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Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder, and its

management has evolved from mere glycemic control to multitarget

metabolic regulation. Sodium–glucose cotransporter 2 inhibitors (SGLT2is)

have demonstrated extensive pleiotropic effects in treating T2DM, and its

complications through unique mechanisms. SGLT2is promote urinary glucose

excretion, leading to a negative energy balance that triggers lipid metabolic

reprogramming and fuel switching in the body. This process significantly reduces

visceral fat deposition and improves insulin resistance and the inflammatory

status. Additionally, SGLT2is provide a metabolic foundation for cardiovascular,

hepatic, and renal protection through multiple pathways, including remodeling

cardiac structure, enhancing myocardial metabolism, reducing uric acid levels,

and alleviating renal hypoxia. With respect to combination therapy, the pairing of

SGLT2is with other hypoglycemic agents and cardiovascular protective drugs has

synergistic effects; however, potential adverse reactions should also be

considered. Future research should investigate the precise application and

long-term safety of SGLT2is as well as develop individualized treatment

strategies on the basis of patients’ metabolic phenotypes, complications, and

drug tolerability to maximize clinical benefits for patients. This review

systematically explores the significant roles of SGLT2is in metabolic regulation,

cardiovascular protection, and combination therapy, with the aim of providing a

comprehensive foundation for optimizing individualized treatment strategies in

T2DM management.
KEYWORDS

SGLT2is, metabolic regulation, type 2 diabetes, cardiovascular protection,
combination therapy
1 Introduction

Diabetes has emerged as a significant public health challenge globally in the 21st

century, with its widespread prevalence not only imposing a heavy disease burden but also

exerting substantial socioeconomic pressure (1). Epidemiological forecasts predict that the

number of diabetes patients worldwide will rise to 578 million by 2030 (2). Among the
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types of diabetes, type 2 diabetes mellitus (T2DM) is the most

prevalent, and its pathogenesis is complex, involving dysregulation

of glucose metabolism in the body due to the interaction of various

factors, such as the social environment and genetics (3). The

complications of T2DM combined with cardiovascular or kidney

disease increase the risk of hospitalization and mortality. The

previous treatment plan for T2DM focused on restoring

pancreatic beta-cell function and supplementing insulin

injections, as one of the important mechanisms of T2DM is

insulin resistance. Sodium–glucose cotransporter 2 inhibitors

(SGLT2is) achieve glucose-lowering effects through a unique renal

mechanism of action. They selectively inhibit the reabsorption of

glucose in the renal tubules, promoting urinary glucose excretion

independent of pancreatic b-cell function. Additionally, SGLT2is
can improve the uptake and utilization of glucose in peripheral

tissues and increase insulin sensitivity (4, 5). Several landmark

large-scale clinical trials, including EMPA-REG OUTCOME,

CANVAS, and DECLARE-TIMI, have demonstrated that

SGLT2is can significantly reduce the risk of cardiovascular death

and improve cardiorenal outcomes in the T2DM population (6–8).

The specific molecular mechanisms by which SGLT2is exert

these multiple metabolic benefits remain an important area of

current research. A growing body of evidence suggests that

SGLT2is have significant pleiotropic effects on weight management,

adipose tissue remodeling, cardiovascular protection, and renal

protection. The focus of this review is the metabolic benefits of

long-term SGLT2i treatment, its correlation with reductions in fat

mass, changes in adipokines and lipoprotein profiles, and its

cardiovascular benefits and hepatic and renal protective effects in

relation to visceral fat and inflammatory factors. Finally, we propose

that personalized treatment strategies and future research directions

should be emphasized.
2 Metabolic regulatory effects of
SGLT2is

2.1 Weight management and adipose tissue
remodeling

SGLT2is inhibit the SGLT2 receptor in the proximal tubule of

the kidney, promoting urinary glucose excretion (approximately

60–90 grams of glucose per day), resulting in an energy loss of

approximately 200–300 kcal daily, which mimics a low-calorie state

in the body. This negative energy balance can sometimes trigger

compensatory increases in food intake, thereby reducing the

anticipated weight loss effect (9). However, related studies

indicate that this compensatory response does not significantly

affect the efficacy of SGLT2is (10–12). The weight loss effect of

SGLT2is is typically assessed through changes in BMI. An elevated

BMI is typically associated with obesity, and prolonged obesity is

often closely linked to high-sugar and high-fat diets. Poor dietary

habits serve as a potential driving force for the development and

progression of metabolic diseases. A series of pathological changes
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induced by obesity in the body, ranging from microvascular and

macrovascular lesions to organ pathological alterations, are

potential factors that exacerbate disease progression. For example,

pathophysiological changes such as chronic low-grade

inflammation, abnormal lipid metabolism, and insulin resistance

associated with obesity collectively form the important pathogenic

basis for heart failure with preserved ejection fraction (HFpEF) (13).

