates, with predictions closely aligned to the ideal diagonal,

suggesting its probability outputs can be reliably interpreted as

confidence measures.
TABLE 1 Continued

Variable names Level Overall 0 1 P

Male 638 (93.00) 401 (94.80) 237 (90.11)

Kidney stone (%) No 565 (82.36) 350 (82.74) 215 (81.75) 0.82

Yes 121 (17.64) 73 (17.26) 48 (18.25)

Comorbidities (%) 1 321 (46.79) 254 (60.05) 67 (25.48) <0.01

2 76 (11.08) 32 (7.57) 44 (16.73)

3 29 (4.23) 14 (3.31) 15 (5.70)

4 260 (37.90) 123 (29.08) 137 (52.09)
WBC, White Blood Cell count; PLT, Platelet count; NEU, Neutrophil count; LYM, Lymphocyte count; MON, Monocyte count; EOS, Eosinophil count; BAS, Basophil count; NEUp, Neutrophil
percentage; LYMp, Lymphocyte percentage; MONp, Monocyte percentage; E0Sp, Eosinophil percentage; BASp, Basophil percentage; ESR, Erythrocyte Sedimentation Rate; TP, Total Protein;
ALB, Albumin; Gv, Globulin value; AG, Albumin/Globulin Ratio; PA, Prealbumin; FFA, Free Fatty Acids; UREA, Urea concentration; BUN, Blood Urea Nitrogen; CREA, Creatinine; UA, Uric
Acid; Kv, Potassium value; Na, Sodium; Cl, Chloride; CO2, Carbon Dioxide content; Ca, Calcium; GLU, Glucose; LDLC, Low-Density Lipoprotein Cholesterol; VLDL, Very Low-Density
Lipoprotein; APOA1, Apolipoprotein A1; APOB, Apolipoprotein B; Lpa, Lipoprotein (a); Sex, Sex distribution; n (%), com, Presence of comorbidity; n (%), Group 1, Participants without
hypertension or diabetes; Group 2, Participants with both hypertension and diabetes; Group 3, Participants with diabetes only; Group 4, Participants with hypertension only; Kidney, Kidney-
related condition, n (%). A P value of less than 0.01 was considered statistically significant, suggesting a strong association between the baseline characteristic and the clinical outcome.
FIGURE 1

Feature selection using Boruta feature and lasso regression.
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Machine learning model performance

Comparative analysis of five machine learning models revealed

that ensemble methods consistently outperformed single-model

approaches (Supplementary 8). The CatBoost learner achieved the

highest discriminative ability (AUC=0.953, 95% CI: 0.933–0.974),

with a sensitivity of 88.7% and specificity of 94% at the optimal

threshold (0.771). LightGBM (AUC=0.972) and KNNC

(AUC=0.971) fol lowed close ly , whi le Decis ion Trees

(AUC=0.948) and GBDT (AUC=0.915) exhibited limited

performance, likely due to their inability to handle complex

feature interactions.
Frontiers in Endocrinology 07
SHAP-based model interpretability analysis

The SHAP feature importance analysis (Figure 5) identified AGE

as the most influential predictor (mean |SHAP value|=0.9), followed

by PLT (0.6) and CO2 (0.45). In contrast, demographic variables such

as SEX (0.1) showed minimal contributions, suggesting that clinical

biomarkers drive the model’s decisions more strongly than baseline

characteristics. The top SHAP features (AGE, PLT) correspond to the

variables retained in the logistic regression nomogram (Figure 2),

reinforcing their biological plausibility. CatBoost’s superior AUCmay

stem from its ability to capture non-linear relationships in high-

importance features like AGE, whereas simpler models (e.g., Decision

Trees) underutilized these patterns.
Model evaluation and bootstrap validation

Ten bootstrap-validated CatBoost models (BR1TEST-BR11TEST)

demonstrated moderate to strong discriminative ability, with AUC

values ranging from 0.686 to 0.744 (median AUC=0.726, IQR: 0.711–

0.731). Classification thresholds varied between 0.318 and 0.476,

reflecting dataset heterogeneity (Figure 6). The most stable model

(BR7TEST) achieved the highest AUC (0.744) at a threshold of 0.447.

Threshold variability (0.318–0.476) underscores the importance of

tailoring decision cutoffs to clinical priorities—selecting BR7TEST

(high specificity) for confirmatory testing or BR6TEST (low

threshold=0.318) for sensitive screening.
Discussion

Gout, recognized as the most prevalent inflammatory arthritis

worldwide, is pathologically rooted in sustained hyperuricemia (18).
GURE 2FI

Logistic regression performance metrics.
FIGURE 3

Logistic regression nomogram plot.
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FIGURE 4

Machine learning model performance.
FIGURE 5

SHAP model interpretation.
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Epidemiological investigations demonstrate a 20% elevation in gout

incidence per 1 mg/dL increment in serum urate levels,

concurrently exhibiting significant comorbidity with metabolic

syndrome components including hypertension, diabetes mellitus,

and dyslipidemia (19, 20). Despite substantial advancements in

contemporary medicine, clinical management of gout persists as a

formidable challenge: over 60% of patients fail to achieve target

serum urate control (<6 mg/dL), resulting in progressive disease

burden (4). Notably, the mechanistic interplay between gout and

CVDs warrants in-depth elucidation. Large-scale cohort studies

reveal that gout patients experience 28% higher all-cause mortality

(aHR=1.28, 95%CI 1.15-1.42) compared to the general population,

with cardiovascular-related mortality showing a more pronounced

38% increase (aHR=1.38, 95%CI 1.21-1.58) (21). However, clinical

practice data indicate only 25% of acute gout patients undergo

systematic cardiovascular risk assessment within one month post-

attack, underscoring substantial optimization potential in current

therapeutic strategies (22).

