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Background: Gout is a chronic inflammatory condition increasingly recognized
as a risk factor for cardiovascular events (CVE). Early identification of high-risk
individuals is crucial for targeted prevention and management. However,
conventional risk stratification approaches often fall short in accuracy and
clinical utility. This study aimed to develop and validate a robust, interpretable
machine learning (ML)-based model for predicting CVE in patients with gout.
Methods: This retrospective cohort study included 686 hospitalized gout
patients at Xiyuan Hospital (Beijing, China) between January 1, 2013, and
December 31, 2023. We applied Synthetic Minority Oversampling Technique
(SMOTE) combined with random undersampling of the majority class. Then,
patients were randomly divided into training (70%) and testing (30%) sets. A
comprehensive set of clinical and biochemical variables (n = 39) was collected.
Feature selection was performed using Boruta algorithms and Lasso to identify
the most predictive variables. Multiple ML algorithms—including Decision Tree
Learner, LightGBM Learner, K Nearest Neighbors Learner, CatBoost Learner,
Gradient Boosting Desicion Tree Learner—were implemented to construct
predictive models. SHAP values were used to assess model interpretability, and
robustness was evaluated through 10-fold bootstrap resampling with enhanced
standard error estimation.

Results: Of the 686 patients, 263 experienced cardiovascular events during
follow-up (incidence rate: 38.3%). A logistic regression model was constructed
based on eight variables selected using the Boruta feature selection algorithm:
sex, age, PLT, EOS, LYM, CO2, GLU and APO-B. Among the five models
evaluated, the CatBoost classifier achieved the best performance, with the
highest area under the ROC curve (AUC) of 0.976 and the recall of 0.971.
Furthermore, SHAP (SHapley Additive exPlanations) values were employed to
provide both global and individual-level interpretability of the CatBoost model.
To assess the model's generalization performance, bootstrap resampling was
performed 10 times. Based on these results, the standard error was improved
using machine learning-based enhancement methods, thereby optimizing the
model’s robustness and predictive stability.
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Conclusion: The logistic regression analysis revealed that age (OR=1.351,
p<0.001), CO2 (OR=0.603, p=0.004), eosinophil count (OR=2.128, p=0.001),
and platelet count (OR=0.961, p<0.001) were significantly associated with the
outcome, indicating their potential roles as independent predictors. Notably,
while APO_B (p=0.138) and sex (p=0.132) showed no significant association,
glucose levels (OR=2.1, p=0.066) exhibited a marginal trend toward significance,
warranting further investigation. This tool may support clinicians in identifying
high-risk individuals, enabling early interventions and optimized
management strategies.

Limitations: This study has several limitations. First, the analysis was based on a
single-center dataset, which may limit the generalizability of the findings.
External validation in multi-center and prospective cohorts, along with an
expanded sample size, is warranted to confirm these results. Second, key
confounding factors such as medication use, lifestyle habits, and gout flare
frequency were not included in the analysis; future studies should incorporate
these variables to provide a more comprehensive assessment.

gout, cardiovascular events, prediction nomogram, machine learning (ML), nomo gram