In clinical practice, BMI is frequently used as a significant indicator

for disease risk assessment. For example, studies by Said et al.

showed that higher BMI can serve as an independent predictor of

new-onset heart failure (HF) in patients with T2DM (14). However,

BMI cannot reflect changes in body fat distribution or variations in

the weight of different parts of the body, such as skeletal muscle and

muscle mass. Analyses of the DELIVER, EMPEROR-Reserved, and

CANDLE trials indicated that although patients with higher BMIs

experience more significant symptom improvement (15), the

therapeutic effects of SGLT2is in reducing the risk of

cardiovascular death and other aspects are independent of

baseline BMI (15–17).

The weight loss induced by SGLT2is is associated primarily with

a reduction in water content and a decrease in fat mass (18).

Initially, due to increased urine output, the reduction in water

content is more pronounced; however, the long-term weight loss

effect is related to a reduction in fat mass. In a 12-week randomized

controlled trial, dapagliflozin was associated with weight loss related

to a decrease in lean body mass and body water content, with no

significant change in fat mass observed (19). However, in longer-

term treatments (such as 24 weeks and 102 weeks), dapagliflozin

not only reduced body water content but also significantly

decreased fat mass (with reductions of 1.48 kg and 2.80 kg,

respectively), and these effects were correlated with the duration

of treatment (20, 21). The reduction in fat mass is partly attributed

to the decrease in visceral adipose tissue and subcutaneous adipose

tissue (22–24). SGLT2is can reduce liver fat (25, 26), the thickness

of epicardial adipose tissue (EAT) (27, 28), and perirenal fat (29),

among other types of tissue.

SGLT2is can alter adipose tissue structure by converting white

adipose tissue into brown adipose tissue (BAT) or beige adipose

tissue through browning, thereby increasing energy expenditure

to adapt to the negative energy balance induced by SGLT2is.

Studies have shown that SGLT2is can reduce lipid content in

perirenal WAT, inguinal WAT, and epididymal WAT in mice and

upregulate the expression of uncoupling protein 1 (UCP1) (30–

32), thermogenesis-related genes (such as Prdm16 and Irisin)

(32), and the mRNA expression of beige adipose-selective genes

(such as Cd137 and Tmem26) (31). Uncoupling protein 1 (UCP1)

is a crucial thermogenic regulator that can uncouple substrate

oxidation from ATP synthesis, thereby generating heat. The

increased expression of UCP1 reflects an increase in BAT

quantity and active mitochondrial function (33). Although beige

adipose tissue does not contribute to overall energy expenditure as

much as BAT does, it has additional metabolic benefits in terms

of glucose and lipid clearance as well as anti-inflammatory

effects (34).
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2.2 Lipid metabolism reprogramming and
liver protection

SGLT2is decrease insulin secretion, and increase glucagon

secretion, thereby improving b-cell function and tissue sensitivity

to insulin. Substrate utilization for body metabolism shifts from

carbohydrates to lipids (35). The reduction in insulin and increase

in glucagon reflect the decreased inhibition of lipolysis and increased

activation of hormone-sensitive lipase (HSL), which promotes

lipolysis. The activation of the sympathetic nervous system

stimulates b-adrenergic receptors, thereby promoting lipolysis.

Although the substantial loss of glucose increases hepatic

gluconeogenesis, leading to an increase in endogenous glucose

production, the ultimate reduction in blood glucose concentration

indicates a general shift in the body toward lipid metabolism. Fat

breakdown releases a large amount of free fatty acids (FFAs), which

are converted into ketone bodies through hepatic fatty acid oxidation.

This process reduces lipid accumulation in the liver (Figure 1).

