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The classical theory of the pituitary–target gland axis suggests that the hormones 
secreted by the pituitary gland only regulate the synthesis and secretion of target 
gland hormones, while the target gland hormones act on the tissues of the body 
to achieve biological functions. However, recent studies have shown that 
anterior pituitary hormone receptors are also expressed on the surface of 
hepatocytes. This suggests that anterior pituitary hormones may act directly on 
hepatocytes to exert regulatory effects independent of target hormones. The 
review systematically summarizes the mechanisms and effects of thyroid-
stimulating hormone (TSH), follicle-stimulating hormone (FSH), luteinizing 
hormone (LH), prolactin (PRL), adrenocorticotropic hormone (ACTH), growth 
hormone (GH), and melanocyte-stimulating hormones (MSH) on liver 
metabolism and their roles in the pathogenesis of Metabolic-Associated Fatty 
Liver Disease (MAFLD). It is hoped that this will provide new insights into the 
prevention and treatment of MAFLD. 
KEYWORDS 

MAFLD, anterior pituitary hormone, lipid metabolism, metabolism dysfunction, 
metabolic mechanisms signalling 
Introduction 

As the central regulator of the body’s metabolism, the pituitary plays a crucial role in 
growth, development, immune function, energy metabolism and reproduction, among 
other functions. Each anterior pituitary hormone binds to its receptor in its classical target 
gland, for example the thyroid binds to TSH, to regulate physiological pathways. However, 
in recent decades, several reports have shown that anterior pituitary hormone receptors not 
only expressed in the target gland, but also expressed in the non-target gland, such as in the 
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liver. Thus, each hormone exerts an unconventional biological effect 
in the liver. This review summarizes the functions of anterior 
pituitary hormones in the liver and their role in the pathogenesis 
of MAFLD. These findings extend our knowledge of the targets and 
functions of anterior pituitary hormones and provide new insights 
into the biological function of anterior pituitary hormones in the 
onset and development of MAFLD. 
Overview of the MAFLD 

MAFLD formerly known as Non-Alcoholic Fatty Liver Disease 
(NAFLD), has been repeatedly renamed by international medical 
organizations to reflect its involvement in various pathological 
conditions and has recently been redefined as Metabolic-

Associated Steatotic Liver Disease (MASLD) (1–3). For the 
purposes of this article, we will refer to MAFLD. MAFLDs are 
among the most common liver diseases worldwide and are 
predicted to be the leading cause for end-stage liver disease in the 
coming decades (4). The prevalence of MAFLD in the global 
population is maybe as high as 25% (5), and the estimated 
combined prevalence of non-alcoholic steatohepatitis (NASH) in 
histologically confirmed MAFLD patients is 59% (6, 7). 
Importantly, there is strong clinical evidence that MAFLD is also 
associated with an increased risk of other diseases outside the liver, 
Frontiers in Endocrinology 02 
including cardiovascular disease and extra-hepatic malignancies 
(8), ultimately leading to death. MAFLD and its associated 
complications pose a significant burden on socioeconomic 
development and public health in China (9). 

MAFLD is a chronic liver disease that is marked by 
intracytoplasmic lipid accumulation in hepatocytes, and hepatic 
inflammation and fibrosis (10, 11). And the occurrence of MAFLD 
is involved in multiple molecular pathways, including hepatic 
steatosis, insulin resistance, inflammatory cytokines and oxidative 
stress, apoptosis pathways and adipokines (12). Besides, MAFLD is 
closely linked to abnormalities in several metabolic processes (13), 
including glucose metabolism (14), lipid metabolism (15, 16) 
(Figure 1). Free fatty acid (FFA)-mediated-mediated lipotoxicity, 
cholesterol-induced toxicity and subsequent elevation of reactive 
oxygen species (ROS) in hepatocytes can promote the development 
of MALFD (17, 18). 

