
TYPE Original Research 
PUBLISHED 16 July 2025 
DOI 10.3389/fendo.2025.1600815 

OPEN ACCESS 

EDITED BY 

Umberto Malapelle,

University of Naples Federico II, Italy


REVIEWED BY 

Shengshan Xu, 
Jiangmen Central Hospital, China 
Atsumi Tamura, 
Endocrinology Section Cancer Innovation 
Laboratory Center for Cancer Research 
National Cancer Institute, United States 

*CORRESPONDENCE 

Joshua P. Klopper 

Joshua.klopper@veracyte.com 

RECEIVED 26 March 2025 
ACCEPTED 10 June 2025 
PUBLISHED 16 July 2025 

CITATION 

Golding A, Bimston D, Namiranian E, 
Marqusee E, Correa G, Scheker EV, Jiang R, 
Hao Y, Alshalalfa M, Huang J, Klopper JP, 
Kloos RT and Ahmadi S (2025) Development 
and validation of mRNA expression-based 
classifiers to predict low-risk thyroid tumors. 
Front. Endocrinol. 16:1600815. 
doi: 10.3389/fendo.2025.1600815 

COPYRIGHT 

© 2025 Golding, Bimston, Namiranian, 
Marqusee, Correa, Scheker, Jiang, Hao, 
Alshalalfa, Huang, Klopper, Kloos and Ahmadi. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms. 

Frontiers in Endocrinology 
Development and validation 
of mRNA expression-based 
classifiers to predict low-risk 
thyroid tumors 
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Ellen Marqusee3, Gabriel Correa1, Evana Valenzuela Scheker1,

Ruochen Jiang4, Yangyang Hao4, Mohammed Alshalalfa4,

Jing Huang4, Joshua P. Klopper5*, Richard T. Kloos5


and Sara Ahmadi3


1Memorial Healthcare System, Interventional Endocrinology, Hollywood, FL, United States, 2Memorial 
Healthcare System, Endocrine Surgery, Hollywood, FL, United States, 3Brigham and Women’s 
Hospital, Endocrine, Diabetes and Hypertension, Boston, MA, United States, 4Veracyte, Research 
Discovery, South San Francisco, CA, United States, 5Veracyte, Medical Affairs, South San Francisco, 
CA, United States 
Background: Molecular variants and fusions in thyroid nodules can provide 
prognostic information at a population level. However, thyroid cancers 
harboring the same molecular alterations may exhibit diverse clinical behavior. 
Leveraging exome-enriched gene expression analysis may overcome the 
limitations seen in models based on a small number of point mutations or 
fusions. Here, we developed and validated mRNA-based classifiers with high 
negative predictive values to preoperatively rule out thyroid tumor invasion and 
lymph node metastases. 

Materials and methods: In this retrospective cohort study, histopathology 
reports from the Afirma Genomic Sequencing Classifier (GSC) algorithm 
training and consecutive thyroid cancer patients with Bethesda III–VI thyroid 
nodules in clinical practice (total 697 and ~50%, respectively) were scored for 
invasion and metastases. mRNA expression-based classifiers were developed 
utilizing literature-derived signatures as well as differentially expressed genes 
between samples with or without clinically significant invasion/metastases as the 
basic building blocks. Machine learning algorithms were employed to develop 
the final candidate classifiers. The final locked classifiers were validated on a 
retrospective cohort of 259 patients with Afirma testing who had thyroid surgery 
and had invasion and metastasis scores assigned based on histopathology while 
blinded to the classifier results. 

Results: A total of 697 (88% female) patient Afirma samples and scored histology 
reports were used for classifier development. In development, patients had a 
median age of 51 years. Ten percent of samples were assigned a high risk for 
invasion label, and 11.3% were assigned a high risk for lymph node metastasis 
(LNM) label. A low-risk invasion classifier result was assigned to 41.3% of the 
cohort with a negative predictive value (NPV) of 97.6%, and a low-risk LNM 
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classifier result was assigned to 49.8% of the cohort with an NPV of 98.6%. In the 
validation cohort, made up of 75% women with a median age of 53 years, 51% of 
the samples were ruled out for high risk for invasion label with a 99% [95–100] 
NPV, and 53% were ruled out for high risk for LNM label with 100% [97–100] NPV. 

Discussion: Gene expression-based classifiers that confidently, preoperatively 
rule out thyroid tumor invasion and lymph node metastasis may help personalize 
the surgical approach for individuals, reducing overtreatment, surgical 
complications, and postoperative hypothyroidism. 
KEYWORDS 

thyroid nodule, thyroid cancer, Afirma, molecular diagnostics, thyroid tumor prognosis, 
machine learning 
Introduction 

Approximately 20%–25% of thyroid nodule aspirates result in 
The Bethesda System for Reporting Thyroid Cytopathology 
(TBSRTC) Bethesda (B)III or IV (ITN) cytology (1). Historically, 
consensus guidelines recommended surgery for a definitive 
diagnosis of ITN (2, 3). The utilization of transcriptional 
signatures and the discovery of driver mutations promoting 
thyroid cancer development and influencing its behavior provided 
the molecular foundation for improved diagnostic accuracy in ITN 
(4–6). Molecular diagnostics has moved beyond simply aiding in 
diagnosis and can provide information on tumor prognosis in 
thyroid nodules with BIII–VI cytology (7, 8). 