The improvement of insulin resistance also requires long-term

treatment with SGLT2is. Studies have shown that 4 weeks of

empagliflozin treatment has no significant effect on skeletal
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muscle free fatty acid or glucose uptake (18). After 8 weeks of

dapagliflozin treatment, no significant improvement in insulin

sensitivity was observed in tissues such as the liver, skeletal

muscle, or myocardium (25). However, 12 weeks of empagliflozin

treatment increased hepatic insulin sensitivity (26). A recent meta-

analysis by Li et al. reported that SGLT2is can improve insulin

resistance in patients with T2DM complicated by nonalcoholic fatty

liver disease (NAFLD), significantly reducing HOMA-IR levels

(MD [95% CI]; -0.66 [-0.99, -0.32], p = 0.0001). The duration of

treatment in the 11 included studies was more than 12 weeks, with

the longest duration reaching 72 weeks (36). Additionally, studies

have shown that combination therapy with dapagliflozin and

exenatide (EXE) can reduce hepatocellular lipids (HCLs) (-4.4%,

P < 0.05), and changes in HCLs are associated with a reduction in

visceral adipose tissue, independent of glycemic control (37).

SGLT2is can improve the levels of adipokines and inflammatory

factors, but the benefits of SGLT2is remain uncertain. A study by

Dihoum et al. revealed that dapagliflozin significantly reduced CRP

after 12 months of treatment (mean difference -1.96; 95% CI -3.68 to

-0.24, p = 0.026), but other inflammatory factors (tumor necrosis factor

a (TNF-a), interleukin-1b (IL-1b), IL-6, and interleukin 10 (IL-10))
FIGURE 1

SGLT2is promote urinary glucose excretion, reduce blood glucose concentration. Reduced insulin secretion and increased glucagon can promote
fat breakdown, which produces a large amount of free fatty acids (FFA), that are oxidized by liver fatty acids to form ketone bodies, and reduce liver
fat. Enhanced insulin action in the hypothalamus, along with a significant decrease in serum soluble dipeptidyl peptidase-4 (sDPP-4) levels, can lead
to a reduction in liver fat. SGLT2is have been shown to reduce liver enzyme levels (ALT, AST, GGT) in patients with nonalcoholic fatty liver disease
(NAFLD), improve hepatic steatosis (controlled attenuation parameter (CAP), L/S ratio, MRI-PDFF), and ameliorate liver fibrosis (liver stiffness
measurement (LSM), FIB-4 index). SGLT2is lead to an elevated circulating level of b-hydroxybutyrate (b-OHB), thereby improving myocardial energy
metabolism, LV mass, or cardiac contractile function. SGLT2is can reduce uric acid levels, improve renal microcirculation and oxygenation, and
improve cardiovascular and renal outcomes in T2DM.
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were not significantly improved (38). A meta-analysis by Buttice et al.

demonstrated that SGLT2is significantly increased adiponectin and

reduced IL-6 and tumor necrosis factor receptor-1 (TNFR1), but there

was no significant change in CRP levels (39). The anti-inflammatory

mechanism of SGLT2is is controversial, as their anti-inflammatory

effects are not prominent in some studies and involve complex

physiological mechanisms. However, the reduction in inflammatory

factors may be associated with a decrease in fat mass. For example,

increased hepatic fatty acid oxidation increases circulating ketone body

levels, and serum b-hydroxybutyrate can inhibit NLRP3 inflammasome

activation, thereby reducing IL-1B levels (40). Additionally, fat and

muscle are significant sources of IL-6 (41). Although studies have

shown that a reduction in IL-6 is associated with higher baseline HbA1c

levels (42), this may be because IL-6 can lead to increased hepatic

glucose output, subsequently increasing blood glucose levels (43).

SGLT2is can improve the lipoprotein profile, with beneficial

changes in the human body being an increase in high-density

lipoprotein cholesterol (HDL-C) and a decrease in triglyceride (TG)

levels (36, 44). These changes are often common, but research findings

can sometimes be contradictory, particularly regarding changes in low-

density lipoprotein cholesterol (LDL-C). Bechmann et al.’s meta-

analysis of 60 RCTs, which were all the RCTs of SGLT2is published

at that time, reported an increase in total cholesterol (TC) and LDL-C

(44). Elevated LDL-C levels are harmful to the body and promote the

development of atherosclerotic cardiovascular disease (ASCVD) (45).

Rizos et al. reported that SGLT2is do not appear to improve arterial

stiffness, with no favorable changes observed in either pulse wave

velocity (PWV) or the augmentation index (AIx) (46). However,

numerous studies have demonstrated that SGLT2is can reduce

ASCVD events in patients with T2DM (47–49). Additionally, the

meta-analysis by Li et al. did not reveal significant changes in TC or

LDL-C, with themajority of patients included in this study also suffering

from NAFLD and T2DM (36). Current evidence suggests that SGLT2is

offer substantial cardiovascular benefits for patients with NAFLD.