In addition to the above factors, endocrine disruption is an 
important contributor to hepatic metabolic abnormalities. With 
advancing age, the function of endocrine glands such as the thyroid 
and gonads gradually weakens. This leads to a progressive decline in 
thyroid and sex hormone levels, resulting in significant changes to 
lipid synthesis, metabolism and degradation processes and 
ultimately, lipid metabolism disorders. Furthermore, recent 
research has shown that anterior pituitary hormones can directly 
influence hepatic lipid metabolism, as well as the processes of 
FIGURE 1 

The classic pathogenesis of MAFLD MAFLD is caused by dysregulation of several metabolic processes especially an increased accumulation of free 
fatty acid and total triglycerides (TG) in the liver. Excessive free fatty acids can cause lipotoxic, ultimately leading to mitochondrial dysfunctions, 
inflammation, oxidative stress, and endoplasmic reticulum stress, promoting cell apoptosis, necrosis and cytokine release. The VLDL and cytokines 
can activate hepatic stellate cells and promote the development of liver fibrosis. 
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inflammation and fibrosis in the liver, independently of the 
synthesis and secretion of target gland hormones. Therefore, this 
article will systematically summarize the onset and progression of 
MAFLD mediated by the imbalance of anterior pituitary hormones 
through multiple mechanisms, focusing on the following points. 
General description of the anterior 
pituitary hormones 

The pituitary plays a central role as a central regulator of 
metabolism in the body. The pituitary gland, included anterior 
pituitary and posterior pituitary gland (19). The anterior pituitary 
secretes TSH, FSH, LH, PRL, ACTH, GH, MSH. By contrast, the 
posterior pituitary gland secretes two nonapeptides, oxytocin 
(regulates parturition and lactation) and arginine vasopressin 
(AVP; controls water reabsorption in the kidney). Here we focus 
on anterior pituitary hormones. There are three main axis including 
hypothalamic-pituitary-gonadal (HPG) (20), hypothalamic-

pituitary-thyroid (HPT) (21), and hypothalamic-pituitary-adrenal 
(HPA) axes (22). They influence different organs and tissues in the 
body by secreting variety of cytokines, growth factors and receptors. 
Specifically, the HPG axis primarily regulates processes such as 
sexual development, spermatogenesis and oocyte maturation. It 
contributes to the establishment and maintenance of the secondary 
sex characteristics, mainly through the release of LH and FSH. The 
HPT axis primarily regulates the levels of thyroid hormones and 
thus participates in regulating the overall metabolism, mainly 
through the secretion of TSH (23). The HPA axis is primarily 
involved in controlling stress and several physiological activities 
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including digestion, mood and emotion, which include the main 
hormone is ACTH. As shown in Figure 2, in addition to the 
hormones secreted by the above three pituitary axes, PRL, GH 
and MSH are also secreted by the anterior pituitary (22). 
The major effects of pituitary 
hormone in MAFLD 

TSH 

TSH is formed by a and b subunits, and it exerts its important 
functions by targeting the TSH receptor (TSHR), thereby regulating 
thyroid hormone levels. TSH plays an important role in 
metabolism, development, and growth (24). TSHRs are primarily 
found in the thyroid gland. However, researchers have also 
discovered their presence in various non-thyroid tissues, such as 
the liver, adipose tissue, myocardium, bone, thymus, and natural 
killer (NK) cells (25–31). 

The different TSH levels reflect different thyroid status, and it is 
important to note that both subclinical hypothyroidism (SCH)and 
overt hypothyroidism are associated with NASH and advanced 
fibrosis (32–34). In biopsy-proven MAFLD patients with normal 
thyroid function, there is a clear relationship between high normal 
TSH levels and NASH, which may be related to the PNPLA3 G risk 
allele (35). Another study found a positive relationship between 
TSH levels and NASH in MAFLD patients with thyroid function 
normal (36). Meanwhile liver biopsies have revealed a significant 
correlation between TSH levels (32), including macrovesicular 
steatosis, inflammation, or hepatocyte balloon degeneration and 
FIGURE 2 

