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FoxO3a: capture the bond
between magnesium and
diabetic kidney disease
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Hyperglycemia in Diabetic Kidney Disease (DKD) induces excessive accumulation

of reactive oxygen species (ROS) through various pathways, leading to oxidative

stress, ferroptosis, and mitochondrial dysfunction, which collectively contribute

to kidney damage. Currently, the treatment of DKD remains a significant

challenge. Magnesium, an essential mineral, has emerged as a promising

therapeutic agent for DKD due to its anti-inflammatory and antioxidant

properties. Magnesium has been shown to alleviate renal fibrosis, maintain

tubular integrity and function, improve endothelial cell function, and regulate

renal hemodynamics. As a cofactor of antioxidant enzymes, Magnesium directly

scavenges ROS and enhances the expression of antioxidant proteins. This review

explores the relationship between Magnesium and DKD, examining how

Magnesium mitigates oxidative stress through the PI3K/AKT/FoxO3a pathway,

inhibits ferroptosis in renal tubular epithelial cells via the AMPK/FoxO3a/Nrf2

pathway, and reduces autophagy and apoptosis, thereby delaying DKD

progression. The review further discusses how Magnesium regulates the

pivotal FoxO3a protein, a transcription factor with antioxidant properties,

leading to the prevention of DKD, and proposes Magnesium supplementation

as a potential clinical strategy for alleviating DKD, offering a new therapeutic

approach for its treatment.
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1 Introduction

Diabetic Kidney Disease (DKD) is a progressive kidney disease and a common

complication of diabetes mellitus. Persistent proteinuria (>300 mg/day or >200 mg/
minute) on at least two occasions over a period of three to six months after diabetes

diagnosis indicates the onset of DKD, which is accompanied by a gradual decline in

glomerular filtration rate. DKD is considered the leading cause of chronic kidney disease

and end-stage renal failure (1).

The progression of DKD is closely linked to oxidative stress and cell death induced by

hyperglycemia (2). Oxidative stress, in turn, promotes an inflammatory response, creating

an oxidative stress-inflammatory cycle that damages renal podocytes, endothelial cells, and
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tubular epithelial cells (3). The pathogenesis of DKD is related to

metabolic irregularities, oxidative stress, and iron-mediated

damage, each contributing to the progression of DKD either

independently or synergistically (4). Therefore, a comprehensive

investigation of the underlying mechanisms of DKD is crucial for

identifying potential therapeutic targets and developing more

effective treatment strategies and pharmacological interventions

for DKD.

Magnesium, an essential mineral, plays a key role in numerous

physiological processes and has been shown to have protective

effects against DKD (5). Magnesium supplementation has been

associated with improved prognosis in both animal and clinical

studies focused on diabetes and its complications (6, 7).

Furthermore, Magnesium, as an important regulator of

antioxidants, may influence ferroptosis, warranting further

investigation. Therefore, understanding the molecular

mechanisms of Magnesium in DKD and exploring its therapeutic

significance are essential for developing novel strategies to treat

DKD and related disorders.

Members of the FoxO family, FoxO1, FoxO3, FoxO4, and

FoxO6, are expressed in various body tissues and involved in the

regulation of various cellular functions. FOXO proteins are highly

involved in diabetic complications as they are responsible for

regulation of oxidative stress, apoptosis, autophagy, inflammation,

etc., which are also the major underlying causes in the development

of diabetic complications (8, 9).

Therefore, this review elucidates the relationship between

Magnesium and DKD, as well as the interactions between the

FoxO family and Magnesium in the pathogenesis of DKD. This

review discusses the alleviation byMagnesium of oxidative stress via

the FoxO3a pathway, the inhibition of ferroptosis in renal tubular

epithelial cells through the AMPK/FoxO3a/Nrf2 pathway. This

review also further details the effect of Magnesium on the

pathogenesis of DN via the FoxO3a protein, a transcription factor

with antioxidant properties. At the end of the review, we also

discuss the potential supplementation of Magnesium as a clinical

approach to alleviate DN.
Abbreviations: SE-BI, scavenger receptor; TRPM7, cation channel; GSH,

glutathione; TGF-b, transforming growth factor-b; TNF-a, tumor necrosis

factor; TGFR-b1, transforming growth factor receptor-b1; IRF-1, Interferon

regulatory factor-1; ErK1/2, extracellular regulated protein kinases1/2; SMAD;

