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Advancements in imaging
research in thyroid-
associated ophthalmopathy
Zuxing Xu, Zhe Xue and Zhaohui Lyu*

Department of Endocrinology, the First Medical Center of Chinese PLA General Hospital,
Beijing, China
Thyroid-associated ophthalmopathy (TAO), a sight-threatening ocular condition

intricately associated with autoimmune thyroid diseases, is the most common

orbital disorder among adults. Accurate assessment of TAO is crucial for effective

clinical management. However, the current evaluation system is hindered by

significant subjectivity and a lack of standardized objective criteria, thereby

complicating the pursuit of precise and individualized treatment strategies.

Imaging techniques are integral to the clinical management of TAO, as they

provide detailed anatomical visualization of the orbit and reflect underlying

pathophysiological changes. This article reviews the applications of three

prevalent imaging modalities—ultrasonography, computed tomography (CT),

and magnetic resonance imaging (MRI)—in the diagnosis and management of

TAO. We examine their respective advantages, limitations, and roles in disease

diagnosis, staging, and evaluation of therapeutic efficacy, with the aim of

providing a scientific basis for the optimization of clinical practice.
KEYWORDS

thyroid-associated ophthalmopathy, ultrasonography, computed tomography,
magnetic resonance imaging, clinical management
1 Introduction

Thyroid-associated ophthalmopathy (TAO) is an orbital disorder closely related to

autoimmune thyroid diseases. The clinical presentation of TAO is multifaceted and varied,

predominantly encompassing proptosis, eyelid retraction, and diplopia, among other

symptoms. In severe instances, the condition may advance to dysthyroid optic

neuropathy (DON). These manifestations not only alter patients’ physical appearance

but also have detrimental psychological and social repercussions, thereby substantially

diminishing their quality of life (1). A precise evaluation of the activity and severity of TAO

is essential for formulating rational and effective therapeutic strategies.

Currently, the clinical evaluation of TAO predominantly employs assessments such as

the Clinical Activity Score (CAS), NOSPECS severity classification, the European Group on

Graves’ Orbitopathy (EUGOGO) severity classification, and the Graves’ Ophthalmopathy

Quality of Life (GO-QoL) questionnaire for disease staging and grading (2). Nonetheless,

these existing methodologies largely rely on subjective clinical symptoms and physical
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signs, which present certain limitations regarding accuracy and

objectivity. Consequently, there is a pressing need for a more

objective and precise assessment approach to enhance the

diagnosis and management of TAO.

Imaging examinations offer a range of qualitative and

quantitative indicators that can more objectively and

comprehensively reflect alterations in the orbital structures and

physiological conditions of TAO patients. While ultrasonography is

primarily utilized to assess TAO by monitoring orbital

hemodynamic changes, it is limited in its ability to visualize

deeper structures, such as the extraocular muscles and the optic

nerve. Computed tomography (CT) is excellent for measuring

exophthalmometric values and the structure of extraocular

muscles quantitatively. However, CT involves ionizing radiation

and is not effective at visualizing soft tissue inflammation. On the

other hand, magnetic resonance imaging (MRI) is a non-invasive

method with high resolution for soft tissues, offering clear images of

orbital structures. The multi-parametric imaging capabilities of

MRI provide unique benefits for evaluating TAO. Imaging

methods, especially MRI, are crucial for accurately assessing

TAO, offering more dependable evidence for personalized

diagnosis and treatment. The comparison of these techniques are

summarized in Table 1. In the following, the applications of three

imaging methods in TAO are reviewed in detail.
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2 Application of ultrasonography in
TAO

Color Doppler Imaging (CDI), a safe and non-invasive tool,

allows real-time evaluation of hemodynamic features. In patients

with active TAO, inflammation can cause endothelial cell damage

(3), which inhibits vasoconstriction, leading to the dilation of

orbital blood vessels and increased blood flow. Ultrasonography

evaluation of the blood flow characteristics in the superior

ophthalmic vein and the ophthalmic artery provides critical

evidence for the diagnosis and assessment of TAO.