Introduction

Gout, a chronic crystal arthropathy pathologically characterized
by monosodium urate (MSU) crystal deposition in synovial fluid
and periarticular tissues (1), manifests during acute flares as a
classic triad of symptoms: abrupt-onset excruciating pain (visual
analog scale [VAS] score 27), localized hyperthermia (AT>2.1 °C),
and erythematous swelling (215% periarticular circumference
expansion) (2). Data from the Global Burden of Disease Study
reveal a persistent upward trajectory in gout prevalence from 1990
to 2025, with projections indicating that the total global prevalence
of gout will escalate to 95.8 million cases by 2050 (3, 4). Notably,
East Asians exhibit the highest age-standardized prevalence rates,
demonstrating statistically significant elevation compared to high-
income Western demographic cohorts (5). The diagnostic threshold
for hyperuricemia (HUA) (6), defined by international guidelines as
serum uric acid (SUA) concentration =420 umol/L (7 mg/dL),
demonstrates a global prevalence of 13.4% (7, 8). This metabolic
aberration exhibits dose-response relationships with multiorgan
dysfunction: each 60 umol/L SUA increment corresponds to 47%
elevated metabolic syndrome risk. Crucially, HUA-gout-
cardiovascular diseases (CVDs) forms a vicious triad through
interconnected mechanisms (9). Firstly, direct crystal-mediated
vascular injury: MSU crystals within vascular walls activate
NLRP3 inflammasomes, inducing 3.8-fold IL-1B hypersecretion
and enhancing neutrophil extracellular trap (NET) formation to
71.3% (vs. 9.8% in healthy controls). These processes synergistically
degrade endothelial glycocalyx (42% thickness reduction) and
elevate platelet activation markers (2.8-fold sP-selectin increase).
This chronic low-grade inflammation (10, 11), compounded by
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oxidative stress (157% malondialdehyde elevation), accelerates
atherosclerotic plaque progression (12) (annual volume growth
rate +18.7%). Furthermore, endothelial dysfunction cascade:
Chronic HUA reduces nitric oxide bioavailability by 62% while
elevating von Willebrand factor (vWF) levels 2.3-fold, collectively
promoting atherosclerotic plaque formation (12) (annual volume
growth rate +22.4%). Then, metabolic synergy amplification: Gout
patients with comorbid hypertension and diabetes demonstrate 3.1-
fold higher cardiovascular mortality risk compared to
uncomplicated gout cases (13-15). Although consensus exists
regarding elevated CVDs risks in gout (17% increased all-cause
mortality, 29% CVDs-specific mortality), current risk prediction
tools remain suboptimal. Our study addresses this gap through
multidimensional parameter integration, developing a visual
nomogram model demonstrating superior predictive accuracy
versus conventional scoring systems. This instrument enables
rapid high-risk patient identification (risk threshold >15%) in
outpatient settings, establishing a novel paradigm for precision
medicine implementation.

Methods
Study design and population

This retrospective cohort study included 686 hospitalized
patients diagnosed with gout at Xiyuan Hospital in Beijing,
China, between January 1, 2013, and December 31, 2023. The
study protocol was approved by the Ethics Committees of Xiyuan
Hospital, China Academy of Chinese Medical Sciences
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(2023XLA026-3) with a waiver for informed consent. Inclusion
criteria comprised patients with a confirmed clinical diagnosis of
gout and complete hospitalization records. The primary outcome
was the occurrence of CVDs during hospitalization or follow-up.
The inclusion criteria were as follows: The chief complaint was
acute gouty arthritis, and the first visit records were selected for the
patients hospitalized for multiple times. The exclusion criteria are as
follows:(a) patients who are at risk of death from a critical illness,
and (b) those whose examination is incomplete. Data collected from
the enrolled neonates included the general status of gout patients
(age, sex), previous history (whether they had kidney stones,
hypertension, diabetes), blood routine, liver function, kidney
function, electrolytes, and lipid profile.

Data preprocessing and statistical analysis

All data processing and statistical analyses were conducted using
the DecisionLinnc platform (DecisionLinnc Core Team, 2023;
Hangzhou, China (16), Configure the environment to
Python3.10.6). Categorical variables were summarized as
frequencies and percentages, and continuous variables were
expressed as mean + standard deviation (SD), and group
comparisons were conducted using the Kruskal-Wallis or Mann-
Whitney U tests, depending on distribution normality. K-nearest
neighbors (KNN) imputation was used to handle below 25% missing
laboratory data (e.g., serum creatinine, LDL cholesterol), as these
biomarkers often correlate with other variables (e.g., age, BMI). For
each missing value, the algorithm imputed estimates based on the k
most similar patients (neighbors) using Euclidean distance.

Class imbalance handling

To address class imbalance in the dataset, we applied Synthetic
Minority Oversampling Technique (SMOTE) combined with
random undersampling of the majority class. This hybrid
approach generated synthetic minority-class samples in the
feature space while reducing majority-class instances to achieve a
1:1 class ratio, thereby improving model sensitivity without
compromising data integrity. The resampling was exclusively
performed on the training set (prior to variable selection) to
prevent information leakage into validation cohorts.

Feature selection

Feature selection was conducted in two sequential steps
(Figure 1): First, Boruta Algorithm, a random forest-based
wrapper method was applied to identify the most relevant
predictors. This method leverages shadow features and recursive
elimination to capture all potential predictive features while
minimizing overfitting. Subsequently, least absolute shrinkage and
selection operator (LASSO) regression with 10-fold cross-validation
was applied to identify the eight most influential predictors,
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optimizing the penalty parameter (A) to minimize classification
error while maintaining model parsimony. These selected variables
were incorporated into a multivariable logistic regression model to
generate predictive probabilities. The final model was visualized as a
clinically interpretable nomogram.