The extent of thyroid tumor invasion and that of lymph node 
metastasis (LNM) are strong predictors of structural disease 
recurrence (9). Although clinically relevant lateral cervical 
lymphadenopathy should be visible on neck ultrasound (US) 
imaging, central LNM and intrathyroidal vascular invasion can be 
challenging to detect preoperatively. For example, due to imaging 
interference by thyroid tissue, the diagnostic sensitivity of US for 
central lymph node metastasis can be as low as 51% (10). Molecular 
variants and fusions, often categorized as BRAF-like, RAS-like, and 
non-BRAF-non-RAS-like, can provide prognostic and tumor 
behavior information over a population (11, 12). However, 
individuals with similar somatic thyroid molecular driver 
mutations can have vastly different clinical presentations. It is 
well-known that cancer is not a single mutation event, and intra-
tumoral molecular heterogeneity, tumor microenvironment, and 
transcriptional regulatory alterations may influence cancer behavior 
beyond the effect of a known driver mutation (13, 14). In a 
retrospective study of the pathologic outcomes of thyroid nodules 
with different molecular risk groups, less than half of those with 
high-risk mutations had American Thyroid Association (ATA) 
high-risk disease on surgical histopathology, while approximately 
a quarter were ATA low-risk tumors. Over half of the intermediate-

risk mutations had ATA low-risk tumors (15). Therefore, when 
02 
clinicians plan an intervention to manage thyroid nodules 
suspected or diagnosed as malignant, these classically described 
canonical molecular alterations may not provide sufficient patient-
specific prognostic information. Novel diagnostic tools may provide 
missing preoperative information to optimize initial thyroid 
tumor management. 

To help address the clinical challenge of ITN, the Afirma Gene 
Expression Classifier (GEC) was developed and eventually replaced 
by the Afirma Genomic Sequencing Classifier (GSC) after clinical 
and analytical validation (4, 6). The Afirma GSC uses exome­

enriched RNA sequencing (RNA-seq) combined with machine 
learning algorithms to classify nodules and detect molecular 
alterations that provide clinically meaningful diagnostic and 
prognostic information from thyroid nodule aspirates (16, 17). 
Here, we develop novel molecular classifiers to preoperatively 
predict thyroid tumor invasion (INV) and regional LNM among 
Bethesda III/IV nodules that are Afirma GSC suspicious and 
Bethesda V/VI nodules by leveraging the abundant data generated 
by the Afirma platform. 
Materials and methods 

Training cohorts 

In this retrospective cohort study, the initial training cohort was 
derived from the Afirma GSC algorithm training subjects, 
composed of thyroid nodule patients recruited for the Afirma 
GEC and subsequent GSC training studies (consecutively 
collected from 2013 to 2016). These thyroid nodules were mostly 
ITN, mostly histologically benign, and generally very low-risk 
thyroid cancer when malignant (4, 6). Given a need to train on 
samples with outcomes of interest (tumor invasion and locoregional 
lymph node metastases), a subsequent cohort from an integrative 
interventional endocrinology and endocrine surgery community 
practice (Memorial Health, Hollywood, FL, USA) with BIII–VI 
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nodule cytology and malignant final thyroid histopathology was 
incorporated [consecutive fine-needle aspiration (FNA) dates 
January 2019 to July 2021]. Together, these cohorts (n = 697) 
constituted the “training cohort” (Table 1). 
Validation and evaluation cohorts 

After the tumor INV and LNM classifiers were locked, 
independent cohorts from Memorial Health (n = 63, FNA dates 
August 2021 to October 2022) and Brigham and Women’s Hospital  
(n = 196, FNA dates July 2017 to June 2023), all sent consecutively for 
Afirma testing as part of their routine clinical practice for nodules with 
BIII–VI cytology, were analyzed as the validation cohort (Table 1). 
These were consecutive samples with local cytology and histopathology 
interpretations, and treatment decisions based on the local clinician’s 
discretion with only commercially available Afirma GSC data. 

An evaluation cohort of 17,436 consecutive Afirma-resulted ITN 
GSC suspicious or Bethesda V/VI samples was derived from the 
Veracyte CLIA laboratory from routine thyroid nodule molecular 
testing (2017–2020) (18). The INV and LNM classifiers were applied 
to assess the proportion of samples ruled out for high risk for invasion 
label and lymph node metastases by Bethesda cytology category, sex, and 
mutation type (BRAFV600E, RAS, or no detected expressed alteration). 
Institutional review board approval 

Patients recruited for the Afirma GEC development and validation 
study provided written informed consent (4). The samples 
subsequently used for the Afirma GSC algorithm training were 
approved by institutional-specific review boards, Chesapeake IRB 
15.02.0009 (now Advarra IRB, Columbia, MD, USA), and 
Copernicus Group Independent Review Board VER3-15-067 (now 
WCG IRB, Princeton, NJ, USA) (6). Patient data (including cytology 
and histopathology reports) from Memorial Health were collected 
under WCG IRB protocol # DHF 005-044, and Brigham and Women’s 
patient data were collected under WCG IRB protocol # DHF 005-077. 
Histopathology scoring 

A scoring system was applied to the local pathology thyroid 
histopathology synoptic report (Table 1). For tumor INV, if pathology 
reported vascular invasion of ≥4 blood vessels (or described extensive 
vascular invasion) or there was any extrathyroidal extension, the sample 
was labeled high risk. Otherwise, the sample was labeled low risk for 
tumor INV. For LNM, if the pathology reported ≥2-mm central lymph 
node deposits or ≥40% of the central nodes resected as malignant, or if 
there was lateral lymph node thyroid cancer involvement, the sample 
was labeled high risk. Otherwise, the sample was labeled low risk. Cases 
without lymph node dissection (Nx) were assigned the low-risk label, as 
routine preoperative imaging to assess lymph node disease is 
recommended (19), and the American Association of Endocrine 
Surgeons guidelines for the surgical management of thyroid disease do 
Frontiers in Endocrinology 03 
TABLE 1 Clinicogenomic characteristics of the training, validation, and 
evaluation cohorts. 