Anterior pituitary hormones and their main effects in MAFLDThe anterior pituitary gland secretes several hormones, including TSH, FSH, LH, PRL, 
ACTH, GH and MSH. These hormones are transported to the liver, where they bind to their respective receptors and activate signaling pathways that 
regulate hepatic glucolipid metabolism. These processes influence the progression of MAFLD. 
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steatosis. These clinical studies have shown that TSH levels are 
positively correlated with ALT and AST, with a significant 
reduction in risk when TSH is < 2.5 mIU/mL, but TSH 
concentrations >2.5mIU/L are associated with an increased risk of 
lipid and carbohydrate metabolism disorders (32). This has led to 
widespread discussion in clinical research as to whether a 
sufficiently low TSH level can prevent the development of 
MAFLD. As a result, TSH maybe as an independent risk factor 
for MAFLD, and the risk of MAFLD increases significantly with 
elevated TSH levels. 

TSH in hepatocytes can regulate hepatic lipid and cholesterol 
metabolism, as shown in Figure 2. adenosine monophosphate

activated protein kinase (AMPK) is a key regulator of lipid and 
glucose metabolism, and reduced AMPK activity increases the 
expression of genes related to lipid synthesis and cholesterol 
biosynthesis. Our research has shown that TSH-TSHRs activate 
the cAMP/PKA/CREB signaling system in hepatocytes and directly 
promote cholesterol synthesis (37, 38). Furthermore, our research 
has demonstrated that abnormally elevated TSH, via TSHR, triggers 
SREBP-1c via the cAMP/PKA/PPARa pathway, thereby increasing 
hepatic lipid accumulation and ultimately leading to the onset of 
MAFLD (39). Cell experiments have also shown that TSH inhibits 
hepatic bile acid synthesis via the SREBP2/HNF-4a/CYP7A1 
pathway (40). TSH can also attenuate hepatic fatty acid oxidation 
by decreasing the mitochondrial distribution of miR-449a/449b-5p/ 
5194. This inhibits fatty acid (FA) cleavage and enhances 
triglyceride storage in hepatocytes (41). This is the most well-
known pathogenic mechanism of TSH-mediated MAFLD. 

In addition to affecting hepatic lipid and cholesterol 
metabolism, TSH may also contribute to the onset and 
progression of MAFLD by influencing glucose metabolism 
pathways. Previous reports have suggested that TSH acts directly 
on gluconeogenesis, with TSH directly regulating hepatic 
gluconeogenesis in HepG2 cells and Tshr-KO mice (42). More 
recent research has demonstrated that TSH can increase the 
expression of the CRTC2 gene and thereby upregulate hepatic 
gluconeogenic genes via the TSHR/cAMP/PKA pathway (43). 

TSH may also mediate MAFLD via oxidative stress and 
inflammation. Animal studies using TSHR knockout and liver-
specific knockout mice, revealed that TSH stimulates CypD 
acetylation in the liver via the lncRNA-AK044604/SIRT1/SIRT3 
pathway (44). This study demonstrated the significant role of TSH 
in hepatic mitochondrial oxidative stress, leading to the generation 
of ROS and mediating the onset of MAFLD. In addition, TSH 
increases the secretion of exosomes by hepatocytes and alters their 
protein profile. Many of these proteins are required for metabolism, 
signal transduction, cell apoptosis and inflammation (45). In the 
obese mice, fed a high-fat diet (HFD), had significantly higher 
serum TSH levels. Elevated TSH levels lead to increased secretion of 
SPP1 in M1 macrophages and exacerbate lipid accumulation in 
hepatocytes (46). 

Taken together, these findings  suggest that TSH  plays an

intrinsic role in regulating liver lipid and cholesterol homeostasis. 
In addition to the liver, TSH may contribute to MAFLD through 
other organs and tissues. For instance, recent studies have shown 
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that TSH can directly suppress the ATGL gene expression in mature 
mouse adipocytes via activating cAMP/PKA pathway, thereby 
inhibiting the basal breakdown of triglycerides (47). On the other 
hand, through the AMPK/PRDM16/PGC1a pathway, TSHR 
knockout induced a reduction in adiposity, increased energy 
expenditure, and promoted the development of beige adipocytes 
in mouse adipose tissue. 