Model selection rationale

Each model was trained using the training cohort and evaluated
on the independent testing cohort. In this study, five machine
learning algorithms were implemented for predictive modeling,
each configured with specific hyperparameters as follows (17):

Decision tree

A decision tree classifier was constructed using the Gini impurity
criterion as the splitting metric. The model was trained with a fixed
random state of 1. The splitting strategy was set to “best”, with a
maximum depth of 3. The minimum number of samples required to
split an internal node was set to 2, and the minimum number of
samples required to be at a leaf node was set to 1. The maximum
number of features considered during a split was limited to 100, and
the maximum number of leaf nodes was also set to 100.

Light gradient boosting machine

LGBM was implemented with the GBDT (Gradient Boosting
Decision Tree) booster type and a fixed random seed of 1. The
learning rate was set to 0.1 to control the contribution of each tree in
the ensemble.

K-nearest neighbors classifier

The k-nearest neighbors model used the uniform weighting
scheme, meaning each of the k neighbors contributes equally to the
classification. The number of nearest neighbors (k) was set to 5, and
the algorithm type was set to “auto”, which automatically selects the
most appropriate algorithm based on the input data.

CatBoost

CatBoost, a gradient boosting algorithm optimized for categorical
features, was applied with 100 boosting iterations and a tree depth of
10. The learning rate was set to 0.1. The evaluation metric used
during training was Logloss, and the random seed was fixed at 1.

Gradient boosting decision tree

The GBDT model was trained with a log loss function and a
learning rate of 0.1. The number of boosting stages was set to 100.
The model used a subsample rate of 1.0, indicating that all training
samples were used in each boosting iteration. The splitting quality
was evaluated using the Friedman MSE criterion. The minimum
number of samples required to split an internal node was set to 2,
and the minimum number of samples required at a leaf node was set
to 1. The maximum tree depth was 200, with both the maximum
number of features and the maximum number of leaf nodes set to
100. A fixed random state of 1 was used for reproducibility.
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Model interpretation

Clarified the Model Used: We now explicitly state that the
SHAP values were computed using the final trained model, which
was evaluated on the test (or external validation) set. SHapley
Additive exPlanations (SHAP) values were used to quantify and
visualize each variable’s contribution to model output. SHAP
summary plots, force plots, and dependence plots were used to
visualize how each feature affected the model’s prediction. This
interpretability allows for both clinician understanding and
potential clinical decision-making.

Model evaluation and bootstrap validation

To assess the performance and generalizability of the machine
learning models, a bootstrap resampling procedure was conducted.
Specifically, the bootstrap process was repeated for 10 iterations,
with 80% of the original dataset randomly sampled with
replacement in each iteration to form the training set, while the
remaining 20% was used for testing. A fixed random seed of 1 was
applied to ensure reproducibility.

Performance evaluation was conducted using multiple
classification metrics, including accuracy, precision, recall, F1-
score, and the area under the receiver operating characteristic
curve (AUC). These metrics were calculated for each iteration
and averaged to obtain a robust estimate of model performance.
Model validation was primarily based on the best-performing
algorithm—CatBoost—and bootstrap-based error estimates were
used to evaluate the stability and robustness of the predictive
outcomes across resampling iterations.

To perform the SE data task, the dataset was randomly split into
training and test sets with a training ratio of 0.7, using a fixed
random seed of 123 to ensure reproducibility. For model training,
the CatBoost algorithm was applied with manual hyperparameter
tuning. The number of computational threads was set to 4. Model
evaluation was conducted using 10-fold cross-validation (CV) to
ensure robust performance estimation. The evaluation metrics
included accuracy (ACC), Cohen’s Kappa coefficient (Kappa), and
the area under the receiver operating characteristic curve (AUC). In
addition, a portion of the data was used for SE prediction.

The research was supported by the Key Research Project of the
China Academy of Chinese Medical Sciences(CI2021A01514). All
authors have full access to all data in the study and accept
responsibility for submitting it for publication.

Results
General characteristics

This study included a total of 686 patients, among whom 263
experienced cardiovascular events (CVE group) and 423 did not

(non-CVE group). The mean age of the overall cohort was 57.56
years, with CVE patients significantly older than non-CVE patients
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(67.1 = 13.7 vs. 51.63 + 14.53 years, P < 0.01, SMD = 1.10). Sex
distribution revealed a higher proportion of males in both groups,
although the difference was statistically significant (P = 0.03).
Comparison of baseline laboratory parameters showed that
patients in the CVE group had significantly lower platelet counts
(PLT), lymphocyte percentages (LYM), total protein (TP), albumin
(ALB), prealbumin (PA), and calcium (Ca), and higher blood urea
(UREA), blood urea nitrogen (BUN), creatinine (CREA), uric acid
(UA), glucose (GLU), low-density lipoprotein cholesterol (LDL-C),
and comorbidity burden (P < 0.05 for all). Additionally, statistically
significant differences were observed in CO,, sodium (Na), and
several lipid-related markers such as LDL-C and GLU levels.
Among categorical variables, comorbidity profiles were markedly
different between groups: a higher proportion of CVE patients had
fewer comorbidities, particularly those without hypertension or
diabetes conditions (P < 0.01, SMD = 0.75). Detailed comparisons
are presented in Table 1.