Training 
cohort 

Validation 
cohort 

Evaluation 
cohort 

Total (n) 697 259 17,436 

Age (median [IQR]) 51 [38–60] 53 [39–62] 54 [40–66] 

Sex 

Male 152 (21.8%) 65 (25.1%) 4,244 (24.3%) 

Female 545 (78.2%) 194 (74.9%) 13,172 (75.5%) 

Cytology Bethesda 

III-GSC suspicious 253 (36.3%) 172 (66.4%) 11,767 (67.5%) 

IV-GSC suspicious 132 (18.9%) 65 (25.1%) 4,048 (23.2%) 

V 112 (16%) 7 (2.7%) 799 (4.6%) 

VI 200 (28.7%) 15 (5.8%) 822 (4.7%) 

Invasion outcome 

Low risk: 
no invasion 542 (77.7%) 220 (85%) 

Low risk: minimal 
vascular invasion 
(<4 vessels) 85 (12.2%) 31 (12%) 

High risk: extensive 
vascular invasion 
(≥4 vessels) 47 (6.7%) 6 (2.3%) 

High risk: 
extrathyroidal 
invasion 23 (3.3%) 2 (0.7%) 

Lymph node metastasis 

Low risk: no nodes 558 (80%) 248 (95.7%) 

Low risk: central 
neck nodes <2-mm 
tumor deposit and 
<40% LN involved 60 (8.6%) 4 (1.5%) 

High risk: central 
neck nodes ≥2-mm 
tumor deposit or 
≥40% LN involved 53 (7.6%) 5 (1.9%) 

High risk: lateral 
neck nodes 26 (3.7%) 2 (0.7%) 

Histopathology (median tumor size in cm) 

FA 50 (7.2%) 61 (23.5%) (1.8 cm) 

OA 22 (3.1%) 23 (8.9%) (1.8) 

NIFTP 38 (5.4%) 40 (15.4%) (2.2) 

FTC 19 (2.7%) 10 (3.9%) (1.95) 

OC 18 (2.6%) 15 (5.8%) (2.3) 

IFPTC 144 (20.7%) 26 (10%) (2.1) 

PTC 319 (45.8%) 49 (18.9%) (1.4) 

Other 87 (12.5%) 35 (13.5%) (1.5) 

(Continued) 
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not recommend a routine or prophylactic neck dissection. A central 
neck dissection is only recommended in selected cases with imaging or 
clinical (macroscopic) lymph node disease (20). The cut point for cancer 
features was targeted to where the 2015 ATA guidelines’ risk of 
structural disease recurrence diagram (Figure 4 in the guidelines) 
bridged from low- to intermediate-risk cancers (9). Therefore, minor 
extrathyroidal extension received the high-risk label to clearly delineate 
ATA low-risk disease. The ATA guidelines utilize an absolute lymph 
node number involved of >5 to distinguish ATA intermediate-risk 
cancers from low-risk cancers. Given a concern for labeling tumors with 
five of five or four of four positive lymph nodes as low risk for 
metastases, central metastatic lymph node ratio (MLNR) criteria were 
used for risk assessment, as Nam et al. and Seok et al. reported that 
central compartment MLNR of >30% and ≥36%, respectively, were 
significantly associated with recurrence (21, 22). In both studies, MLNR 
above the thresholds described was statistically significant for thyroid 
cancer recurrence, whereas overall lymph node yield was not. Samples 
could be high risk for one category and low risk for another. High-risk 
and low-risk descriptors were solely for labeling and are not intended to 
correlate with ATA thyroid cancer pathology risk or risk of 
recurrence (9). 
RNA sequencing and gene expression 

RNA-seq data were used to generate gene expression counts. 
Raw sequencing data (FASTQ file) were aligned to the human 
reference genome assembly 37 (Genome Reference Consortium) 
using the STAR RNA-seq aligner. Normalized expression levels 
were obtained using variance-stabilizing transformation (VST) 
from the DESeq2 package accounting for sequencing depth and 
gene-wise variability (23). 

For sample quality control, quality metrics were evaluated 
against prespecified acceptance metrics for total numbers of 
sequenced and uniquely mapped reads, the overall proportion of 
exonic reads among mapped reads, the mean per-base coverage, the 
uniformity of base coverage, and base duplication and mismatch 
rates. All quality control metrics were generated using RNA-SeQC 
(24). Only samples that passed the quality criteria were used for 
downstream analysis. For further details, please see Supplementary 
Methods in Patel et al. (6) 
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Classifier development 

Histopathology scoring labels (low risk vs. high risk) were used 
to train machine learning models to classify samples into low- and 
high-risk categories for invasion and LNM outcomes using both 
genomic and cytology variables (Supplementary Table S1, 
Supplementary Figure S1). 

For the invasion classifier, features related to cancer pathway 
activity, genomic alterations, gene expression, and cytology variables 
were tested. Pathway/signature scores of 430 gene signature/pathway 
gene sets from MSigDB were calculated for each sample as described 
before (25, 26). These pathway scores were used as features for model 
training. The combinations of several machine learning (ML) models 
including random forest (RF), penalized generalized linear model 
(glm), support vector machine (SVM), and several feature 
engineering methods were evaluated (Supplementary Figure S2). 
Repeated nested fivefold cross-validation (CV) was used for model 
training, and parameter optimization was used to reduce overfitting 
and evaluate model performance. Negative predictive value (NPV), 
the percentage of patients classified as low risk, and score inter-batch 
reproducibility were the metrics used for selecting the optimal model. 
The best-performing model was an RF model that used BRAF status, 
nine cancer pathways/signatures, and cytology group as features 
(Supplementary Figure S2, Supplementary Table S2). For the LNM 
classifier, the combinations of ML models and feature engineering 
methods were evaluated using the expression of individual genes, 
genomic alterations, and cytology groups as features (Supplementary 
Figures S1, S3). A similar repeated nested fivefold cross-validation 
approach was used to find the best model. The best-performing 
model was a penalized glm that uses BRAF status, cytology group, 
and the expression of 32 differentially expressed genes 
(Supplementary Figure S3, Supplementary Table S2). For classifiers’ 
reproducibility, 18 samples were used, with each sample run in three 
different runs with three replicates. These nine replicates/samples 
were used to calculate inter-batch standard deviation (SD). The inter-
batch analytical assessment showed that both classifiers’ scores were 
reproducible with SD < 5% of the 98% score range [1st percentile– 
99th percentile]. The final models were retrained on the full training 
cohort, locked, and then tested in the validation and evaluation 
cohorts while blinded to the histopathology results. 