Research indicates that enlargement of the extraocular muscles

in TAO patients may compress the orbital veins, resulting in

decreased maximum blood flow velocity and volume in the

superior ophthalmic vein compared to normal controls (4, 5).

Notably, a minimum blood flow velocity of 3.99 cm/s in the

superior ophthalmic vein serves as a significant marker for

distinguishing between active and inactive TAO, with a diagnostic

sensitivity of 91.2% and specificity of 81.2% (4). Furthermore,

severe orbital venous stasis is strongly associated with the onset of

DON, highlighting the potential utility of assessing superior

ophthalmic vein blood flow in predicting the development of

DON. In terms of arterial blood flow, the end-diastolic velocity of

the ophthalmic artery in patients with TAO is significantly elevated
TABLE 1 Comparison of three imaging techniques.

Aspect Ultrasound CT MRI

Imaging Focus Hemodynamic changes Orbital bony structures (primary)
Orbital soft tissues (inferior to MRI)

Orbital soft tissues

Disadvantages High operator-dependence
Limited to superficial structures
Reliance on single parameters

Ionizing radiation exposure
Poor soft tissue contrast resolution

Long acquisition time
Contraindications (metallic implants,
claustrophobia, etc.)
Relatively limited accessibility

Advantages Non-invasive
Absence of ionizing radiation
High accessibility and portability

Clear visualization of morphological
alterations

Multi-parametric sequences (T1WI, T2WI,
STIR, DWI)
Comprehensive tissue characterization
(edema, fibrosis, fat proliferation)

Cost Price-friendly Medium Expensive

Diagnosis Not recommended Recommended Recommended

Activity Assessment Capability Limited Limited Excellent (Multi-tissue evaluation,
comprehensive quantitative parameters)

Capability in Predicting DON Weak Medium (Based on morphology, e.g., orbital
apex crowding index)

Strong (Early identification via combined
morphological and cellular damage
assessment)

Role in Therapeutic Response
Evaluation

Limited application Commonly used Widely applied in clinical practice and
research

Primary Clinical Indications Initial screening Preoperative and postoperative assessments,
Disease staging, exclusion of other masses

Comprehensive disease assessment, DON
prediction, Drug and surgical therapy
monitoring

Moderate patients Secondary Necessary (if corneal and optic nerve
involvement, patients need surgery as soon
as possible)

Priority
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compared to normal controls (4, 6), while the ophthalmic artery

resistance index is reduced relative to normal controls (4). This

resistance index serves as an indicator for evaluating changes in the

condition before and after surgical treatment (7).

Although ultrasonography offers advantages such as rapidity,

non-invasiveness, and cost-effectiveness, its accuracy and

generalizability in clinical applications are constrained by factors

such as vascular diameter, resistance, impedance, compliance,

equipment performance, and patient cooperation.
3 Application of CT in TAO

CT has recognized advantages in bone structure imaging. It is

an important evaluation method for patients with TAO before

undergoing orbital decompression surgery, and provides a key basis

for the operator to formulate the operation plan and determine the

decompression range. In addition, with the development of imaging

technology, CT has been gradually applied to the quantitative

measurement of soft tissues such as extraocular muscles, intra-

orbital fat tissue and lacrimal glands, providing objective indicators

for diagnosis and assessment.
3.1 Application of CT in quantitative
measurement of TAO