Smad protein; Klotho, Klotho gene; JNK, Jun kinase; NF-kB, nuclear factor-kB;

AMPK, AMP-activated protein kinase; FoxO3a, Forkhead box O3; P,

phosphorylation; Ub, Ubiquitination; PPARg, peroxisome proliferators-

activated receptor-g; PGC-1a, Peroxisome proliferator-activated receptor-

gamma coactivator-1a; SIRT, Sirtuins; ROS, reactive oxygen species; BIM,

BCL-like 11; BAX, BCL2-Associated X; RyR/RaM/NCX/MCU/PTP, Calcium

channels; MrS2, Magnesium channel; ACoA, Acetyl-CoA; TCA, tricarboxylic

acid cycle.;SGK, Serum and glucocorticoid-induced protein kinase; PI3K,

phosphoinositide 3-Kinase; MST1, Mammalian STE20-like kinase-1; Thr,

threonine residue; Ser, serine residue; ErK, extracellular regulated protein

kinases; AKT, Protein Kinase B; BCL-2, Bcl-2 gene; PVMA, Members of the

BH3-only subfamily.
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This review was conducted in accordance with the PRISMA

(Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) guidelines. A comprehensive literature search was

performed using PubMed, Web of Science, and Scopus, covering

publications from January 2012 to December 2024.

The search strategy included a combination of the following

keywords and Medical Subject Headings (MeSH), using Boolean

operators: “Magnesium” AND “diabetic kidney disease” AND

“FoxO3a” AND (“oxidative stress” OR “ferroptosis”) AND (“PI3K/

Akt”OR “AMPK”OR “Nrf2”) AND “Magnesium supplementation”.

The inclusion criteria were: Peer-reviewed original research

articles and review papers; studies published in English; articles

focusing on the role of Magnesium, FoxO3a, oxidative stress, and

ferroptosis in diabetic nephropathy.

The exclusion criteria included: Conference abstracts, editorials,

case reports, and commentaries; studies irrelevant to DN or lacking

mechanistic discussion related to Magnesium or FoxO3a.

A total of 300 articles were identified. After removing 60

duplicates, 240 records remained. Following title and abstract

screening, 80 articles were excluded. After full-text assessment, an

additional 23 articles were excluded due to irrelevance or

insufficient mechanistic detail. Finally, 137 studies were included

in this review. The selection process is outlined in Figure 1

(PRISMA Flow Diagram).
2 Magnesium and DKD

Magnesium ions (Magnesium) are important regulators of

enzymes involved in glycolysis, assisting in the regulation of

adenine nucleotides. Additionally, Magnesium plays a role in

regulating insulin secretion. A study has shown that average

Magnesium levels in patients with diabetes are significantly lower

compared to non-diabetic individuals (10). This suggests a close

relationship between Magnesium and DKD.

A decade ago, study have shown that patients with type 2

diabetes mellitus exhibit serum Magnesium deficiency and elevated

urinary Magnesium excretion, and the deficient Magnesium

metabolism also related to the disease progression and

development of complications (11). The study also demonstrated

that serum Magnesium levels are also significantly reduced in a

mouse model of type 1 diabetes mellitus (12). Additionally, a study

with animals has demonstrated that Magnesium deficiency induces

an inflammatory response and overactivates leukocytes and

macrophages, leading to the overproduction of inflammatory

cytokines, acute-phase proteins, and ROS, which increase the

incidence and severity of DKD (13). These findings confirm

reduced serum Magnesium levels in diabetes; however, whether

Magnesium deficiency exacerbates diabetes progression and

promotes DKD remains to be fully explored. The study has

shown that serum Magnesium concentration in DKD patients is

negatively correlated with serum creatinine levels, while urinary

Magnesium concentration is positively correlated with estimated

glomerular filtration rate (eGFR) (11). Moreover, serum

Magnesium levels decrease with renal impairment in DKD
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patients (5). There is also growing evidence that Magnesium

deficiency affects the tricarboxylic acid (TCA) cycle, increases the

risk of hyperinsulinemia, and leads to insulin resistance (14),

thereby exacerbating DKD progression. Furthermore, Magnesium

deficiency affects lipid metabolism and the antioxidant system,

contributing to the development of other metabolic disorders.