The classifiers’ cut points were determined using the per-sample 
median of repeated fivefold CV scores, which resulted in both a high 
rule-out percent and a high NPV. 
Results 

Training and validation cohort 
characteristics 

There were 379 pathology reports from the Afirma GSC 
training cohort and 318 pathology reports from Memorial Health 
that were scored for a total of 697 paired Afirma GSC samples with 
histopathology outcomes for classifier development (Table 1). 
TABLE 1 Continued 

Training 
cohort 

Validation 
cohort 

Evaluation 
cohort 

BRAF variant 

BRAFV600E 236 (33.9%) 30 (11.6%) 2,073 (11.9%) 
Others included rare medullary thyroid cancer, follicular hyperplasia, colloid nodules, nodular 
hyperplasia, sclerotic nodules, and thyroid lesions of uncertain malignant potential. 
FA, follicular adenoma; OA, oncocytic adenoma; NIFTP, non-invasive follicular thyroid 
neoplasm with papillary-like nuclear features; FTC, follicular thyroid carcinoma; OC, 
oncocytic carcinoma; IFPTC, infiltrative follicular subtype of papillary thyroid carcinoma; 
PTC, papillary thyroid carcinoma. 
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There were 152 (21.8%) male and 545 (78.2%) female patients aged 
9–86 with a mean age of 51 years [interquartile range (IQR): 38–60]. 
For tumor invasion, 627 were scored as low risk and 70 as high risk. 
For LNM, 618 were scored as low risk and 79 as high risk. Among 
those cases labeled high risk for LNM, where only central nodes 
Frontiers in Endocrinology 05 
were positive, the mean number of nodes resected was eight 
(median 4, range 1–33 [IQR1–3: 2–14]) with a mean MLNR of 
0.68. Fifty-five percent of the training cohort was BIII/IV, and 45% 
was BV/VI. Thirty-three percent of the samples were BRAFV600E 
classifier positive. Among all training samples, the prevalence of 
FIGURE 1 

Beeswarm plot of the INV classifier in the training cohort in (A) all samples and (B) Bethesda III/IV samples and in the validation cohort in (C) all 
samples and (D) Bethesda III/IV samples. The red line reflects the cut point where samples below the line are predicted to have a low risk of 
invasion. INV, invasion. 
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high-risk scores for invasion and LNM on the surgical pathology 
report was 10.0% and 11.3%, respectively (Table 1). 

The validation cohort included 259 patients, 65 (25.1%) male 
and 194 (74.9%) female patients aged 16–81 with a mean age of 53 
years [IQR: 39–62]. Nodules with BIII/IV cytology and classified as 
GSC suspicious accounted for 91.5% of the samples, and the rest 
had BV/VI cytology. Thirty (11.6%) were BRAFV600E classifier 
positive. Eight (3.0%) were scored as high risk for invasion and 7 
(2.7%) as high risk for LNM according to the surgical pathology 
reports (Table 1). 
Invasion classifier performance 

In the training cohort, the INV classifier had, in fivefold cross-
validation, a sensitivity (SN) of 90% [80.5–95.9] and a specificity 
(SP) of 44.8% [40.8–48.8] and was able to rule out 41.3% of the 
population for high-risk invasion with a 97.6% NPV (Figure 1A, 
Table 2a). In BIII/IV samples (n = 385), 246 (64%) were ruled out 
for clinically significant invasion with 98% NPV (Figure 1B, 
Table 2b). The rule-out percentage was similar in male (44.7%) 
and female patients (40.4%) (Fisher’s exact test p = 0.35) (Table 3a). 
In samples with BV/VI cytology (n = 312), 42 (13.7%) samples were 
ruled out (Table 3a). 

In the validation cohort, the INV classifier had an SN of 87.5% 
[47–100] and was able to rule out 49.4% with 99.2% NPV and a 
specificity of 50.6% [44.2–56.9] (Figure 1C, Table 2a). In BIII/IV 
samples (n = 237), 127 (53.6%) were ruled out with 99% NPV 
(Figure 1D, Table 2b), and in BV/VI samples (n = 22), one sample 
(4.5%) was ruled out (Table 3b). The one false-negative sample 
(Figure 1C) had a lobectomy with final pathology showing a 1.2-cm 
infiltrative follicular subtype of papillary thyroid carcinoma (IF­
PTC) with extrathyroidal extension into the adjacent strap muscle. 
Completion thyroidectomy was benign. 

There was no significant difference in performance when 
comparing samples with BIII or BIV cytology (Tables 2c, d). 
LNM classifier performance 

In the training cohort, the LNM classifier had, in fivefold cross-
validation, an SN of 94% [85.8–97.9] and an SP of 55% [51–59] and 
ruled out 49.8% of the population for high-risk LNM with a 98.6% 
NPV in the training cohort (Figure 2A, Table 2a). Of Bethesda III/ 
IV samples (n = 385), 294 (76%) were ruled out for high-risk LNM 
with 98% NPV (Figure 2B, Table 2b), and of those with Bethesda V/ 
VI (n = 312), 51 (16.3%) samples were ruled out (Table 3a). The 
rule-out percentage was similar in male (53%) and female patients 
(49%) (Fisher’s exact test p = 0.41) (Table 3a). 