Therefore, TSH is a significant independent risk factor for 
MAFLD, with the risk increasing significantly with elevated TSH 
levels. TSH may mediate the onset and progression of MAFLD 
through various mechanisms, so controlling TSH levels should be 
taken into consideration as a possible future therapeutic strategy 
for MAFLD. 
FSH 

Both FSH and LH are gonadotropins, which play a role in 
promoting follicular development and maturation and stimulating 
estrogen secretion (48). FSH binds to the FSH receptor (FSHR) to 
exert its regulatory functions (48). FSH receptors (FSHR) are found 
not only in the ovaries and testes (49), but also in monocytes and 
osteoclasts (50), adipocytes (51), hepatocytes (52), blood vessels and 
maybe other tissues (53). In addition, FSH has been found to be 
associated with insulin sensitivity, bone metabolism, adipogenesis, 
inflammation, thermogenesis, osteogenesis and ovarian cancer (54). 
Most directly, liver and adipose can be directly regulated by 
FSH (55). 

Numerous articles have examined the association between FSH 
and MAFLD in clinical investigations, producing conflicting results. 
For example, Wang et al. found that FSH levels were negatively 
associated with the prevalence of MAFLD in Chinese women over 
55 years of age, independent of traditional metabolic risk factors 
such as BMI, glucose and lipids (56). Ge et al. also demonstrated 
that, in postmenopausal women with an average age of 60.22 ± 6.49 
and type 2 diabetes mellitus, FSH was negatively and independently 
associated with MAFLD (57). A retrospective observational study of 
a Chinese elderly population, including both men and women aged 
60–70 years and over 70 years, also showed a negative correlation 
between FSH and MAFLD (58). The above results showed that 
there is a negative correlation between FSH and MAFLD. However, 
another study of elderly Chinese men aged 80–98 showed a positive 
correlation between FSH and MAFLD (59), the study showed that a 
low FSH level may decrease the risk of MAFLD. Furthermore, 
another study showed that FSH acts on the pituitary corticotropes 
to inhibit corticosterone production and ultimately prevent hepatic 
steatosis, and that FSH administration is sufficient to improve 
metabolic disorders including hepatic steatosis in female mice 
(55). The reasons for the variation in research outcomes 
concerning the relationship between FSH and MAFLD are 
unclear. However, age may have some impact on these 
differences. Therefore, more well-designed clinical research 
studies are necessary to confirm the findings. 

FSH exerts a significant influence on the body’s lipid

metabolism (Figure 2). For example, Song et al. (2016) found that 
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postmenopausal women with higher serum FSH (78.3 IU/L at 
baseline) had higher serum total cholesterol and LDL-C levels, 
and that there was a significant improvement in lipid levels after 
hormone replacement therapy or blocking FSH signaling by anti-
FSHb antibody or ablating the FSH receptor (FSHR) gene (52, 60). 
The main mechanism may be that FSH blocks FoxO1 binding to the 
sterol regulatory element-binding protein-2 (SREBP-2) promoter 
through activation of the Gi2a/b inhibitor protein-2/Akt pathway. 
This effect leads to an increase in SREBP-2, which drives de novo 
transcription of 3-hydroxy-3-methylglutaryl coenzyme A reductase 
(HMGCR) and increases cholesterol accumulation (60). These 
researches suggest that blocking FSH signaling may be a new 
strategy for treating menopausal hypercholesterolemia, 
particularly in peri-menopausal women characterized by elevated 
FSH levels. 