The extensive utilization of CT in evaluating TAO has

introduced a novel approach for quantifying exophthalmos. In

comparison to the conventional Hertel exophthalmometer, CT-

based exophthalmometry not only broadens the scope of

applicability but also exhibits notable advantages in terms of

accuracy and objectivity (8–10). Nevertheless, the potential risk of

ionizing radiation associated with CT constrains its extensive use in

exophthalmos measurement. Quantitative assessments derived

from CT imaging also facilitate the identification of potential

imaging biomarkers and their association with clinical

characteristics (11). Research indicates a positive correlation

between the volume of extraocular muscles and the severity of

TAO, with a marked increase observed progressively from healthy

individuals to those with mild and severe TAO (12). Moreover,

parameters associated with extraocular muscles (EOMs) exhibit

significant correlations with visual function impairment and ocular

motility deficits in patients with TAO (13). The quantitative

assessment of EOMs and adipose tissue using CT is essential for

the classification of TAO. Clinically, fat-dominant TAO is typically

characterized by upper eyelid retraction, lower eyelid retraction,

and exophthalmos, while muscle-dominant TAO is primarily

associated with restricted ocular motility, diplopia, and strabismus

(14). These distinct subtypes of TAO may be linked to different

differentiation mechanisms of orbital fibroblasts (15).
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3.2 Application of CT in diagnosis and
prediction of TAO

The benefits of quantitative measurements using CT are further

evidenced in the diagnostic and prognostic capabilities for TAO.

Studies suggest that hypertrophy of the retro-orbicularis oculi fat

and sub-orbicularis oculi fat may possess significant diagnostic value

(16). Furthermore, volume-related parameters demonstrate high

precision in predicting the severity of TAO, with an accuracy rate of

0.838 and an area under the curve (AUC) of 0.929 (12). Regression

models developed based on parameters such as the total volume of

extraocular muscles, lacrimal gland volume, intraorbital fat volume,

and lacrimal gland density also exhibit significant diagnostic value in

evaluating TAO activity (17). An observational study comprising 50

control subjects and 50 patients diagnosed with TAO has

demonstrated that the extraocular muscle index is a reliable

predictor of the overall inflammatory status in patients with TAO (18).
3.3 Application of CT in diagnosis of DON

DON is one of the most severe complications of TAO, and its

clinical diagnosis lacks a standardized criteria, primarily relying on

nonspecific symptoms such as vision loss, visual field defects, and

color vision impairment (19, 20). Although the precise mechanism

of DON is not fully elucidated, it is currently believed that

mechanical compression of the optic nerve by orbital tissues,

including extraocular muscles and intraorbital fat, is a major

contributing factor. Statistics indicate that over 90% of DON

cases are associated with optic nerve compression due to

extraocular muscle hypertrophy (21). Consequently, improving

the accuracy of early DON diagnosis is a clinical priority. CT

imaging parameters are crucial in diagnosing DON. Current

research highlights that optic nerve crowding (P<0.001) and

intracranial fat prolapse (P<0.05) serve as independent risk

factors for concurrent optic neuropathy in patients with TAO

(22). Traditionally, the Barrett index has been utilized as a

diagnostic indicator, demonstrating a sensitivity of 79% and a

specificity of 72% (23). Among the volumes of individual

extraocular muscles, the medial rectus volume emerges as the

most robust predictor of DON, with a sensitivity of 73.7% and a

specificity of 86.7% (24). The volumetric orbital apex crowding

index (VACI) exhibits superior diagnostic efficacy, with a sensitivity

of 92%, specificity of 86%, and an accuracy of 88% (25).

Furthermore, the combined use of VACI and thyrotropin

receptor antibodies (TRAb) levels may enhance the predictive

accuracy for DON (26). A retrospective study further illustrated

the exceptional diagnostic efficacy for detecting DON through the

application of machine-learning radiomics analysis on CT

scans (27).
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3.4 Application of CT in efficacy evaluation
of TAO

The condition of TAO can be assessed through changes

observed in exophthalmos and parameters related to the

extraocular muscles and orbital fat, as measured by CT. This

imaging modality has become increasingly utilized for evaluating

treatment efficacy and optimizing therapeutic strategies (28–31).

For example, the diameter of the extraocular muscles and the

muscle diameter index may serve as predictors for the effect of

extraocular muscle contraction following retrobulbar glucocorticoid

injections (32). This highlights the significant clinical importance of

quantitative CT analysis in the personalized treatment of TAO.