In the validation cohort, 44% of the cases had lymph nodes 
removed, with 14% of those meeting a threshold of at least six nodes 
removed, which suggested being adequate as a central neck 
dissection (27). Fifty percent of the local pathology reports did 
not make any comment regarding lymph nodes, and these were 
almost exclusively benign cases or non-invasive follicular thyroid 
Frontiers in Endocrinology 06
neoplasms with papillary-like nuclear features (NIFTP). The LNM 
classifier had an SN of 100% [59–100] and ruled out 52.5% with 
100% NPV and an SP of 54% [44.6–61.6] (Figure 2C, Table 2a). In 
BIII/IV samples (n = 237), 135 (57%) were ruled out with 100% 
NPV (Figure 2D, Table 2b), and in samples with Bethesda V/VI (n 
= 22), one sample was ruled out (6.7%) (Table 3b). 

There was no significant difference in performance when 
comparing samples with BIII or BIV cytology (Tables 2c, d). 
Surgical interventions 

The initial surgical intervention was assessed, and all were total 
thyroidectomy (TT) or lobectomy. In the validation cohort, there 
were 83 TT (32.5%) (Table 3b). Of those with ITN, there were 62 TT 
(26%). Of all samples with a TT, 16 (19%) had a low-risk invasion 
classifier alone, 13 (16%) had a low-risk metastasis classifier alone, 
and 11 (13%) had both low-risk classifiers. Of the 40 (48%) tumors 
with at least one low-risk classifier, 39 were either histologically 
benign, NIFTP, or ATA low-risk cancers. The one ATA high-risk 
cancer was an IF-PTC that had BVI cytology, harboring an NRAS: 
Q61R variant, was >6 cm in size with extensive vascular invasion, 
and had a correctly assigned INV classifier (not ruled out for INV) 
and a correctly assigned low-risk LNM classifier (ruled out for 
LNM) with N0 on final pathology (0/11 nodes). 
Evaluation cohort 

An evaluation of 17,346 Afirma GSC-suspicious samples with 
no clinical outcomes was assessed to compare the tumor classifier 
scores in an unselected consecutive cohort. These samples were 
from patients with a median age of 54 years [IQR 40.4–65.9] 
(Table 1). Sex was 75.5% female, and the Bethesda cytology 
categories were as follows: 67.5% BIII, 23.2% BIV, 4.6% BV, and 
4.7% BVI. Overall, 53.3% had a low-risk invasion INV classifier 
score, and 44.1% had a low-risk LNM classifier score (Table 3c). The 
percentages of samples ruled out by sex, BRAFV600E (an Afirma 
GSC classifier with a limit of detection of >5% variant allele 
frequency considered as positive) (28), RAS, and Xpression Atlas 
(XA) (17) negative mutation status are shown in Table 3c. 
Discussion 

Optimal thyroid nodule management requires pre-treatment 
information regarding the benign or malignant state of a nodule 
and how it may behave. Clinical, imaging, and cytology features 
from FNA can provide diagnostic and prognostic information. 
However, patients rarely have compelling historical or physical 
exam features suggestive of malignancy, and most thyroid 
ultrasound assessments result in ATA low- or intermediate-risk 
classification or American College of Radiology (ACR) Thyroid 
Imaging Reporting and Data System (TI-RADS) TR3 or TR4, which 
are not diagnostic (9, 29). Uncertainty may also be present even 
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when high-risk features appear to be present on thyroid 
ultrasonography. A recent study of oncologic outcomes among 
patients undergoing surgery after active surveillance for papillary 
thyroid cancer noted a poor correlation between suspected 
aggressive US features such as extrathyroidal extension and 
Frontiers in Endocrinology 07 
operative findings where less than one-third of these suspected 
features on imaging were present on final histopathology (30). ITN 
cytology leads to uncertainty, and molecular testing can provide 
both diagnostic and prognostic data, which may guide the extent of 
surgery if resection is appropriate (20). Molecular testing may also 
FIGURE 2 

Beeswarm plot of the LNM classifier in the training cohort in (A) all samples and (B) Bethesda III/IV samples and in the validation cohort in (C) all 
samples and (D) Bethesda III/IV samples. The red line reflects the cut point where samples below the line are predicted to have a low risk of lymph 
node metastasis. LNM, lymph node metastasis. 
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provide valuable prognostic information, informing the appropriate 
extent of initial thyroid surgery in nodules with BV and BVI 
cytology (7, 31). However, molecular variants and fusions may 
not provide sufficient tumor-specific behavioral information. For 
example, a BRAFV600E mutated papillary thyroid cancer can 
present along a spectrum from an intrathyroidal microcarcinoma 
to widely metastatic stage IV cancer. Thyroid nodules with RAS 
mutations may have final histology of benign, NIFTP, or low-risk or 
high-risk malignancy (32). This presents an opportunity for novel 
molecular tools that look beyond single-gene mutations to predict 
tumor-specific behavior and help optimize the initial approach to 
thyroid nodule and thyroid cancer therapy. 

Gene expression profiles utilizing transcriptomic data 
correlated with pathology outcomes of interest have been used to 
create prognostic tests for breast and prostate cancers (33–35). 
Whether other advanced classifier development methods, such as 
proteomics or the use of single-cell transcriptomics, alone or in 
combination with bulk sequencing, could be leveraged to develop 
thyroid cancer prognostic tools will require future studies (36, 37). 