Furthermore, SGLT2is reduce hepatic fat, thereby lowering the risk

in patients with NAFLD. Enhanced insulin action in the hypothalamus

(50), along with a significant decrease in serum soluble dipeptidyl

peptidase-4 (sDPP-4) levels (51), can lead to a reduction in liver fat.

sDPP-4 is secreted by hepatocytes and promotes hepatic fat synthesis

by degrading glucagon-like peptide-1 (GLP-1) while also inducing

adipose tissue inflammation and insulin resistance. In summary,

SGLT2is promote lipolysis while simultaneously inhibiting hepatic fat

synthesis. Moreover, SGLT2is have been shown to reduce liver enzyme

levels (ALT, AST, GGT) in patients with NAFLD (36, 52, 53), improve

hepatic steatosis (controlled attenuation parameter (CAP), L/S ratio,

MRI-PDFF), and ameliorate liver fibrosis (liver stiffness measurement

(LSM), FIB-4 index) (36, 53–56). It has been proposed that SGLT2is

could serve as the first-line treatment for patients with T2DM

complicated by NAFLD (26, 57).
2.3 Energy metabolism and fuel conversion

According to the “thrifty substrate” hypothesis, SGLT2is lead to

an elevated circulating level of b-hydroxybutyrate (b-OHB), which
Frontiers in Endocrinology 04
then competes with acetyl-CoA from FFA oxidation and glucose-

derived pyruvate for entry into the tricarboxylic acid (TCA) cycle.

As an energy substrate, b-OHB consumes less oxygen, thereby

increasing myocardial efficiency while reducing reactive oxygen

species generated by excessive FFA oxidation rates, lowering

oxidative stress, and improving mitochondrial function (58).

However, some studies have raised doubts about the “thrifty

substrate” hypothesis. Although elevated circulating levels of b-
OHB increase the likelihood of myocardial substrate utilization,

they do not significantly improve myocardial energy metabolism,

LV mass, or cardiac contractile function. For example, a study by

Gaborit et al. showed that after 12 weeks of treatment with

empagliflozin, although the liver fat content (LFC) was

significantly reduced by 27%, there was no significant effect on

myocardial or epicardial fat, and myocardial energetics (PCr/ATP)

also did not significantly change (59). A study by Pietschner et al.

demonstrated that after 12 weeks of empagliflozin treatment in

patients with stable chronic heart failure (CHF), although there was

an overall reduction in blood pressure and improvement in vascular

function, the increase in b-OHB levels partially offset these benefits

(60). Another study showed that empagliflozin treatment for one

month did not alter ketone body concentrations in patients

hospitalized with acute HF, further confirming that SGLT2is do

not increase the risk of diabetic ketoacidosis, as the initial phase of

acute HF is already accompanied by a significant increase in

circulating total ketone body (TKB) concentrations (61).

Overall, elevated ketone body levels may not significantly

improve cardiac function in the early stages, but in most cases,

they do not impair cardiac function or increase the risk of adverse

cardiac events, demonstrating good safety. Cardiac energy

metabolism is highly flexible and can switch between different

energy sources on the basis of substrate availability. For example,

one of the characteristics of heart failure with a reduced ejection

fraction (HFrEF) is an increased reliance on ketone bodies in the

context of reduced fatty acid and glucose oxidation (62). Oldgren

et al. reported that in patients with type 2 diabetes without heart

failure, although dapagliflozin treatment for 6 weeks did not

increase cardiac fatty acid uptake or improve myocardial

efficiency, it significantly reduced LV work (-0.095 [-0.145,

-0.043] J/g/min) and LV oxygen consumption (-0.30 [-0.49, -0.12]

J/g/min) (63). Although existing evidence suggests limitations to the

“thrifty substrate” hypothesis, the potential role of ketone bodies in

cardiovascular benefits cannot be denied.
2.4 Uric acid metabolism and oxidative
stress

One of the mechanisms by which SGLT2is protect the kidneys

is through reducing plasma uric acid (UA) levels, but this effect is

not achieved by decreasing UA production but rather by increasing

UA excretion (64). This process primarily involves urate

transporter 1 (URAT1) and glucose transporter 9 (GLUT9).