These findings align with existing evidence linking metabolic

syndrome to cardiovascular risk: Age-related risk accumulation:

Each decade beyond 65 years confers exponential CVDs risk

elevation (HR=1.62, 95%CI 1.38-1.91), predominantly driven by
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accelerated vascular remodeling associated with 12.7% annual

arterial stiffness progression (23, 24). Glycometabolic

dysregulation synergy: In gout patients with diabetes, each 1

mmol/L fasting glucose increment correlates with)0.34 ng/L

elevation in high-sensitivity cardiac troponin T (hs-cTnT)

(b=0.34, p=0.003) (25). Mechanistically, sustained hyperglycemia

(>7.8 mmol/L) activates PKC-b/NADPH oxidase pathways,

inducing 2.1-fold ROS overproduction and elevating endothelial

apoptosis to 38.5%; Insulin resistance multimodality effects (26):

Hyperinsulinemia (fasting insulin ≥15 mIU/mL) reduces endothelial

nitric oxide synthase (eNOS) activity by 57% while enhancing

vascular smooth muscle cell calcium influx by 83% ([Ca2+]i=421

± 25 nM vs. control 228 ± 18 nM) via PI3K/Akt/mTOR signaling,

culminating in medial wall thickening (IMT=1.12 ± 0.11 mm vs.

0.89 ± 0.09 mm (27, 28); Elevated blood pressure will lead to the

inhibition of reactive oxygen species and nitric oxide production,

damage to endothelial cells, and lead to the development of

atherosclerosis. VLDL and abdominal residual particles

accumulate together in the dysfunctional subendothelial vascular

wall. Oxidative stress induces oxidative modification of LDL

particles and accumulation of oxidized LDL in macrophages,

leading to pro-inflammatory macrophage response, excessive
FIGURE 6

Bootstrap-validated ROC curves of CatBoost models.
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macrophage apoptosis and endothelial cell activation, leading to

persistent vascular inflammation in atherosclerotic lesions (29–32).

Notably, calcium dysregulation emerges as a pivotal mechanism in

gout-CVDs comorbidity. Basic research confirms urate crystals

induce ATP over-release (+142%, p<0.01) via LRRC8 channel

activation (33), triggering intracellular calcium overload ([Ca2+]

i=512 ± 23 nM vs. 289 ± 18 nM control) through P2Y2 receptor

signaling (34). This calcium dyshomeostasis promotes

atherosclerosis via dual pathways: Inducing mitochondrial

membrane potential depolarization (37% DYm reduction) in

endothelial cells; Activating calcineurin/NFAT pathways to

enhance smooth muscle cell migration (2.3-fold increase) (35).

Importantly, febuxostat may elevate arrhythmia risk through

RyR2-mediated calcium cycling alterations (28% open probability

increase), necessitating enhanced therapeutic monitoring (36).

Platelets play a key role in blood clotting and thrombosis.

Hyperuricemia (HUA) has been identified as an independent risk

factor for cardiovascular diseases. Elevated uric acid levels may

promote platelet activation and aggregation by triggering mechanisms

such as oxidative stress, endothelial dysfunction, vascular smoothmuscle

cell proliferation, and inflammatory responses, thereby increasing the

risk of cardiovascular events (37). Studies have shown that urate directly

affects immune cell populations by altering cytokine expression,

modifying chemotactic responses, promoting differentiation, and

inducing immune cell activation through interactions with resident

tissue cells (38). HUA may enhance oxidative stress by activating

NOD-like receptor protein-3 inflammasome induced inflammation,

interfering with cardiac cell energy metabolism, affecting antioxidant

defense system, and stimulating the production of reactive oxygen

species, ultimately leading to decreased cardiac function (39). In

patients with gout, serum albumin levels may be related to the risk

and outcomes of cardiovascular events. Even in patients with normal

glomerular filtration rates, albuminuria was associated with an increased

risk of heart failure.

Cardiovascular Injury Mechanisms Involving Ion Channel

Dysregulation and Oxidative Stress Activation, Hypocapnia in

gout patients is frequently triggered by impaired renal function or

lactic acid accumulation. Its mechanisms of cardiovascular injury

primarily involve ion channel dysregulation and activation of

oxidative stress. Oxidative Stress Activation: The hypocapnic

environment upregulates xanthine oxidase (XO) expression via

activation of the NF-kB signaling pathway, increasing XO activity

in endothelial cells and elevating superoxide anion production. This

accelerates the oxidative modification of low-density lipoprotein

(LDL) (40). Oxidized LDL (oxLDL) not only promotes foam cell

formation but also activates matrix metalloproteinase-9 (MMP-9),

which degrades collagen within the fibrous cap of atherosclerotic

plaques. This directly compromises plaque stability and accelerates

cardiovascular damage (41). Clinical studies confirm a positive

correlation between serum XO activity and the volume of the

lipid core within carotid artery plaques in gout patients (42).