The 2015 ATA thyroid nodule and cancer guidelines give clear 
guidance for when a total thyroidectomy should be performed, 
including cancers >4 cm, those with gross extrathyroidal extension, 
and clinical lymphadenopathy (9). For tumors <4 cm without 
clinically apparent aggressive features, which make up most 
thyroid cancers, the guidance provided is that a thyroid 
lobectomy may be adequate, although a total thyroidectomy is 
reasonable and may be preferred. Despite these guidelines, evidence 
suggests that patients with cytologically indeterminate nodules and 
thyroid cancer are likely treated with excessive use of bilateral (total) 
thyroidectomy (32%–70% of the cases) (38–40). To supplement 
existing guidelines, preoperative tools that help clinicians accurately 
de-escalate treatment planning are needed. For low- to 
TABLE 2 Classifier performance in the training and validation cohorts. 

a. Classifier performance across all samples 

Classifier Performance Training Validation 

Sensitivity 90 [80.5–95.9] 87.5 [47.3–99.7] 

Specificity 44.8 [40.9–48.8] 50.6 [44.2–56.9] 

INV PPV 15.4 [14.1–16.8] 5.4 [4–7] 

NPV 97.6 [95.2–98.8] 99.2 [95.3–99.9] 

Rule out % 41.30% 49.40% 

Sensitivity 93.7 [85.8–97.9] 100 [59–100] 

Specificity 55 [51–59] 54 [47.6–60.2] 

LNM PPV 21 [19.3–22.8] 5.7 [5–6.5] 

NPV 98.6 [96.7–99.4] 100 [97.3–100] 

Rule out % 49.80% 52.50% 
b. 
Classifier performance in Bethesda III/ 

IV nodules 

Classifier Performance Training Validation 

Sensitivity 72.2 [46.5–90.3] 80 [29–99] 

Specificity 65.7 [60.5–70.5] 54.3 [47.7–60.8] 

INV PPV 9.3 [7–12.4] 3.6 [2.3–5.6] 

NPV 98 [95.8–99] 99.2 [95.6–99.9] 

Rule out % 63.90% 53.60% 

Sensitivity 73.7 [48.8–90.9] 100 [16–100] 

Specificity 79 [74.4–83] 57.5 [50.8–63.9] 

LNM PPV 15.4 [11.5–20.2] 1.9 [1.7–2.3] 

NPV 98.3 [96.5–99.2] 100 [97.3–100] 

Rule out % 76.40% 56.90% 
c. 
Classifier performance in Bethesda 

III nodules 

Classifier Performance Training Validation 

Sensitivity 50 [11.8–88] 66.7 [9.4–99] 

Specificity 66.8 [60.5–72.6] 55.8 [47.8–63.4] 

INV PPV 3.5 [1.6–7.6] 2.7 [1.2–5.9] 

NPV 98.2 [96.1–99.2] 98.9 [94.8–99.8] 

Rule out % 66.40% 57.00% 

Sensitivity 66.7 [34.9–90] 100 [15.8–100] 

Specificity 78.8 [73–83.8] 55.9 [48–63] 

LNM PPV 13.5 [8.9–20] 2.6 [2.2–3.1] 

NPV 97.9 [95.5–99] 100 [96.2–100] 

Rule out % 76.70% 55.20% 
d. 
Classifier performance in Bethesda 

IV nodules 

Classifier Performance Training Validation 

Sensitivity 83.3 [51.6–97.9] 100 [16–100] 

Specificity 63.3 [54–71.9] 46 [33.4–59] 

INV PPV 18.5 [13.8–24.3] 5.5 [4.4–6.9] 

NPV 97.4 [91.4–99.3] 100 [88–100] 

Rule out % 59% 44.60% 

Sensitivity 85.7 [42.1–99.6] 

Specificity 79.2 [71–86] 61 [48–73] 

LNM PPV 18.7 [12.7–26.7] 

NPV 99 [94–99.8] 100 [91–100] 

Rule out % 75.70% 61.50% 
 

INV, invasion; PPV, positive predictive value; NPV, negative predictive value; LNM, lymph 
node metastasis. 
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intermediate-risk thyroid cancers, studies have shown that survival 
is the same overall for patients undergoing lobectomy as compared 
to total thyroidectomy (41). Additionally, thyroid lobectomy results 
in a lower incidence of early postoperative adverse symptoms 
including voice changes, tingling, and neuromuscular symptoms 
(due to parathyroid damage) as compared to total thyroidectomy 
(42). In terms of longer-term overall quality of life, Yaniv et al. 
demonstrated that the requirement for levothyroxine after any 
thyroid procedure was associated with lower quality of life (43). 
Of course, levothyroxine treatment is required after a 
total thyroidectomy. 
=

TABLE 3 Percentage (%) rule out of patients based on INV and LNM 
classifiers across different subgroups in the training, validation, and 
evaluation cohorts. 

a. Training cohort (n 697) 

INV classifier 
rule out n (%) 

LNM classifier 
rule out n (%) 

Overall (n = 697) 288 (41.3%) 345 (49.8%) 

Bethesda 

III (n = 253) 168 (66.4%) 194 (76.7%) 

IV (n = 132) 78 (59.1%) 100 (75.7%) 

V (n = 112) 20 (17.8%) 45 (40%) 

VI (n = 200) 22 (11%) 6 (3%) 

BRAFV600E+ (n = 236) 26 (11%) 2 (1%) 

Sex 

Male (n = 152) 68 (44.7%) 80 (52.6%) 

Female (n = 545) 220 (40.4%) 264 (48.5%) 

Histopathology 

FA (n = 50) 38 (76%) 47 (94%) 