However, the effects of SGLT2is on URAT1 and GLUT9 remain

controversial. For example, SGLT2is do not increase urate excretion
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in URAT1-deficient mice, and GLUT9 appears to be nonessential

for the urate excretion effect of canagliflozin (65). When

empagliflozin is combined with the URAT1 inhibitor

benzbromarone, the effect is inferior to that of benzbromarone

alone (66). Although the significant role of URAT1 in renal uric

acid reabsorption cannot be overlooked, the uricosuric effect of

SGLT2is may rely more on GLUT9 isoform 2. For example, studies

have shown that luseogliflozin does not directly affect the activity of

proteins such as URAT1, GLUT9 isoform 1, and OAT4, but an

increase in the luminal glucose concentration stimulates GLUT9

isoform 2 and inhibits its uric acid reabsorption (67).

However, multiple studies have also indicated that the effects of

SGLT2is on reducing UA levels are associated with baseline HbA1c

levels: in patients with lower baseline HbA1c and higher baseline

UA levels, the reduction in UA levels is more significant (68–71).

This finding appears to contradict the role of GLUT9 in reducing

uric acid reabsorption through a glucose-dependent mechanism. In

summary, the mechanism by which SGLT2is promote uric acid

excretion may not depend entirely on transporters expressed in

renal tubular epithelial cells (such as URAT1 and GLUT9) but

rather involves more complex physiological processes.

SGLT2is exert significant cardiovascular and renoprotective

effects by reducing UA levels. Studies have shown that SGLT2is,

when improving cardiovascular outcomes in patients with T2DM,

are often accompanied by a significant decrease in UA levels,

including heart failure (72–74), acute myocardial infarction

(AMI) (75), and gout outcomes in atherosclerotic cardiovascular

disease patients (76). Notably, the ability of SGLT2is to reduce UA

levels and the risk of cardiovascular events is independent of the

patient’s heart failure status (77). A recent meta-analysis revealed

that SGLT2is significantly reduce serum uric acid levels, with

empagliflozin showing the most pronounced effect (-46.75 mmol/

L) (78). In patients with type 2 diabetes mellitus (T2DM), baseline

uric acid (UA) levels are closely associated with cardiorenal

outcomes and the risk of mortality (79). Elevated serum uric acid

(SUA) levels can increase the risk of cardiovascular mortality in

patients with chronic kidney disease (CKD) (80) and are associated

with increased risks of all-cause mortality and cardiovascular

disease (CVD) mortality in diabetic patients (81).

Uric acid can also serve as a key clinical indicator of oxidative

stress (82). Oxidative stress increases tissue oxygen consumption

and impairs mitochondrial function. Studies have shown that

SGLT2is improve mitochondrial biogenesis by activating the

AMPK/SIRT1/PGC-1a pathway, thereby reducing oxidative stress

(83, 84). Oxidative stress increases tissue oxygen consumption and

impairs mitochondrial function. Studies have shown that SGLT2is

improve mitochondrial biogenesis by activating the AMPK/SIRT1/

PGC-1a pathway, thereby reducing oxidative stress (85, 86).

Furthermore, long-term SGLT2i treatment can stimulate renal

erythropoietin secretion or hypoxia-inducible factor (HIF),

promoting erythropoiesis (87–89). This improvement in renal

oxygenation may confer significant renal benefits, as hypoxic

injury is a common mechanism leading to adverse renal

outcomes (90–92). Several mediation analyses from the

EMPA-REG OUTCOME and CANVAS trials have indicated that
Frontiers in Endocrinology 05
changes in hematocrit and hemoglobin levels mediate a substantial

portion of the benefits of SGLT2is (93, 94), with their effects

surpassing those of changes in urate and the urinary albumin-to-

creatinine ratio (UACR) in improving renal outcomes (94).
3 Clinical significance of metabolic
regulation

3.1 Cardiovascular protection

SGLT2is have been incorporated into the HF treatment

guidelines as a Class I recommended medication and are

applicable to all HF patients across the spectrum of ejection

fractions (95). Research indicates that SGLT2is can reduce

cardiovascular events and mortality in elderly or frail, high-risk

T2DM patients with HF (96), decrease HF events in CKD patients

(97), and, through combination therapy, improve metabolism in

symptomatic adult congenital heart disease (ACHD) patients (98).

These studies not only expand the clinical application scope of

SGLT2is but also provide in-depth insights into their potential

mechanisms of action. SGLT2is can remodel the left ventricle,

improving its structure and function. A meta-analysis by Savage

et al. demonstrated that SGLT2is can improve left ventricular

function in patients with HF, and a trend toward improvement in

left atrial-related indices was also observed (99).