Previous studies indicate that low serum Magnesium is

significantly associated with DKD and can serve as a risk marker

for predicting DKD development (14, 15). In summary, a

bidirectional relationship between Magnesium deficiency and

DKD has been demonstrated. Magnesium deficiency leads to

impaired glucose tolerance and insulin resistance, contributing to

DKD progression and worsening its prognosis. Furthermore, DKD

patients are significantly associated with hypomagnesemia, and

Magnesium can serve as a predictor for DKD development (15,

16). Current clinical trials indicate that Magnesium has a

nephroprotective role in DKD (17, 18); however, further research

is needed to elucidate the specific mechanisms through which

Magnesium regulates DKD.
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3 Mechanisms of magnesium
regulating cell physiological process
to improve DKD

The aforementioned studies confirm that Magnesium

deficiency causes oxidative stress and exacerbates diabetes

progression and DKD-related kidney damage. Magnesium may

alleviate DKD by regulating physiological and pathological

processes, including oxidative stress, ferroptosis, and

mitochondrial apoptosis (14, 18, 19).
3.1 Regulating oxidative stress

Oxidative stress refers to the excessive accumulation of ROS

resulting from an imbalance between oxidative and antioxidant

systems, ultimately leading to cellular damage. One typical

consequence of excessive ROS accumulation is lipid peroxidation,
FIGURE 1

PRISMA flow diagram illustrating the study-selection process. Records (n = 300) were retrieved from PubMed, Web of Science, and Scopus using the
search string “Magnesium” AND “diabetic nephropathy” AND “FoxO3a” AND (“oxidative stress” OR “ferroptosis”) AND (“PI3K/Akt” OR “AMPK” OR
“Nrf2”) AND “magnesium supplementation” (2012 – 2024). After removing duplicates (n = 60), 240 records were screened by title and abstract; 80
were excluded as irrelevant. The full texts of the remaining 160 articles were evaluated in detail, and 23 were excluded for lacking mechanistic data
or relevance to magnesium/FoxO3a in diabetic nephropathy. A total of 137 studies met all inclusion criteria and were incorporated into the present
review.
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which damages cell membranes and impairs renal cell function (20),

thereby promoting DKD progression. In DKD, persistent

hyperglycemia is the primary cause of oxidative stress, leading to

an excessive increase in ROS that overwhelms the body’s

antioxidant capacity. This induces DNA and protein damage,

alters renal tubular structure and function (21), and ultimately

exacerbates renal and systemic damage (22).

In summary, oxidative stress accelerates glomerular injury,

tubular atrophy, and interstitial fibrosis, ultimately resulting in

decreased renal function and renal failure. Therefore, alleviating

oxidative stress is crucial for treating DKD. Clinical treatments

targeting oxidative stress are now emerging. Magnesium as a

treatment was reported to considerably reduce insulin resistance

and blood glucose levels, as well as attenuate renal hypertrophy and

ameliorate associated inflammation in rats with DKD (23, 24.

Magnesium is an essential mineral with multiple physiological

functions and plays a potential role in mitigating oxidative stress,

primarily by regulating various cellular and enzymatic processes in

the antioxidant defense mechanism. One mechanism through

which Magnesium alleviates oxidative stress is by leveraging its

antioxidant properties. Magnesium is involved in numerous

enzymatic reactions in vivo and exhibits antioxidant, anti-

inflammatory, and anti-apoptotic effects (25). Magnesium

modulates the expression and activity of several proteins involved

in oxidative stress regulation to confer resistance against oxidative

damage. Magnesium acts as a cofactor for antioxidant enzymes such

as superoxide dismutase (SOD), which converts superoxide radicals

into less reactive substances; glutathione peroxidase (GPX), which

detoxifies lipid peroxides with the help of glutathione (GSH). By

enhancing these enzyme activities, Magnesium helps prevent

oxidative damage. In addition, Magnesium possesses anti-

inflammatory properties. Inflammation induces oxidative stress,

which, in turn, exacerbates the inflammatory response, creating a

cycle of mutual reinforcement. Studies have shown that Magnesium

inhibits the production of pro-inflammatory cytokines such as

interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a), as
well as the activation of NF-kB, a key transcription factor in the

inflammatory response (6, 26). By reducing inflammation,

Magnesium indirectly reduces ROS production and oxidative

stress damage. Furthermore, ferroptosis, a form of regulated cell

death closely linked to oxidative stress, also contributes to the onset

and progression of DKD.
3.2 Regulating ferroptosis

Ferroptosis is a recently identified non-apoptotic form of cell

death, characterized by lipid peroxidation due to intracellular iron

accumulation and the regulation of multiple genes and

proteins (27).