Predictor screening

Figure 2 displays the distribution of variable importance scores
across multiple iterations, comparing original features with
synthetic shadow features (random noise variables).Representative
features such as age, PLT, BUN demonstrated stable importance
across iterations (narrow boxplot ranges), suggesting their strong
association with the outcome. Four variables (not shown in figure)
fell below the shadowMin threshold and were rejected as irrelevant.
The Lasso regression analysis identified a parsimonious set of 8
clinically relevant predictors from the initial 39 variables (Figure 2):
sex, age, PLT, EOS, LYM, CO2, GLU, APO-B. APO-B ($=-0.02,
negative association), suggesting a potential protective role in the
disease progression, EOS (B=+0.22) and GLU (=+0.06), indicating
their positive correlations with adverse outcomes.

The logistic regression analysis (Figure 2) identified four
significant predictors of [outcome]: AGE (OR=1.351, 95%
CI:1.215-1.581, P<0.001), CO2 (OR=0.603, 95% CI:0.406-0.792,
P=0.004), EOS (OR=2.128, 95% CI:1.428-3.496, P=0.001), and PLT
(OR=0.961, 95% CI:0.941-0.976, P<0.001). Notably, AGE and EOS
exhibited strong positive associations, while higher CO2 and PLT
levels were protective. Variables such as APO_B (P=0.138) and SEX
(P=0.132) did not reach statistical significance, possibly due to limited
effect sizes or sample heterogeneity. The logistic regression model
demonstrated excellent discriminative ability, with an area under the
ROC curve (AUC) of 0.987. Decision curve analysis demonstrated
that the logistic regression model provided superior net benefit
compared to the ‘Treat AIl' or ‘Treat None’ strategies across a
clinically relevant risk threshold range (0.2-0.6). For example, at a
threshold probability of 30% (a common cutoff for clinical
intervention), the model yielded a net benefit of 0.45, whereas
“Treat All' and ‘Treat None’ resulted in 0.25 and 0, respectively.
This suggests that using the model to guide decisions could prevent
unnecessary treatments for 20% of patients without missing high-risk
cases. The nomogram (Figure 3) integrated eight clinically accessible
variables, with AGE and EOS contributing the highest point weights.
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TABLE 1 Baseline characteristics of patients in the CVE and non-CVE cohort.