Empagliflozin also has similar cardioprotective effects in

patients with prediabetes (100). The cardiovascular benefits of

SGLT2is are independent of glycemic control, and a 6-month

treatment failed to improve left atrial function in high-risk

patients (101). Interestingly, one study found that for patients

with acute decompensated heart failure (ADHF), empagliflozin

treatment for 5 days improved left atrial volume (102). The

inconsistency in therapeutic efficacy may be associated with

baseline disease conditions and the patient’s own organic changes,

which suggests the importance of personalized treatment in the

future. Moreover, SGLT2is can reduce NT-proBNP levels in HF

patients, with canagliflozin showing the most significant effect

(103). In terms of quality of life (QoL), SGLT2is significantly

improved quality of life, as assessed by the Kansas City

Cardiomyopathy Questionnaire Overall Summary Score (KCCQ-

OSS), after 3 months of treatment (104). Compared with HFpEF,

empagliflozin is superior in improving exercise capacity and QoL in

patients with heart failure with a reduced ejection fraction

(HFrEF) (105).

In patients with myocardial infarction (MI), SGLT2is

significantly reduced the hospitalization rate for heart failure (HF)

(106–109), regardless of whether the MI occurred recently or in the

past (110). A meta-analysis by Mukhopadhyay et al. indicated that

SGLT2is reduced the risk of major adverse cardiovascular events

(MACEs) in patients with T2DM but did not affect MI or stroke

(111). A meta-analysis of 13 randomized controlled trials by Liang

et al. further confirmed that SGLT2is significantly reduced the risk

of nonfatal myocardial infarction by 12% in patients with T2DM

but had no significant effect on the risk of nonfatal stroke. Notably,
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the study by Liang et al. included four studies from the analysis by

Mukhopadhyay et al., with a larger sample size, rendering the

results more representative. Research by Asham et al.

demonstrated that SGLT2is could reduce all-cause mortality (OR,

0.55; 95% CI, 0.38–0.81; P = 0.002; I² = 0%) and improve the left

ventricular ejection fraction (SMD, 0.36; 95% CI, 0.02–0.70; P =

0.04; I² = 62%) (108). A recent study by Jia et al. reported for the

first time that SGLT2is can reduce the risks of HF combined with

cardiovascular death, all-cause mortality, severe arrhythmias, and

renal injury while improving left ventricular function (112). This

finding contradicts previous findings that SGLT2is do not

significantly improve the risks of all-cause mortality,

cardiovascular death, or all-cause hospitalization (106, 107, 110).

Although there are some differences in the results of various meta-

analyses, some studies have been included repeatedly. On the basis

of the current evidence, SGLT2is can significantly reduce the HF

hospitalization rate in MI patients and may improve all-cause

mortality and MACEs, but further precise evaluation is still needed.

SGLT2is also exert cardiovascular protective effects in patients

with atrial fibrillation (AF) and arrhythmias. Studies have shown

that SGLT2is can reduce the risk of arrhythmias or atrial fibrillation

in patients with T2DM (113). Additionally, SGLT2is can decrease

all-cause mortality (RR, 0.37; 95% CI, 0.28–0.50), heart failure (RR,

0.66; 95% CI, 0.53–0.83), stroke (RR, 0.76; 95% CI, 0.66–0.88), and

cardiovascular mortality (RR, 0.57; 95% CI, 0.44–0.74) in T2DM

patients with AF (114). SGLT2i therapy can also prevent the

recurrence of AF after catheter ablation in patients with T2DM

(115). However, for high-risk patients (such as those with

concurrent HF or CKD, although SGLT2is have potential

metabolic benefits), SGLT2i therapy does not significantly reduce

the risk of AF occurrence (116).
3.2 Potential for combination therapy

As an adjunct to insulin therapy, SGLT2i therapy can effectively

reduce blood glucose levels, decrease body weight, and reduce

insulin dosage requirements in patients with type 1 diabetes

(T1D). However, its potential adverse effects, such as

hypoglycemia and diabetic ketoacidosis (DKA), require careful

evaluation. Multiple clinical studies have shown that there are

differences in the safety profiles of various SGLT2is: canagliflozin

(100/300 mg) increased the incidence of ketoacidosis-related

adverse events during an 18-week treatment period (117);

dapagliflozin (5/10 mg) was associated with some mild adverse

reactions, such as nasopharyngitis or urinary tract infections, and

had a lower incidence of severe hypoglycemia during a 24-week

treatment period, although the risk of DKA still warrants caution

(118, 119); and the 52-week treatment outcomes of sotagliflozin

(400 mg) indicated risks of DKA and hypoglycemia (120, 121). In

contrast, the risk of DKA with empagliflozin is dose-dependent (10

mg: 4.3%; 25 mg: 3.3%; 2.5 mg: 0.8%) and does not increase the risk

of hypoglycemia (122). Additionally, ipragliflozin (50 mg) did not

cause significant safety concerns during the 24-week treatment

period (123). Recent studies have shown that the combination of
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dapagliflozin (10 mg) with a glucagon receptor antagonist (GRA)

increases glucose-lowering efficacy and reduces the risk of DKA.