FSH also plays a role in MAFLD by affecting hepatic 
gluconeogenesis in hepatocytes (Figure 2). Our researches 
provided evidence that FSH plays a direct role in causing 
gluconeogenesis, where FSH through FSHR targets GRK2 in the 
liver, increases AMPK Ser485 phosphorylation to inhibit AMPK 
activation, and then increases the transcription of hepatic PEPCK 
and G6pase through CRTC2, thereby enhancing hepatic 
gluconeogenesis independent of estrogen (61, 62). Beside we have 
identified a role for FSH in fasting serum glucose levels using FSH 
receptor knockout mice (61) and the association between FSH levels 
and insulin resistance has been confirmed in postmenopausal 
women (63). The relationship between IR and FSH levels may be 
mediated by regulation of glucocorticoid receptor (GCR) 
expression (64). 

All this provides new insights into the role of FSH in lipid and 
glucose metabolism and demonstrates the direct involvement of 
FSH in MAFLD. 
LH 

LH stimulates the secretion of the testes and ovaries, whose the 
classical role is to regulate ovarian and testicular function (65–69)). 
The receptor of LH (LHR) was expressed in the pineal gland, 
pituitary, hypothalamus, gonad, kidney, brain, lymphatic tissue 
and lymphocytes (70, 71). 

Although it has been shown that LH plays an important role in 
the reproductive, urinary and nervous system (72) (73), such as in 
the porcine oviduct, urinary tract, and hippocampus, there is no 
evidence of direct relationship between LH and liver or lipid 
metabolism. However, it is noteworthy that LH beta mRNA 
expression was elevated in fasted wild-type mice, but not in mice 
deficient in PPARalpha (74). This research suggests that LH may 
play a role in lipid metabolism, as PPAR-a is an important 
transcription factor involved in lipid metabolism. 

Notably LH levels are significantly elevated in female populations 
with PCOS (polycystic ovary syndrome). And abnormal levels of 
phosphatidylcholine, FFAs and polyunsaturated fatty acid (PUFA) 
metabolites were found in patients with PCOS (75). Around 70-80% 
of patients with PCOS are obese. In addition, the expression of genes 
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involved in lipid metabolism, such as FAS, SREBP1c, ACC-1 and 
CPT-1, is increased in patients with PCOS (76). From the above 
evidence we can infer that LH may be involved in lipid metabolism. 
However, there are no direct studies to prove this. Furthermore, 
elevated LH stimulates the luteal gland to produce progesterone and 
estrogen. Elevated estrogen is directly related to hepatic steatosis and 
insulin resistance (77). In addition, women with PCOS have androgen 
excess, IR, variable amounts of estrogen exposure, and many 
environmental factors, all of which can affect lipid metabolism (78) 
(79) (76). So further studies are needed to uncover the relationship 
between LH and lipid metabolism. 

Nevertheless, we can infer that there may be a positive 
association between LH and MAFLD. LH may be related to 
metabolic diseases by playing an important role in energy 
metabolism. However, there is currently limited research on the 
relationship between LH and MAFLD. The specific relationship 
between LH and MAFLD should be further investigated in 
future studies. 
PRL 

Prolactin (PRL) is an important multifunctional pituitary 
hormone and involved in several biological functions (80), most 
notably the promotion of lactation (81). PRL can also stimulate b-
cell proliferation and improve insulin secretion, as well as 
participating in the regulation of glucose metabolism (82, 83). 
Furthermore, PRL activates the peroxisome proliferator-activated 
receptor g (PPARg) to inhibit lipolysis and activate adipocyte 
differentiation. Wang et al. found that PRL levels are associated 
with the lipid metabolism and low-grade inflammatory markers in 
obesity (84). Studies in PRL receptor-deficient mice have shown 
increased oxidative stress, SIRT2 expression and apoptosis (85). 

Accumulating evidence supports the idea that reduced PRL 
levels contribute to metabolic changes, and recent studies have 
found a strong association between PRL and the presence and 
development of MAFLD (86). Ping Xu et al. found that serum PRL 
may be a potential biomarker to prevent and treat MAFLD (87). 
Moderately high PRL levels, both within and above the 
physiological range, are metabolically beneficial, while extremely 
high (>100 mg/dL) and extremely low (<7 mg/dL) PRL levels are 
non-metabolically beneficial (88). In addition, PRL promotes 
hepatic insulin sensitivity and prevents hepatic steatosis (89–91). 
The study’s findings suggest that PRL is an important factor in the 
development of MAFLD. 