10.3389/fendo.2025.1599028

Variable names Level Overall (0] 1 P

n 686 423 263

AGE 57.56 + 16.08 51.63 + 14.53 67.1+13.7 <0.01
WBC(x10°/L) 7.6 + 241 7.72 +2.35 7.39 + 2,51 0.08
PLT(x10°/L) 267.43 + 87.09 277.67 + 82.68 250.97 + 91.53 <0.01
NEU(%) 64.94 + 10.29 64.6 +9.81 65.48 + 11 0.28
LYM(%) 25.85 + 9.03 26.47 + 8.88 24.84 92 0.02
MON(%) 6.35 + 1.67 6.3 + 1.56 6.44 + 1.84 0.32
EOS(%) 222+ 1.72 2.15 + 1.59 234 +1.92 0.16
BAS(%) 0.46 + 0.27 0.47 +0.27 0.45 + 0.27 0.54
NEU(x10°/L) 5.13 + 2.96 511 +22 517 +3.9 0.79
LYM(x10°/L) 1.9 +1.42 1.93 + 061 1.86 + 2.16 0.55
MON(x10%/L) 0.48 + 0.29 048 +0.18 0.49 + 0.42 0.79
E0S(x10%/L) 0.16 + 0.13 0.15 + 0.11 0.16 + 0.17 0.27
BAS(x10%/L) 0.03 + 0.02 0.03 + 0.02 0.03 + 0.02 0.09
ESR(mm/h) 26.04 + 23.69 2543 + 22.44 27.03 + 25.59 0.39
TP(g/L) 70.84 + 5.51 71.58 + 5.36 69.65 * 5.56 <0.01
ALB(g/L) 41.2 +4.17 41.76 + 3.97 40.31 + 4.33 <0.01
G(g/L) 29.78 + 4.49 29.97 + 422 29.47 + 49 0.16
AIG 1.43 +0.37 1.42 +0.24 1.43 +0.52 0.85
PA(mg/L) 261.87 + 63.09 266.53 + 61.24 254.38 + 65.39 0.01
FFA(mmol/L) 0.77 + 3.39 0.89 + 4.32 0.57 + 0.16 0.24
UREA(mmol/L) 5.37 £2.28 5+ 1.65 5.97 + 2.94 <0.01
BUN(mmol/L) 15.01 + 6.24 14.02 + 4.6 16.6 + 7.97 <0.01
CREA (umol/L) 92.93 + 28.41 90.53 + 22.08 96.81 + 36.05 <0.01
UA(umol/L) 476.89 + 111.14 486.8 + 111.76 460.94 + 108.45 <0.01
K(mmol/L) 419 + 036 419 + 034 424039 0.59
Na(mmol/L) 140.92 + 2.24 141 + 2.08 140.79 + 2.46 0.22
Cl(mmol/L) 102.79 + 3.19 102.63 + 3.06 103.05 + 3.37 0.09
CO2(mmol/L) 25.11 + 2.47 25.35 + 2.28 24.72 + 2.72 <0.01
Ca(mmol/L) 2.32 £ 0.12 2.34 £ 0.12 2.29 + 0.1 <0.01
GLU(mmol/L) 5.9 + 1.54 5.75 + 1.44 6.14 + 1.66 <0.01
LDL-C(mmol/L) 2,95+ 0.79 3.02 + 0.79 2.85 + 0.79 0.01
VLDL(mmol/L) 0.7 + 052 0.68 + 0.45 0.72 + 0.62 0.25
APO-A1(g/L) 111 +0.19 111 +0.19 112 +02 0.35
APO-B(g/L) 0.99 + 0.24 1.01 + 0.25 0.97 + 0.23 0.08
Lpa(mg/L) 22051 + 351.16 225.16 + 421.65 213.04 + 189.61 0.66
CHOL(mmol/L) 4.74 + 0.84 4.8 +0.83 4.64 + 0.85 0.01
SEX (%) Female 48 (7.00) 22 (5.20) 26 (9.89) 0.03

(Continued)
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TABLE 1 Continued

10.3389/fendo.2025.1599028

Variable names Level Overall (0] 1 P

Male 638 (93.00) 401 (94.80) 237 (90.11)

Kidney stone (%) No 565 (82.36) 350 (82.74) 215 (81.75) 0.82
Yes 121 (17.64) 73 (17.26) 48 (18.25)

Comorbidities (%) 1 321 (46.79) 254 (60.05) 67 (25.48) <0.01
2 76 (11.08) 32 (7.57) 44 (16.73)
3 29 (4.23) 14 (331) 15 (5.70)
4 260 (37.90) 123 (29.08) 137 (52.09)

WBC, White Blood Cell count; PLT, Platelet count; NEU, Neutrophil count; LYM, Lymphocyte count; MON, Monocyte count; EOS, Eosinophil count; BAS, Basophil count; NEUp, Neutrophil
percentage; LYMp, Lymphocyte percentage; MONp, Monocyte percentage; EOSp, Eosinophil percentage; BASp, Basophil percentage; ESR, Erythrocyte Sedimentation Rate; TP, Total Protein;
ALB, Albumin; Gv, Globulin value; AG, Albumin/Globulin Ratio; PA, Prealbumin; FFA, Free Fatty Acids; UREA, Urea concentration; BUN, Blood Urea Nitrogen; CREA, Creatinine; UA, Uric
Acid; Kv, Potassium value; Na, Sodium; Cl, Chloride; CO2, Carbon Dioxide content; Ca, Calcium; GLU, Glucose; LDLC, Low-Density Lipoprotein Cholesterol; VLDL, Very Low-Density
Lipoprotein; APOA1, Apolipoprotein Al; APOB, Apolipoprotein B; Lpa, Lipoprotein (a); Sex, Sex distribution; n (%), com, Presence of comorbidity; n (%), Group 1, Participants without
hypertension or diabetes; Group 2, Participants with both hypertension and diabetes; Group 3, Participants with diabetes only; Group 4, Participants with hypertension only; Kidney, Kidney-
related condition, n (%). A P value of less than 0.01 was considered statistically significant, suggesting a strong association between the baseline characteristic and the clinical outcome.