From 2013 to 2023, significant changes in managing gout with

cardiovascular comorbidities, including updated guidelines and

treatment regimens, may profoundly influence the transferability of

machine learning models. In gout management, traditional
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treatments such as non-steroidal anti-inflammatory drugs

(NSAIDs), colchicine and glucocorticoids remain dominant.

However, there’s a growing use of new uric acid-lowering drugs,

such as febuxostat and uricase. Besides, personalized uric acid-

lowering goals are now more emphasized, with target levels often

set at < 6 mg/dL or even < 5 mg/dL, tailored to individual patient

needs. Meanwhile, the cardiovascular field has introduced new

anticoagulants (e.g., DOACs), PCSK9 inhibitors, and SGLT2

inhibitors, alongside updated guidelines for hypertension and heart

failure, such as stricter blood pressure targets and recommendations

for novel therapies. Furthermore, extensive research into the gout-

cardiovascular disease link has established hyperuricemia as an

independent cardiovascular risk factor, prompting adjustments to

risk assessment models like the ACC/AHA risk score. These changes

can degrade the predictive performance of models that were trained

on earlier data when they are applied to contemporary cohorts, as the

underlying feature distributions, such as medication patterns, serum

uric acid levels, and cardiovascular risk factors, have shifted

significantly. Consequently, before deployment, each model must

be rigorously evaluated for accuracy drift, generalizability and

interpretability in light of these distributional shifts.

In addition, many medications can trigger acute attacks of gout.

Diuretics, such as furosemide and hydrochlorothiazide, as well as

antihypertensive drugs containing diuretics are common culprits.

Recent cases predominantly involve postmenopausal women using

diuretics for cardiovascular or kidney diseases. Such patients often

present with mild gouty arthritis, rapid nodule formation, and

frequent misdiagnosis as osteoarthritis. Aspirin exerts a dual effect

on uric acid metabolism. In older adults, even small dose

adjustments can precipitate harm, so dose changes in the elderly

should be monitored and its use reduced during acute gout attacks.
Conclusion

Our analysis highlights the hierarchical contributions of key

factors to the risk of cardiovascular disease (CVD) in gout patients,

with age emerging as the strongest predictor. This aligns with

established evidence that aging accelerates arterial stiffness and

reduces renal urate excretion, synergistically promoting CVD

progression. Sex differences further modulate risk, with males

exhibiting higher gout-related CVD incidence due to androgen-

driven urate overproduction, while postmenopausal females

approach similar risk levels following estrogen decline. Among

novel biomarkers, elevated eosinophil counts (EOS) may reflect

IL-4/IL-13-mediated vascular inflammation, though longitudinal

studies are needed to confirm causality. ApoB underscores the role

of atherogenic lipoproteins in gout-CVD comorbidity, potentially

exacerbated by urate crystal-induced endothelial injury. Conversely,

lymphopenia (LYM) suggests impaired immunoregulation in

progressive disease. These findings advocate for age- and sex-

stratified CVD screening in gout, while positioning EOS and

ApoB as potential therapeutic targets. Future research should

explore whether eosinophil suppression or lipid-lowering

therapies mitigate gout-specific CVD pathways.
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Strengths and limitations

This study innovatively integrates clinical parameters with

machine learning to establish the first East Asian-specific gout-

CVDs prediction model. Key limitations warrant attention: First,

temporal constraints: Cross-sectional design limits causal inference

- longitudinal validation (≥5 years) recommended. Second,

pharmacological confounders: Unadjusted diuretic effects

(OR=1.89) and aspirin’s dose-dependent impacts. Finally,

phenotypic heterogeneity: Undifferentiated gout subtypes (mono-

vs. polyarticular) may introduce classification bias.

The MCID estimate (5–10% change in predicted risk) and the

identified DCA threshold range (0.15–0.30) are derived from the

current dataset and may be influenced by the specific patient

population and clinical practices from 2013–2023. Although the

model performed well in internal cross-validation, its generalizability

remains uncertain because it has not yet been validated on external

cohorts representing diverse clinical settings. Due to time constraints

and the unavailability of suitable external datasets with specific

screening for gout and cardiovascular comorbidities, validation was

limited to internal k-fold cross-validation. Additionally, the continuous,

rapid changes in gout and cardiovascular disease management

strategies, diagnostic guidelines, and pharmacotherapy from 2013 to

2023 are likely to produce dataset shift, which in turnmay constrain the

model’s transferability to contemporary clinical practice. Future

investigations should therefore emphasize external validation on

multi-center cohorts collected after 2023 to confirm the model’s

robustness, generalizability, and real-world applicability.

Furthermore, integrating adaptive or transfer learning techniques to

mitigate temporal dataset drift will enhance the model’s clinical utility

in routine care.
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