In conclusion, CT was utilized to assess alterations in orbital

structure, thereby providing essential support in the diagnosis of

TAO and its complications, and offering a reliable foundation for

clinical decision-making.
4 Application of MRI in TAO

In comparison to ultrasound and CT, MRI offers unparalleled

value in both clinical research and practical applications related to

TAO. This is attributed to its superior soft tissue resolution,

multiparametric imaging capabilities, and lack of ionizing

radiation. MRI facilitates precise visualization of morphological

changes in structures such as extraocular muscles, adipose tissue,

lacrimal glands, and the optic nerve. Additionally, it allows for a

comprehensive evaluation of pathological characteristics in affected

tissues through multi-sequence and multiparametric imaging

techniques (33). These advantages position MRI as an objective

foundation for accurate diagnosis, assessment of disease severity,

and monitoring of therapeutic interventions in the management

of TAO.
4.1 Multimodal application of MRI in the
evaluation of extraocular muscles in TAO

Multimodal MRI technology offers a distinctive approach for

the comprehensive evaluation of extraocular muscles involvement

in TAO by integrating structural, functional, and quantitative

imaging modalities. This technology not only diagnoses and

assesses disease severity through structural parameters such as

extraocular muscles cross-sectional area and volume (34), but also

facilitates the monitoring of disease progression via functional

imaging and quantitative analyses. While conventional T2-

weighted imaging (T2WI) does not reveal significant differences

in extraocular muscles hyperintensity between active and inactive

TAO patients (35, 36), the signal intensity ratio of extraocular

muscles to ipsilateral temporal muscle [SIR (EOM/temporalis)] or

SIR of EOM to ipsilateral cerebral white matter demonstrates a

correlation with the CAS, thereby providing additional evidence for

disease staging (37–39).
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Dynamic contrast-enhanced MRI (DCE-MRI) is utilized to

quantify tissue microcirculation, with its parameters serving as

reliable biomarkers for evaluating disease activity (40). Research

indicates distinct microcirculatory characteristics in extraocular

muscles across different stages of TAO (41, 42). Several DCE-

MRI parameters exhibit significant correlations with the CAS and

demonstrate positive predictive values of approximately 90% for

disease activity (35). Hu’s study further substantiates the clinical

utility of DCE-MRI in monitoring TAO (43). Diffusion-weighted

imaging (DWI) assesses restricted water diffusion in extraocular

muscles via the apparent diffusion coefficient (ADC), facilitating the

early detection of inflammatory changes during asymptomatic

phases (44). Patients with TAO show significantly elevated mean

ADC values in extraocular muscles compared to healthy controls

(45), with ADC values in the medial, inferior, and lateral rectus

muscles positively correlating with inflammatory subscores in the

VISA classification system (46). Nonetheless, the association

between ADC values and CAS remains a subject of debate in the

literature (44, 45). Diffusion tensor imaging (DTI) serves as an

important instrument in evaluating the disease activity associated

with TAO (47).

Quantitative imaging modalities, such as T2 mapping, facilitate

the sensitive detection of early extraocular muscle involvement (48).

T1 mapping further elucidates fat infiltration patterns that are

strongly correlated with refractory diplopia, demonstrating high

diagnostic accuracy (AUC=0.89) in patients with TAO who have a

history of diplopia resolution (49). The extracellular volume (ECV)

functions as an objective quantitative biomarker for evaluating the

extent of extraocular muscle fibrosis (50).

The integrative application of multimodal MRI technologies

significantly enhances diagnostic precision and dynamic

monitoring capabilities for TAO-related extraocular muscle

pathology, thereby refining the comprehensive MRI-based

evaluation framework for the pathological progression of TAO.
4.2 Applications of MRI in the assessment
of orbital adipose tissue and exophthalmos
in TAO

Orbital fibroblasts exhibit the potential for adipogenic

differentiation, and the subsequent expansion of adipose tissue

volume is strongly correlated with the presence of exophthalmos.