The experimental results demonstrate that CatBoost exhibited
superior classification performance, achieving near-perfect AUC
values of 0.976 (Figure 4). The 95% confidence intervals for
CatBoost (AUC range: 0.940-0.972) showed narrow bands
without overlap with other models, indicating statistically
significant superiority and high prediction stability. PR curve
analysis further validated the exceptional performance of

CatBoost (AUC=0.971) and RF (AUC=0.969) in handling
potential class imbalance, while decision trees showed markedly
inferior performance (AUC=0.539). Calibration curve assessment
revealed that CatBoost produced the most accurate probability
estimates, with predictions closely aligned to the ideal diagonal,
suggesting its probability outputs can be reliably interpreted as
confidence measures.
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Logistic regression performance metrics.

Machine learning model performance

Comparative analysis of five machine learning models revealed
that ensemble methods consistently outperformed single-model
approaches (Supplementary 8). The CatBoost learner achieved the
highest discriminative ability (AUC=0.953, 95% CI: 0.933-0.974),
with a sensitivity of 88.7% and specificity of 94% at the optimal
threshold (0.771). LightGBM (AUC=0.972) and KNNC
(AUC=0.971) followed closely, while Decision Trees
(AUC=0.948) and GBDT (AUC=0.915) exhibited limited
performance, likely due to their inability to handle complex
feature interactions.
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SHAP-based model interpretability analysis

The SHAP feature importance analysis (Figure 5) identified AGE
as the most influential predictor (mean |SHAP value|=0.9), followed
by PLT (0.6) and CO2 (0.45). In contrast, demographic variables such
as SEX (0.1) showed minimal contributions, suggesting that clinical
biomarkers drive the model’s decisions more strongly than baseline
characteristics. The top SHAP features (AGE, PLT) correspond to the
variables retained in the logistic regression nomogram (Figure 2),
reinforcing their biological plausibility. CatBoost’s superior AUC may
stem from its ability to capture non-linear relationships in high-
importance features like AGE, whereas simpler models (e.g., Decision
Trees) underutilized these patterns.

Model evaluation and bootstrap validation

Ten bootstrap-validated CatBoost models (BRITEST-BR11TEST)
demonstrated moderate to strong discriminative ability, with AUC
values ranging from 0.686 to 0.744 (median AUC=0.726, IQR: 0.711-
0.731). Classification thresholds varied between 0.318 and 0.476,
reflecting dataset heterogeneity (Figure 6). The most stable model
(BR7TEST) achieved the highest AUC (0.744) at a threshold of 0.447.
Threshold variability (0.318-0.476) underscores the importance of
tailoring decision cutoffs to clinical priorities—selecting BR7TEST
(high specificity) for confirmatory testing or BR6TEST (low
threshold=0.318) for sensitive screening.

Discussion

Gout, recognized as the most prevalent inflammatory arthritis
worldwide, is pathologically rooted in sustained hyperuricemia (18).
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FIGURE 6
Bootstrap-validated ROC curves of CatBoost models.

Epidemiological investigations demonstrate a 20% elevation in gout
incidence per 1 mg/dL increment in serum urate levels,
concurrently exhibiting significant comorbidity with metabolic
syndrome components including hypertension, diabetes mellitus,
and dyslipidemia (19, 20). Despite substantial advancements in
contemporary medicine, clinical management of gout persists as a
formidable challenge: over 60% of patients fail to achieve target
serum urate control (<6 mg/dL), resulting in progressive disease
burden (4). Notably, the mechanistic interplay between gout and
CVDs warrants in-depth elucidation. Large-scale cohort studies
reveal that gout patients experience 28% higher all-cause mortality
(aHR=1.28, 95%CI 1.15-1.42) compared to the general population,
with cardiovascular-related mortality showing a more pronounced
38% increase (aHR=1.38, 95%CI 1.21-1.58) (21). However, clinical
practice data indicate only 25% of acute gout patients undergo
systematic cardiovascular risk assessment within one month post-
attack, underscoring substantial optimization potential in current
therapeutic strategies (22).