OA (n = 22) 14 (63.6%) 22 (100%) 

NIFTP (n = 38) 27 (71.1%) 33 (86.8%) 

FTC (n = 19) 10 (52.6%) 18 (94.7%) 

OC (n = 18) 8 (44.4%) 16 (88.9%) 

IFPTC (n = 144) 86 (59.7%) 95 (66%) 

PTC (n = 319) 73 (22.9%) 57 (17.9%) 
=b. Validation cohort (n 259) 

INV classifier 
rule out n (%) 

LNM classifier 
rule out n (%) 

Overall (n = 259) 128 (49.4%) 136 (52.5%) 

Bethesda 

III GSC-S (n = 172) 98 (57%) 95 (55.2%) 

IV GSC-S (n = 65) 29 (44.6%) 40 (61.5%) 

V (n = 7) 1 (14.3%) 0 (0%) 

VI (n = 15) 0 (0%) 1 (6.7%) 

Genomic group 

RAS+ (n = 54) 29 (53.7%) 39 (72.2%) 

BRAFV600E+ (n = 30) 2 (6.7%) 0 (0%) 

Sex 

Male (n = 65) 33 (50.8%) 31 (47.7%) 

Female (n = 194) 95 (49%) 105 (54.1%) 

Histopathology 

FA (n = 61) 36 (59%) 41 (67.2%) 

OA (n = 23) 13 (56.5%) 17 (73.9%) 

(Continued) 
=

TABLE 3 Continued 

b. Validation cohort (n 259) 

INV classifier 
rule out n (%) 

LNM classifier 
rule out n (%) 

Histopathology 

NIFTP (n = 40) 25 (62.5%) 25 (62.5%) 

FTC (n = 10) 5 (50%) 8 (80%) 

OC (n = 15) 9 (60%) 9 (60%) 

IFPTC (n = 26) 14 (53.8%) 17 (65.4%) 

PTC (n = 49) 12 (24.5%) 5 (10.2%) 

Surgery 

Lobectomy (n = 175) 101 (57.7%) 108 (61.7%) 

NTT (n = 83) 27 (32.5%) 27 (32.5%) 
 

=c. Evaluation cohort (n 17,436) 

INV classifier 
rule out n (%) 

LNM classifier 
rule out n (%) 

Overall (n = 17,436) 9,295 (53.3%) 7,695 (44.1%) 

Bethesda 

III GSC-S (n = 11,767) 6,972 (59.2%) 5,171 (43.9%) 

IV GSC-S (n = 4,048) 1,971 (48.7%) 2,363 (58.4%) 

V (n = 799) 227 (28.4%) 135 (16.9%) 

VI (n = 822) 125 (15.2%) 26 (3.1%) 

Sex 

Male (n = 4,244) 2,264 (53.3%) 1,886 (44.4%) 

Female (n = 13,172) 7,027 (53.3%) 5,807 (44.1%) 

Genomic group 

BRAFV600E+ (n = 2,073) 398 (19.2%) 2 (0.1%) 

RAS+ (n = 4,028) 2,330 (57.8%) 3,058 (75.9%) 

XA negative (n = 9,129) 5,544 (60.7%) 3,854 (42.2%) 
NTT, near-total thyroidectomy; XA, Xpression Atlas; INV, invasion; LNM, lymph node 
metastasis; FA, follicular adenoma; OA, oncocytic adenoma; NIFTP, non-invasive follicular 
thyroid neoplasm with papillary-like nuclear features; FTC, follicular thyroid carcinoma; OC, 
oncocytic carcinoma; IFPTC, infiltrative follicular subtype of papillary thyroid carcinoma; 
PTC, papillary thyroid carcinoma. 
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Based on the most recent ATA guidelines, thyroid cancer 
invasion and regional lymph node metastases are relevant tumor 
features that predict stage and disease recurrence (9). Thus, these 
features were incorporated into the classifier training. Given the low 
prevalence of more aggressive histology in the training cohorts 
(~10% prevalence of significant invasion or lymph node 
metastases), classifiers with high NPV were locked. These thyroid 
tumor classifiers may provide high confidence in performing less 
aggressive surgery than a total thyroidectomy. Both the INV and 
LNM classifiers can predict a very low risk (<3%) of clinically 
significant vascular and extrathyroidal invasion as well as lymph 
node metastases, and ~50% of the validation cohort was ruled out 
for these more aggressive pathologic features. The evaluation cohort 
had a similar rate of low-risk tumor classifier scores, and these were 
shown to be consistent even when XA was negative for a large panel 
of genomic variants and fusions, where BRAF-like and RAS-like 
molecular risk stratification cannot be invoked (Table 3c). Of the 
patients in the validation cohort who received TT (32.5% overall 
and 26% of those with ITN), almost 50% had at least one if not both 
low-risk classifiers, and all but one tumor was either benign or an 
ATA low-risk cancer. One could hypothesize that a low-risk tumor 
classifier result may have reduced TT surgeries, although a robust 
prospective study is required to provide convincing data. 

Given the limitation of this retrospective analysis, it is not 
known if other clinical or patient preference factors dictated the 
decision to perform a TT. However, those indications, such as 
contralateral nodules or current levothyroxine treatment, have been 
described as “soft” indications and are unrelated to expected 
oncologic outcomes (44). It is possible that if treating physicians 
and/or patients have highly accurate and reassuring preoperative 
prognostic indicators, there may be more comfort in performing 
less aggressive surgery or even monitoring in appropriately selected 
patients. Importantly, the classifiers described here are not intended 
to be used in isolation. Additional information includes clinical and 
imaging features and the Afirma GSC and XA results to provide 
additional prognostic context. 