At least four defense mechanisms against cellular ferroptosis

have been identified (28, 29), including the cytoplasmic and GSH-

GPX4 system, the cytoplasmic ferroptosis suppressor protein 1

(FSP1)-coenzyme Q10 (CoQ10) system, the mitochondrial

dihydroorotate dehydrogenase (DHODH)-CoQ system, and the
Frontiers in Endocrinology 04
guanos ine t r iphospha t e cyc lohyd ro l a s e 1 (GCH1) -

tetrahydrobiopterin (BH4) system. (1) The GSH-GPX4 system

(30) is the primary defense mechanism against ferroptosis. It

imports extracellular cystine via the cystine-glutamate antiporter

(composed of SLC7A11 and SLC3A2), which is then reduced to

cysteine intracellularly for the synthesis of the major antioxidant,

glutathione (GSH). GPX4, a key regulator of ferroptosis, uses GSH

as its main cofactor to neutralize lipid peroxides, thereby inhibiting

ferroptosis. (2) The FSP1-CoQ10 system (31) inhibits ferroptosis

independently of the GSH-GPX4 pathway. FSP1 functions as an

NAD(P)H-dependent oxidoreductase that reduces CoQ10 to

ubiquinol (CoQH2), which prevents lipid peroxidation and

ferroptosis by neutralizing lipid peroxyl radicals. (3) In the

DHODH-CoQ system (32), DHODH reduces CoQ to CoQH2 in

the inner mitochondrial membrane. When GPX4 is inactivated,

DHODH-mediated CoQH2 production is enhanced, neutralizing

lipid peroxidation and preventing ferroptosis. (4) In the GCH1-

BH4 system (33), BH4 acts as an antioxidant capable of capturing

lipid peroxyl radicals, and GCH1 mediates the rate-limiting step of

BH4 synthesis. Additionally, GCH1 promotes CoQH2 production

to defend against ferroptosis. The DHODH-CoQ and GCH1-BH4

systems function in mitochondria, with the DHODH-CoQ

mechanism being fundamentally similar to that of FSP1-CoQ10,

both reducing CoQ to CoQH2.

DKD is one of the most severe complications of diabetes.

Persistent hyperglycemia stimulates the renal vasculature, altering

renal structure and function, and leading to metabolic dysfunction

(34). Following metabolic dysfunction, interactions among

oxidative stress , hemodynamic changes, and immune

dysregulation lead to renal cell apoptosis, autophagy, pyroptosis,

and ferroptosis. Ferroptosis damages b-cells and impairs insulin

secretion, and also affects key renal cells, including tubular epithelial

cells (TECs), podocytes, glomerular endothelial cells (GECs), and

glomerular mesangial cells, thereby promoting DKD progression

(35–38). In DKD, hyperglycemia leads to an overload of redox-

active iron (Fe2+) and an overaccumulation of ROS, creating

favorable conditions for ferroptosis. Additionally, studies have

shown that GPX4 expression is reduced to varying degrees in

both cells and kidneys in DKD models, weakening cellular

resistance to oxidative stress and promoting lipid peroxidation,

ultimately leading to ferroptosis (39).

Recent studies using cellular and animal models have confirmed

that inhibiting ferroptosis in renal cells slows the progression of

DKD. Mesangial cell damage is a fundamental pathological feature

of DKD (40). The study has shown that inhibiting ferroptosis in

renal mesangial cells can alleviate DKD (38). Secondly, ferroptosis is

also associated with podocyte damage in DKD patients. Podocytes

are a crucial component of the glomerular filtration barrier (GFB)

and have been found to regulate the GFB through endocytosis.

Podocyte injury is considered a primary mechanism underlying

GFB damage. The absence or inhibition of key ferroptosis-

preventing proteins, such as GPX4 and SLC7A11, can induce

ferroptosis. In vitro studies have shown that upregulating the

expression of these proteins can prevent podocyte injury in DKD

(41). Additionally, studies have demonstrated that inhibiting
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ferroptosis in renal tubular epithelial cells reduces diabetes-induced

tubular injury, thereby treating DKD (39, 42). As a newly

discovered form of cell death, ferroptosis plays a crucial role in

DKD and offers a novel therapeutic approach for DKD patients.