However, the study had a small sample size (n=12), and larger-scale

trials are needed for validation (124). On the basis of the existing

evidence, ipragliflozin demonstrates a superior safety profile,

whereas a low dose of empagliflozin (2.5 mg) may be a preferable

option for patients at risk of hypoglycemia.

As SGLT2is are glucose-lowering, their combined effects with

other hypoglycemic drugs are noteworthy. There may be crosstalk

between the mechanisms of action of these hypoglycemic agents,

and whether their combination results in additive or diminished

effects warrants further exploration to optimize blood glucose

management. The combination with GLP-1 receptor agonists

does not lead to hypoglycemia, and the effects are independent.

Both drugs individually have protective effects on the cardiovascular

system and kidneys, and their combination does not interfere with

each other (125, 126). However, in the prevention of major adverse

cardiovascular and cerebrovascular events (MACCEs) and heart

failure, their combination has synergistic effects (127). When

combined with pioglitazone, SGLT2is have additive effects in

terms of hypoglycemia and weight reduction and further reduce

the risk of HF (128). When used in combination with metformin,

SGLT2is significantly reduce inflammatory markers through anti-

inflammatory mechanisms (129) and do not increase the risk of

fractures (130). Moreover, the combination does not affect the

cardiovascular benefits of SGLT2is (131). Additionally, triple

therapy (SGLT2i + metformin + DPP-4 inhibitor) can provide

better glycemic control but may increase the risk of genital

infections (132). Therefore, when a combination regimen is

selected clinically, it is necessary to balance efficacy and safety

and to individualize treatment strategies.

The combination of SGLT2is with renin–angiotensin system

blockers, including ACE inhibitors and ARBs, has synergistic

effects on the treatment of type 2 diabetes mellitus (T2DM).

This combination not only enhances glucose-lowering and

blood pressure-lowering effects but also significantly improves

renal outcomes, although it may increase the risk of hypoglycemia

and genital infections (133, 134). In patients with diabetic kidney

disease (DKD) and CKD, the combination of SGLT2is with

ACEIs/ARBs effectively protects renal function and slows the

progression of kidney disease (135, 136). Furthermore, the

combination of SGLT2is with mineralocorticoid receptor

antagonists (MRAs) provides additional cardiovascular benefits

for patients with T2DM and CKD while reducing the risk of

hyperkalemia (137). More notably, combination therapy with

SGLT2i and angiotensin receptor–neprilysin inhibitor (ARNI)

has demonstrated significant efficacy in patients with HFrEF: it

reduces the risk of the composite endpoint of heart failure

hospitalization or cardiovascular death by 32%, decreases

cardiovascular death by 36%, and decreases all-cause mortality

by 28%, although it may increase the risk of hypovolemia (138).

Combination with sacubitril-valsartan (SV) can also enhance

cardiovascular protection in HFrEF patients (139). These

findings provide important evidence for optimizing cardiorenal

protection strategies in patients with T2DM (Table 1).
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TABLE 1 SGLT2i combination therapy.

References Type
of study

Disease Drugs Combination
medication

Effect

(117–123) RCT T1D Kagliflozin, Dapagliflozin,
Soragliflozin,
Empagliflozin, Ipagliflozin

insulin Reduce fasting blood sugar HbA1c, Weight,
pancreatic islet basal/recommended dose,
with risks of hypoglycemia and DKA.

(124) RCT T1D Dapagliflozin
+GRA (Valacizumab)

Insulin GRA enhances the therapeutic effect of
SGLT2i on T1D while reducing the risk
of DKA

(125–127) meta-analysis T2D SGLT2is GLP-1 Significantly reduce blood sugar and systolic
blood pressure without increasing the risk
of hypoglycemia. However, the effect of the
combined application is not additive, and
single-use has a better effect. Combined use
is beneficial for the prevention of MACCE
and HF.