Quantitative MRI analyses have demonstrated that both total

orbital adipose tissue volume (r=0.70, P=0.0006) and anterior

orbital adipose tissue volume (r=0.64, P=0.0023) show

significantly stronger correlations with the severity of

exophthalmos compared to extraocular muscle volume (r=0.58,

P=0.008). This suggests that adipose hyperplasia is a key factor in

the progression of proptosis (51). Consequently, therapies targeting

adipose metabolic pathways may represent promising new

strategies for mitigating proptosis in patients with TAO.

Nevertheless, no significant associations were found between

orbital adipose volume and variables such as patient age, disease

duration, or CAS (52).
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4.3 Applications of MRI in the assessment
of lacrimal gland in TAO

Patients with TAO often exhibit symptoms indicative of

lacrimal gland dysfunction, such as dry eyes and conjunctival

hyperemia. Recent research has increasingly identified the

lacrimal gland as a significant target organ in TAO. The

expression of thyroid-stimulating hormone receptor (TSHR) by

lacrimal gland acinar cells suggests that autoimmune responses in

TAO may lead to damage of the lacrimal gland (53). Studies have

demonstrated that patients with TAO not only experience altered

tear composition (54–56), but also exhibit increased lacrimal gland

volumes (57, 58). Although approximately 30% of TAO patients

present with lacrimal gland enlargement (59), no relevant

morphological parameters of lacrimal gland have been identified

as effective in differentiating between active and inactive TAO (57,

60, 61). Further investigations have shown that the extent of

lacrimal gland protrusion serves as a critical imaging marker for

differentiating disease stages in TAO. Patients with active TAO

exhibit significantly greater lacrimal gland protrusion compared to

those with inactive disease, with a linear correlation observed with

TRAb levels (62). Moreover, the degree of lacrimal gland prolapse

positively correlates with the CAS, proptosis, and extraocular

muscle volume, providing an additional indicator for assessing

TAO activity (63).

Functional imaging modalities are instrumental in assessing

disease activity in TAO. DTI has revealed significant variations in

the ADC values and fractional anisotropy (FA) of the lacrimal gland

when comparing TAO patients to healthy controls, as well as

between active and inactive TAO subgroups (64). The

combination of lacrimal gland T2 mapping values with clinical

parameters has the potential to optimize the CAS system (65).

Furthermore, quantitative MRI parameters are capable of detecting

fat infiltration and fibrosis within the lacrimal gland. Wu et al.

demonstrated that certain inflammatory and fibrosis-related

markers in the lacrimal gland are markedly elevated in TAO

patients relative to those with Graves’ disease, facilitating the

differentiation between TAO and Graves’ disease (66). These

findings offer novel insights into the pathological mechanisms

underlying TAO and provide a foundation for the development

of personalized therapeutic strategies.
4.4 Multimodal application of MRI in the
evaluation of DON

MRI exhibits significant technical advantages in the evaluation

of DON, offering essential imaging support for early diagnosis and

precise therapeutic intervention. The Dixon- T2WI technique

effectively suppresses the interference of orbital fat signals,

thereby enhancing the clarity of optic nerve visualization and

minimizing artifacts, demonstrating superior sensitivity and

specificity compared to regular MRI sequences (67). Functional

imaging provides further insights into the pathological mechanisms

underlying DON. Reduced ADC values in the optic nerve indicate
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secondary ischemic alterations due to mechanical compression (68).

DTI reveals significantly increased axial diffusivity (AD), radial

diffusivity (RD), and mean diffusivity (MD) (P=0.003-0.033), along

with decreased FA (P=0.018), quantitatively indicating disruption

of optic nerve axonal integrity and glial cell damage. Additionally,

DTI demonstrates robust diagnostic performance, with an AUC of

0.801 (69). Another study also verified the above view (70).