These findings align with existing evidence linking metabolic
syndrome to cardiovascular risk: Age-related risk accumulation:
Each decade beyond 65 years confers exponential CVDs risk
elevation (HR=1.62, 95%CI 1.38-1.91), predominantly driven by
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accelerated vascular remodeling associated with 12.7% annual
arterial stiffness progression (23, 24). Glycometabolic
dysregulation synergy: In gout patients with diabetes, each 1
mmol/L fasting glucose increment correlates with)0.34 ng/L
elevation in high-sensitivity cardiac troponin T (hs-cTnT)
(B=0.34, p=0.003) (25). Mechanistically, sustained hyperglycemia
(>7.8 mmol/L) activates PKC-B/NADPH oxidase pathways,
inducing 2.1-fold ROS overproduction and elevating endothelial
apoptosis to 38.5%; Insulin resistance multimodality eftects (26):
Hyperinsulinemia (fasting insulin >15 uIU/mL) reduces endothelial
nitric oxide synthase (eNOS) activity by 57% while enhancing
vascular smooth muscle cell calcium influx by 83% ([Ca®*]i=421
+ 25 nM vs. control 228 + 18 nM) via PI3K/Akt/mTOR signaling,
culminating in medial wall thickening (IMT=1.12 + 0.11 mm vs.
0.89 + 0.09 mm (27, 28); Elevated blood pressure will lead to the
inhibition of reactive oxygen species and nitric oxide production,
damage to endothelial cells, and lead to the development of
atherosclerosis. VLDL and abdominal residual particles
accumulate together in the dysfunctional subendothelial vascular
wall. Oxidative stress induces oxidative modification of LDL
particles and accumulation of oxidized LDL in macrophages,
leading to pro-inflammatory macrophage response, excessive
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macrophage apoptosis and endothelial cell activation, leading to
persistent vascular inflammation in atherosclerotic lesions (29-32).
Notably, calcium dysregulation emerges as a pivotal mechanism in
gout-CVDs comorbidity. Basic research confirms urate crystals
induce ATP over-release (+142%, p<0.01) via LRRC8 channel
activation (33), triggering intracellular calcium overload ([Ca**]
i=512 + 23 nM vs. 289 + 18 nM control) through P2Y2 receptor
signaling (34). This calcium dyshomeostasis promotes
atherosclerosis via dual pathways: Inducing mitochondrial
membrane potential depolarization (37% A¥m reduction) in
endothelial cells; Activating calcineurin/NFAT pathways to
enhance smooth muscle cell migration (2.3-fold increase) (35).
Importantly, febuxostat may elevate arrhythmia risk through
RyR2-mediated calcium cycling alterations (28% open probability
increase), necessitating enhanced therapeutic monitoring (36).

Platelets play a key role in blood clotting and thrombosis.
Hyperuricemia (HUA) has been identified as an independent risk
factor for cardiovascular diseases. Elevated uric acid levels may
promote platelet activation and aggregation by triggering mechanisms
such as oxidative stress, endothelial dysfunction, vascular smooth muscle
cell proliferation, and inflammatory responses, thereby increasing the
risk of cardiovascular events (37). Studies have shown that urate directly
affects immune cell populations by altering cytokine expression,
modifying chemotactic responses, promoting differentiation, and
inducing immune cell activation through interactions with resident
tissue cells (38). HUA may enhance oxidative stress by activating
NOD-like receptor protein-3 inflammasome induced inflammation,
interfering with cardiac cell energy metabolism, affecting antioxidant
defense system, and stimulating the production of reactive oxygen
species, ultimately leading to decreased cardiac function (39). In
patients with gout, serum albumin levels may be related to the risk
and outcomes of cardiovascular events. Even in patients with normal
glomerular filtration rates, albuminuria was associated with an increased
risk of heart failure.

Cardiovascular Injury Mechanisms Involving Ion Channel
Dysregulation and Oxidative Stress Activation, Hypocapnia in
gout patients is frequently triggered by impaired renal function or
lactic acid accumulation. Its mechanisms of cardiovascular injury
primarily involve ion channel dysregulation and activation of
oxidative stress. Oxidative Stress Activation: The hypocapnic
environment upregulates xanthine oxidase (XO) expression via
activation of the NF-xB signaling pathway, increasing XO activity
in endothelial cells and elevating superoxide anion production. This
accelerates the oxidative modification of low-density lipoprotein
(LDL) (40). Oxidized LDL (oxLDL) not only promotes foam cell
formation but also activates matrix metalloproteinase-9 (MMP-9),
which degrades collagen within the fibrous cap of atherosclerotic
plaques. This directly compromises plaque stability and accelerates
cardiovascular damage (41). Clinical studies confirm a positive
correlation between serum XO activity and the volume of the
lipid core within carotid artery plaques in gout patients (42).