Recent research has focused on the role of PRL in glucose and 
lipid metabolism, given its vital role in the maintenance of 
adipogenesis and adipocyte differentiation. Zhang’s team found 
that in MAFLD patients, peripheral blood PRL levels are reduced 
alongside downregulation of hepatic PRL receptor (PRLR) 
expression (89), while PRL intervention can increase PRLR 
expression in HepG2 cells. Further studies by Zhang et al. showed 
that PRL ameliorated hepatic steatosis by inhibiting CD36, 
suggesting that PRL may protect liver from lipid accumulation via 
inhibiting CD36 in liver cells, as shown in Figure 2 (89). Yan et al. 
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reported that prolactin (PRL) acts as a protective factor in MAFLD 
and that increased PRL levels can improve liver insulin sensitivity. 
Conversely, decreased PRL secretion can lead to insulin resistance 
(92). Mechanistically, PRL targets the prolactin receptor (PRLR) 
and activates the downstream signal transducer and activator of 
transcription-5 (STAT5) to mediate insulin sensitization (93). 
Furthermore, PRLR expression is regulated by liver insulin 
resistance/sensitivity levels, and it is down-regulated in the 
insulin-resistant state and up-regulated in the insulin-sensitive 
state (90). 

Overall, it can be concluded that PRL has a protective effect on 
the liver by improving its insulin sensitivity. It also prevents the fat 
accumulation in the liver. These findings have important 
implications for the potential use of PRL as a therapeutic 
target MAFLD. 
ACTH 

ACTH is also synthesized by the anterior pituitary gland. The 
effects of ACTH are mediated by ACTH receptors (ACTHRs), such 
as MC2R and MC5R.The expression of MC2R and MC5R proteins 
in mouse embryos was examined (94), and ACTHR mRNA was 
found to be present in various tissues, including mouse adipose 
tissue (95), skin (96, 97), mouse pituitary glands (98), rat 
sympathetic ganglia (99), mouse fetus and new-born testis (100) 
and human uterine endometrium (100). Besides ACTHR mRNA 
has been detected in human erythroblasts (101) and human bone 
marrow cells (102). 

Relatively few articles directly describe the relationship between 
ACTH and MAFLD. It has been reported that three months of 
exposure to noise at 75 dB SPL was sufficient to exacerbate the 
progression of MAFLD in mice, with the activation of the 
hypothalamic–pituitary–adrenal (HPA) axis playing a critical role 
(103). In depression and CDAHFD-fed mice, hepatic steatosis was 
aggravated by activating the HPA axis (104) In clinical practice, in 
patients with insulin-dependent hyperglycemia and concomitant 
hyperprolactinemia, liver steatosis was reversed and triglyceride 
levels returned to normal or near-normal levels after treatment with 
the ACTH receptor antagonist mifepristone (105). Another clinical 
study also found that in male patients with idiopathic 
hypogonadotropic hypogonadism (IHH), there is an independent 
association between MAFLD and ACTH levels (106). 

Basic experiments have shown that ACTH significantly inhibits 
high-density lipoprotein but has no effect on low-density lipoprotein. 
This suggests that ACTH primarily reduces intracellular lipoproteins 
(107, 108). ACTH plays an important role in controlling adrenal 
steroidogenesis. It also induces the expression of mitochondrial 
superoxide dismutase 2 (SOD2), which plays a role in the removal 
of ROS from the mitochondria (109). Thus, ACTH modulates the 
expression of enzymes involved in the biosynthesis of steroids and 
non-steroids, helping to prevent ROS-induced cell toxicity (110). 