(128) meta-analysis T2D SGLT2is Pioglitazone The effect of reducing HbA1c, body weight,
and SBP is better than using SGLT2i alone,
reducing the risk of heart failure.

(129–131) meta-analysis T2D SGLT2is Metformin Lowering blood sugar and lowering levels of
inflammatory factors such as CRP, TNF - a,
UA, leptin, etc., does not lead to fracture
risk and does not affect the CV benefits of
SGLT2 inhibitors.

(132) meta-analysis T2D SGLT2is Metformin+DPP-
4 inhibitor

Significantly improves blood sugar, weight,
and blood pressure, with better efficacy than
the combination therapy of SGLT2
inhibitors and metformin, but increases the
risk of reproductive tract infections.

(133, 134) meta-analysis T2D SGLT2is ACEI/ARB Better blood sugar and blood pressure
control, improved kidney outcomes,
alleviated long-term kidney function,
increased risk of hypoglycemia and
genital infections

(135) meta-analysis DKD SGLT2is ACEI/ARB Significantly reduced albuminuria, HbA1c,
and SBP, delayed progression to end-stage
renal disease (ESRD), and had no
significant impact on the incidence of
kidney-related adverse events or kidney-
related mortality

(136) meta-analysis CKD SGLT2is ACEI/ARB Significantly reduced 24-hour urinary
albumin excretion rate (24-hour UAE) and
creatinine elevation rate, delayed
progression to end-stage renal disease, with
no significant impact on the incidence of
renal-related adverse events or renal-
related mortality

(137) meta-analysis T2D+CKD SGLT2is MRA Reduce cardiovascular (CV) events and
lower the risk of hyperkalemia.

(138) meta-analysis HFrEF SGLT2is ARNI Cardiovascular mortality decreased by 36%
and all-cause mortality decreased by 28%.
Although the estimated treatment effect is a
55% increase in blood volume deficiency,
more attention should be paid to blood
volume deficiency.

(139) meta-analysis HFrEF SGLT2is Sacubitril
Valsartan (SV)

Enhance the cardiovascular protective effect
of SGLT2i.
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4 Future directions and challenges

Although SGLT2is have demonstrated significant pleiotropic

effects in the treatment of T2DM and related complications, their

clinical application still faces numerous challenges. Future research

needs to further optimize treatment strategies and explore the

underlying mechanisms involved. Currently, the efficacy of

SGLT2is is heterogeneous across different patient populations, and

future studies should focus on screening biomarkers to predict

patients’ responses to SGLT2is. Additionally, precision medicine

models based on artificial intelligence and big data may help

optimize dosing regimens and achieve individualized treatment.

The pleiotropic mechanisms of SGLT2is have not been fully

elucidated, particularly the specific pathways through which they

affect adipose tissue remodeling, myocardial energy metabolism, and

renal protection. Future research should integrate metabolomics,

imaging, and molecular biology techniques to further elucidate the

underlying mechanisms of SGLT2is in organ protection.

Additionally, the impact of SGLT2is on emerging fields, such as the

gut microbiota and immune regulation, also warrants exploration.

In conclusion, the potential of SGLT2is in the management of

T2DM remains to be fully explored. Future research should

integrate basic and clinical sciences to advance the development

of personalized treatment strategies and address existing challenges,

thereby maximizing long-term benefits for patients.
5 Summary

SGLT2is exhibit extensive pleiotropic effects in the treatment of

T2DM and its complications through a unique mechanism. This

article systematically reviews the significant roles of SGLT2is in

metabolic regulation, cardiovascular protection, and combination

therapy. It also proposes that, on the basis of the metabolic

pleiotropy of SGLT2is, the development of individualized treatment

strategies is the future trend in the application of SGLT2is. The effects

of combination therapy can be synergistic, additive, or independent

and carry risks of adverse events such as hypoglycemia, DKA, and

local tissue inflammation. Therefore, evaluating the treatment

duration, as well as the dosage form and dosage of the medication,

are critical factors in targeted therapy. Future research should further

explore the precise application of SGLT2is in different populations as

well as their long-term safety and their protective mechanisms for

specific organs.

In summary, SGLT2is are not only efficient hypoglycemic

agents but also multifunctional metabolic modulators, offering a
Frontiers in Endocrinology 08
new therapeutic paradigm for the management of T2DM and its

complications. With further research, the clinical application

prospects of SGLT2is will become even broader, resulting in

increased benefits for patients.
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