From 2013 to 2023, significant changes in managing gout with
cardiovascular comorbidities, including updated guidelines and
treatment regimens, may profoundly influence the transferability of
machine learning models. In gout management, traditional
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treatments such as non-steroidal anti-inflammatory drugs
(NSAIDs), colchicine and glucocorticoids remain dominant.
However, there’s a growing use of new uric acid-lowering drugs,
such as febuxostat and uricase. Besides, personalized uric acid-
lowering goals are now more emphasized, with target levels often
set at < 6 mg/dL or even < 5 mg/dL, tailored to individual patient
needs. Meanwhile, the cardiovascular field has introduced new
anticoagulants (e.g., DOACs), PCSK9 inhibitors, and SGLT2
inhibitors, alongside updated guidelines for hypertension and heart
failure, such as stricter blood pressure targets and recommendations
for novel therapies. Furthermore, extensive research into the gout-
cardiovascular disease link has established hyperuricemia as an
independent cardiovascular risk factor, prompting adjustments to
risk assessment models like the ACC/AHA risk score. These changes
can degrade the predictive performance of models that were trained
on earlier data when they are applied to contemporary cohorts, as the
underlying feature distributions, such as medication patterns, serum
uric acid levels, and cardiovascular risk factors, have shifted
significantly. Consequently, before deployment, each model must
be rigorously evaluated for accuracy drift, generalizability and
interpretability in light of these distributional shifts.

In addition, many medications can trigger acute attacks of gout.
Diuretics, such as furosemide and hydrochlorothiazide, as well as
antihypertensive drugs containing diuretics are common culprits.
Recent cases predominantly involve postmenopausal women using
diuretics for cardiovascular or kidney diseases. Such patients often
present with mild gouty arthritis, rapid nodule formation, and
frequent misdiagnosis as osteoarthritis. Aspirin exerts a dual effect
on uric acid metabolism. In older adults, even small dose
adjustments can precipitate harm, so dose changes in the elderly
should be monitored and its use reduced during acute gout attacks.

Conclusion

Our analysis highlights the hierarchical contributions of key
factors to the risk of cardiovascular disease (CVD) in gout patients,
with age emerging as the strongest predictor. This aligns with
established evidence that aging accelerates arterial stiffness and
reduces renal urate excretion, synergistically promoting CVD
progression. Sex differences further modulate risk, with males
exhibiting higher gout-related CVD incidence due to androgen-
driven urate overproduction, while postmenopausal females
approach similar risk levels following estrogen decline. Among
novel biomarkers, elevated eosinophil counts (EOS) may reflect
IL-4/IL-13-mediated vascular inflammation, though longitudinal
studies are needed to confirm causality. ApoB underscores the role
of atherogenic lipoproteins in gout-CVD comorbidity, potentially
exacerbated by urate crystal-induced endothelial injury. Conversely,
lymphopenia (LYM) suggests impaired immunoregulation in
progressive disease. These findings advocate for age- and sex-
stratified CVD screening in gout, while positioning EOS and
ApoB as potential therapeutic targets. Future research should
explore whether eosinophil suppression or lipid-lowering
therapies mitigate gout-specific CVD pathways.
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Strengths and limitations

This study innovatively integrates clinical parameters with
machine learning to establish the first East Asian-specific gout-
CVDs prediction model. Key limitations warrant attention: First,
temporal constraints: Cross-sectional design limits causal inference
- longitudinal validation (=5 years) recommended. Second,
pharmacological confounders: Unadjusted diuretic effects
(OR=1.89) and aspirin’s dose-dependent impacts. Finally,
phenotypic heterogeneity: Undifferentiated gout subtypes (mono-
vs. polyarticular) may introduce classification bias.

The MCID estimate (5-10% change in predicted risk) and the
identified DCA threshold range (0.15-0.30) are derived from the
current dataset and may be influenced by the specific patient
population and clinical practices from 2013-2023. Although the
model performed well in internal cross-validation, its generalizability
remains uncertain because it has not yet been validated on external
cohorts representing diverse clinical settings. Due to time constraints
and the unavailability of suitable external datasets with specific
screening for gout and cardiovascular comorbidities, validation was
limited to internal k-fold cross-validation. Additionally, the continuous,
rapid changes in gout and cardiovascular disease management
strategies, diagnostic guidelines, and pharmacotherapy from 2013 to
2023 are likely to produce dataset shift, which in turn may constrain the
model’s transferability to contemporary clinical practice. Future
investigations should therefore emphasize external validation on
multi-center cohorts collected after 2023 to confirm the model’s
robustness, generalizability, and real-world applicability.
Furthermore, integrating adaptive or transfer learning techniques to
mitigate temporal dataset drift will enhance the model’s clinical utility
in routine care.
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