The integration of multimodal MRI has markedly improved

diagnostic accuracy. Specifically, the SIR of the optic nerve 3mm

posterior to the globe and the orbital apex extraocular muscle index

have been identified as independent risk predictors for DON. A

combined model incorporating these parameters exhibited excellent

diagnostic performance, with an AUC of 0.943 (71), thereby

providing an objective basis for the early identification of high-

risk patients. Additionally, studies have indicated potential

microstructural alterations within the visual pathway of patients

with DON. Further integration of orbital MRI with diffusion

kurtosis imaging (DKI) for the assessment of the intracranial

visual pathway could significantly enhance comprehensive

diagnostic capabilities (68, 72). These investigations not only

advance the understanding of the mechanisms underlying optic

nerve injury but also offer critical references for the early detection

and intervention of optic neuropathies.
4.5 Application of MRI in efficacy
evaluation of TAO

MRI has been extensively utilized in clinical and scientific

research to assess therapeutic efficacy. MRI-based assessments of

morphological metrics in extraocular muscles and adipose tissue

serve as valuable tools for evaluating treatment responsiveness (73).

The study further corroborated the effectiveness of corticosteroid

therapy in conjunction with orbital radiotherapy in Asian patients

with active moderate-to-severe TAO (73). Moreover, the SIR of the

levator palpebrae muscle has shown predictive utility for the efficacy

of triamcinolone acetonide injections, achieving a sensitivity of

87.5%, specificity of 66.7%, and an AUC of 0.840 (74). The

combination of extraocular muscle SIR with serum lipid

metabolism parameters may enhance the prediction of responses

to glucocorticoid (GC) therapy in patients with active and

moderate-to-severe TAO (75). A retrospective study has also

identified that the percentage change in SIR(EOM/temporalis)

MAX following tocilizumab treatment may serve as a predictive

indicator for the necessity of surgical intervention in patients with

hormone-resistant DON (76). Additionally, DCE-MRI parameters

reveal significant distinctions between responders and non-

responders to GC therapy in active TAO, providing crucial

insights into the effects of TAO-related microcirculatory

alterations on treatment outcomes (43, 77). Despite the limited

sample size in some studies, these research findings offer a scientific

foundation for developing individualized treatment strategies.

Given the characteristics of MRI, which include multiple

sequences and parameters, MRI holds greater significance than

CT in optimizing the therapeutic efficacy of TAO.
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5 Conclusion

Imaging modalities are integral to the disease assessment,

therapeutic monitoring, and early diagnosis of DON in TAO.

Techniques such as ultrasound, CT, and MRI each offer distinct

advantages in assessing hemodynamic changes, extraocular muscles,

adipose tissue, and the optic nerve. MRI, in particular, not only

provides detailed visualization of orbital soft tissue structures

through conventional sequences but also utilizes functional imaging

techniques and quantitative analyses to evaluate pathological changes

such as tissue edema, fat infiltration, and fibrosis. This capability

facilitates the identification of diverse imaging biomarkers crucial for

disease staging and treatment monitoring. Recent advancements in

radiomics have markedly advanced research in the diagnosis and

management of TAO (78–80). Additionally, emerging neuroimaging

studies have revealed altered functional activity in brain regions,

including the insular cortex, inferior temporal gyrus, and superior

frontal gyrus, in patients with TAO. These changes may be associated

with visual function and peripheral immune status (81–84). These

findings provide a foundation for further exploration of the

mechanisms underlying TAO and DON.

Nevertheless, the clinical application of imaging technologies

encounters several challenges. The prolonged duration of MRI scans,

coupled with their high cost, restricts their accessibility for primary

care and dynamic monitoring purposes. Additionally, certain

functional imaging parameters necessitate validation in larger

cohorts. Future research should prioritize the comprehensive

exploration and validation of imaging techniques within larger

populations to fully realize their potential in the early diagnosis of

TAO, personalized treatment, and mechanistic investigations. This

approach aims to ultimately offer comprehensive and effective support

for clinical practice.
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