Under the stimulation of ACTH, free cholesterol is released 
from hydrolyzed lipid droplets, increasing steroid production. 
ACTH stimulates lipolysis, and ACTH treatment has a significant 
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effect on lowering cholesterol levels (111). Current evidence 
suggests that the cholesterol-lowering effect of adrenal 
corticosteroid stimulation may be mediated by promoting the 
hepatic uptake of apolipoprotein B (ApoB)-rich lipoproteins. In 
HepG2 cells, Xu et al. found that ACTH could reduce the 
concentration of ApoB-containing lipoproteins in human plasma, 
suggesting that the main mechanism by which ACTH reduces 
cholesterol levels in vivo may be by reducing the  rate  of
production of ApoB lipoproteins in the liver (112). 

Thereby we can conclude that ACTH may play a role in 
MAFLD by regulating the lipoproteins. 
GH 

Growth hormone (GH) is essential for growth and 
development. It regulates growth, tissue remodeling, extracellular 
matrix formation and fibrosis. As a key regulator of body 
composition, GH plays a vital role in maintaining metabolic 
homeostasis in several organs, including the liver, skeletal muscle 
and adipose tissue. During fasting and stress, GH plays a key role in 
anabolic processes. GH acts in both direct and indirect ways: it 
binds to the growth hormone receptor (GHR) to active downstream 
signaling directly, it stimulates the expression of insulin-like growth 
factors (IGFs) and their binding proteins (IGFBP) indirectly to 
mediate metabolism (113, 114). Metabolically, GH can stimulate 
lipolysis in white adipose tissue and impair hepatic and peripheral 
insulin sensitivity (113). 

The relationship between MAFLD and GH was investigated. 
Increased risk of MAFLD/NASH associated with growth hormone 
axis abnormalities (115). In healthy Asian individuals, individuals with 
low GH  levels had  a higher prevalence of MAFLD, there may be a 
negative correlation between GH levels and MAFLD (116). In line with 
this is MAFLD usually develops soon after the diagnosis of adult 
growth hormone deficiency (AGHD). It can progress to non-alcoholic 
steatohepatitis (NASH) with advanced fibrosis rapidly, and eventually 
require liver transplantation (117). Growth hormone deficient rats also 
have MAFLD (118). GH has been used as a drug in the clinic. Clinical 
studies have shown that administration of higher doses of GH can help 
overcome the GH resistance in cirrhotic patients and significantly 
increase serum IGF-I levels (119). Excess GH can reduce total fat mass 
and hepatic lipid content and induce insulin resistance. 

GH can affect the liver by making it insulin resistant. Almost 90 
years ago, the Argentinian clinical physician Bernardo Houssay 
discovered that GH can inhibit insulin action (120). In adipose 
tissue, GH can inhibit insulin action, thereby reducing glucose 
uptake, and promoting hepatic gluconeogenesis. Subsequent 
research has shown that GH has direct and indirect effects on 
glucose metabolism, with the indirect effects primarily being 
mediated by IGF-1 (121, 122). GH can also activate the JAK2
STAT2 signaling pathway by targeting the GH receptor, thereby 
stimulating the synthesis and secretion of insulin-like growth 
factors (123). Furthermore, GH is involved in pathways 
associated with late-stage fibrosis in MAFLD, including the TGF-
b and MAPK pathways (124, 125). 
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The most prominent metabolic effects of GH are increased 
lipolysis and FFA levels. Further studies of longer duration are 
needed to confirm the potential effects of GH on MAFLD. 
MSH 

Melanocyte-stimulating hormone (MSH), which is derived 
from pro-opiomelanocortin (POMC), plays an important role in 
the regulation of metabolic functions (126). MSH can be divided 
into three subtypes: a-MSH, b-MSH, and g-MSH (127). MSH binds 
to receptors on the surface cells, to stimulate melanocyte formation 
and activity of melanocytes, thereby promoting melanin synthesis 
and affecting the color of the skin, hair, and eye color. a-MSH is a 
peptide that can suppress people’s appetite and reduce food intake 
(128). However, in some obese individuals, lower levels of a-MSH 
expression may cause a disorder in energy balance, this may cause a 
disorder in energy balance (129), suggesting a potential link 
between a-MSH and obesity. 