Here, we demonstrate classifiers that identify less aggressive 
tumors, regardless of their final histopathology. Ideally, additional 
classifiers could be developed to predict aggressive thyroid cancer. A 
barrier to such development is the low prevalence of aggressive 
thyroid cancer, particularly among those with ITN cytology. For 
any diagnostic test with a less-than-perfect specificity, a low pre-test 
prevalence diminishes the positive predictive value that can be 
achieved (45). Additionally, a test reporting a very high positive 
predictive value (>95%) for aggressive features may correlate mostly 
with diseases that already had concerning clinical and ultrasound 
features. Indeed, in the study of Schumm et al., all patients with 
high-risk molecular alterations (determined retrospectively) 
underwent total thyroidectomy and radioiodine ablation based on 
clinical and ultrasound features, suggesting that the preoperative 
identification of these genomic alterations may not change 
management (44). 

There are limitations to these classifiers and the current data to 
support them. The definitions of low-risk and high-risk invasion 
and lymph node metastasis labels do not necessarily reflect ATA 
Frontiers in Endocrinology 10 
pathology risk, nor do they have formally established long-term 
clinical outcomes. Additionally, the lack of operative reports 
describing the approach to lymph node evaluation and the 
absence of mandatory central neck dissections in training and 
validation may yield inaccuracies. For example, the low-risk LNM 
label would be assigned in the absence of any lymph node resection. 
Still, we believe that thyroid malignancies that are clinically N0 
intraoperatively are likely to be at low risk for adverse outcomes. 
Additionally, in clinical practice, patients with clinical N0 disease 
receive low American Joint Committee on Cancer stage of disease 
and ATA risk of structural disease recurrence designation in the 
absence of aggressive primary tumor features (9, 46). While our 
validation and evaluation cohort analyses support the locked 
classifiers, longer-term outcomes will need to be studied. While 
the NPVs seen were high, the positive predictive values (PPVs) were 
not high enough to be clinically actionable. Although the accuracy 
was not different, the proportion of tumors with BV/VI cytology 
with low-risk classifier scores was low, indicating a need to develop 
tumor risk classifiers specific to lesions with higher cytologic risk, as 
a preoperative diagnosis highly suspicious of malignancy may 
unnecessarily lead to more aggressive surgeries. There are 
currently no data regarding the risk of recurrence or disease-
specific mortality relative to surgical decisions prompted by these 
classifiers, and these classifiers can only reflect the index lesion 
undergoing Afirma testing and cannot necessarily account for 
untested additional foci. Finally, although the training and 
validation cohorts have some pediatric patients included, a 
dedicated study evaluating the performance of these classifiers in 
this population will be necessary given the different molecular 
profiles of pediatric versus adult thyroid cancer (47). Thus, the 
classifiers reported here are being made available initially for 
research use only (RUO) for future investigations when a thyroid 
tumor either is molecularly  suspicious or arises from BV/ 
VI cytology. 

In conclusion, the invasion and LNM classifiers developed and 
retrospectively evaluated in this study indicate high accuracy in 
predicting low-risk thyroid cancer features. Ultimately, prospective 
trials assessing how these thyroid tumor INV and LNM classifiers 
influence surgical interventions and affect clinical outcomes, such as 
more thyroid lobectomies in lieu of bilateral thyroid resections with 
no increase in adverse outcomes, will provide necessary insight into 
their clinical utility. 
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SUPPLEMENTARY FIGURE 1 

Overview of classifiers’ development and validation workflow. Both INV and 
LNM classifiers were trained using the same machine learning (ML) pipeline 
with different ML algorithms and features combinations. Repeated five-fold 
cross validation (CV) was used to evaluate models in training cohort to select 
the best performing classifier. 

SUPPLEMENTARY FIGURE 2 

INV classifiers’ evaluation and best classifier selection. (A) Several 
combinations of machine learning models (generalized linear model 
(glmnet), hierarchical glm (hier-glmnet), random forest (RF), support vector 
machine (SVM) with linear or radial kernels) and feature engineering methods 
(Feature 1-7) were tested to identify the combinations that provide the best 
performance. Feature engineering methods relied on clustering gene 
expressions to select representative features from each cluster. To identify 
the most promising combinations, we evaluated the classifiers using AUC of 5 
repeats of 5 fold cross validation (CV). Each box here represents the AUC 
(from 5-fold CV) values in the 5 repeats. As a control, we added the AUC 
results of the best single feature to show that models that have more features 
can show better performance. Results showed that RF and glmnet classifiers 
gave better performance (AUC) using different feature engineering methods. 
Overall classifiers that used Feature 7 method (red box) gave slightly higher 
AUC and more stable scores. (B) Since AUC was not the metric, we aimed to 
optimize to rule out patients with low risk of invasion, we studied the rule out 
% and NPV on all classifiers that used feature 7 method (red box). Assessing 
the NPV across different rule-out % showed that the RF classifier preserved 
the highest NPV across different rule out %. The was the model that was used 
for further testing in the validation cohort and evaluation cohort. 

SUPPLEMENTARY FIGURE 3 

LNM classifiers’ evaluation and best classifier selection. (A) We used a similar 
workflow to the invasion classifier by testing several combinations of feature 
engineering and machine learning models. We also tested several ensemble 
models and compared its AUC to individual classifiers. (B) Several classifiers 
were selected for further assessment of the NPV across different rule-out %. 
We found a single feature that is based on BRAF-RAS score was the most 
promising. (C) To further improve the performance of the BRAF-RAS score, 
we extracted the genes composing that score and used them as features and 
then applied different machine learning models. We found that hier-glmnet 
classifier based on genes can improve the performance compared to BRAF­
RAS score a lone. This model was used for further validation and evaluation of 
the classifier in the validation and evaluation cohorts. 
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