MSH also has various functions, most important, Melanocortin 
peptides have long been thought to be potent inhibitors of 
inflammation. They are a promising source of new anti-
inflammatory and cytoprotective therapies (130). MSH’s effect on 
MAFLD may be due to its ability to alleviate oxidative stress and 
exert potent anti-inflammatory effects. a-MSH prevents liver 
inflammation and injury induced by LPS and paracetamol (131, 
132). Furthermore, both in vitro and in vivo studies have confirmed 
that MSH reduces pro-inflammatory mediator levels by inducing 
cyclic adenosine monophosphate (cAMP) and inhibiting nuclear 
factors (133). Due to the antioxidant and anti-inflammatory 
characteristics of MSH, it can be used to promote melanin 
synthesis in adipose tissue. This reduces the generation of ROS 
and inflammation and prevents the sequelae of obesity. This is 
beneficial in the prevention of MAFLD. 

There is increasing evidence that MSH may also have anti-
fibrotic properties. For example, a-MSH has been shown to reduce 
endotoxin-induced liver inflammation (131), and in a-MSH gene-
treated rats, hepatic stellate cells (HSC) and Kupffer cells were 
significantly inhibited (134). A recent report suggests that a-MSH 
can regulate collagen metabolism (135). Furthermore, a-MSH has 
been shown to increase collagen degradation by activating matrix 
metalloproteinase-1 (MMP-1) and MMP-2 (136, 137). Lee et al. 
recently found that MSH gene therapy can reverse liver fibrosis in 
mice treated with carbon tetrachloride for 10 weeks (138). In 
addition, MSH gene therapy increases the expression and/or 
activity of MMP-1, MMP -2 and MMP -8. 

Furthermore, MSH treatment differentially regulates genes 
involved in lipid and carbohydrate metabolism in liver and 
adipose tissue based on their synthesis/degradation metabolic 
functions (139). Taken together, it can be concluded that MSH 
may have a beneficial impact on MAFLD through multiple effects, 
including alleviating oxidative stress and inflammation, scavenging 
reactive oxygen species, and regulating nutrient metabolism. These 
findings also provide a new therapeutic approach for treating 
human fibrotic diseases with MSH and related peptides. 
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Conclusion and future perspectives 

MAFLD is a multifactorial disease characterized by excessive fat 
accumulation in the liver. The pathogenesis of MAFLD is complex and 
closely linked to glucose and lipid metabolism in the liver. In addition to 
disturbances in glucose and lipid metabolism, pituitary dysfunction is 
an important mechanism underlying the development of MAFLD. 
Recent studies have shown that anterior pituitary hormones may 
regulate hepatocytes independently of target gland hormones. These 
hormones may influence the development of MAFLD through various 
mechanisms. Besides, some current clinical therapeutic strategies for 
MAFLD can affect pituitary hormones. Glucagon-like peptide-1 
receptor agonists (GLP-1 RAs) are renowned for their effectiveness in 
controlling blood sugar levels and managing weight. But the literature 
suggests that GLP-1Rs may modulate thyroid hormone production and 
secretion. For example, Ye et al. demonstrated that treatment with 
liraglutide reduced TSH levels and improved hepatic thyroid hormone 
resistance in a population of 49 diabetic patients with MAFLD (140). 
GLP-1 RAs may exert a direct inhibitory effect on the central nervous 
system, since GLP-1Rs are present in the paraventricular nucleus (PVN) 
of the hypothalamus, which contains thyrotropin-releasing hormone 
(TRH)-producing neurons. This suggests that GLP-1 RAs may 
influence TRH-producing neuron activity directly in the 
hypothalamus (141). Though, the causal relationship and underlying 
mechanisms between anterior pituitary dysfunction and MAFLD are 
still under investigation and require additional data from clinical and 
basic research.  In  the future,  the impact of  MAFLD  clinical  treatment  on  
pituitary hormone secretion should also be considered, as this could 
have implications for the body’s endocrine system. 
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