In the process of ferroptosis, Magnesium acts as a crucial

cofactor for enzymes involved in glutathione (GSH) production—

such as glutamate-cysteine ligase catalytic subunit (GCLC),

glutamate-cysteine ligase modifier subunit (GCLM), glutathione

disulfide reductase (GSR), and GSH synthase (GSS)—and also

activates transcription factors to regulate GPX gene and protein

expression (43). Additionally, Magnesium upregulates the

expression of Nrf2, a key transcriptional activator of antioxidant

responses. This enhances the ferroptosis defense system by

increasing the synthesis of endogenous antioxidants, mitigates

cellular damage and inflammatory responses in the hyperglycemic

state of DKD patients, and delays DKD progression.
3.3 Regulating mitochondrial apoptosis

Apoptosis plays a critical role in removing abnormal cells from

the body and can occur through two primary pathways: the extrinsic

pathway, mediated by apoptosis receptors, and the intrinsic pathway,

mediated by mitochondria and the endoplasmic reticulum. Renal

proximal tubular cells are rich in mitochondria (44). Therefore, the

mitochondria-mediated intrinsic apoptotic pathway in the renal

tubular system plays a key role in DKD.

The mitochondria-mediated intrinsic apoptosis pathway begins

with the accumulation of the pro-apoptotic protein BAX in the

mitochondrial membrane, followed by the release of cytochrome c

into the cytoplasm and activation of the caspase cascade, leading to

mitochondrial dysfunction, decreased mitochondrial redox levels,

and increased intracellular ROS, ultimately resulting in DNA

damage and cell death (18, 45). Mitochondria play a critical role

in the intrinsic apoptosis pathway (46, 47). They are targets of BCL-

2 family proteins, which are key regulators of the initiation of

intrinsic apoptosis (47, 48), and serve as resident targets for certain

intracellular apoptotic proteins (49).

Studies have shown that mitochondria serve as crucial intracellular

Magnesium stores, and Magnesium plays a role in regulating

mitochondrial function (50, 51). At the cellular level, Magnesium

enhances mitochondrial function by increasing ATP production,

decreasing mitochondrial ROS and intracellular calcium (Ca2+)

overload, repolarizing the mitochondrial membrane, and reducing

ROS production. Previous studies have demonstrated that

Magnesium is crucial for most glycolytic enzymes due to its ability

to form Magnesium -ATP2 complexes (52). Magnesium has been

shown to enhance the activities of three mitochondrial dehydrogenases

involved in energy metabolism, thereby regulating intracellular

oxidative phosphorylation. Additionally, Magnesium acts as an

activator of ATP synthesis through mitochondrial F0/F1-ATPase (53).

Beyond the cellular level, Magnesium can alleviate

mitochondrial apoptosis by stimulating mitochondrial enzymes,

modulating mitochondrial Ca2+ transport, and reducing pro-

inflammatory cytokine levels in renal cells. Magnesium also
Frontiers in Endocrinology 05
influences mitochondrial function and metabolic state by

stimulating mitochondrial enzymes, which subsequently affect

Magnesium concentrations in the matrix and cytoplasm (54, 55).

A bidirectional interaction appears to exist between Magnesium

and mitochondrial energy metabolism. The influence of

Magnesium on energy metabolism also impacts mitochondrial

Ca2+ transport. Mitochondria play a critical role in intracellular

Ca2+ homeostasis and signal transduction (56). Mitochondria

actively accumulate and release intracellular Ca2+ through various

Ca2+ channels on the mitochondrial membrane. Magnesium can

enhance energy metabolism and mitigate apoptosis by inhibiting

mitochondrial Ca2+ channels. The role of Magnesium in apoptosis

is often overlooked in comparison to Ca2+. By inhibiting Ca2+

channels, Magnesium further restricts Ca2+ entry into cells, reduces

levels of apoptosis-related proteins (e.g., caspase-3 and BAX), and

increases the expression of anti-apoptotic proteins such as BCL-2

(57). A related animal study has demonstrated that alleviating

podocyte apoptosis in rat glomeruli restores renal function,

mitigates glomerular injury, and reduces symptoms such as

proteinuria (58). Additionally, elevated pro-inflammatory

cytokine levels can activate caspase-3 and oxidative stress, while

NF-kB regulates the expression of downstream BCL-2 genes and

apoptosis (53). In fetal rats, Magnesium significantly reduces

intracellular levels of inflammatory factors such as caspase-3, NF-

kB, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-a),
and inhibits NF-kB acetylation, thereby reducing apoptosis (59, 60).

In a rat model of renal reperfusion injury, studies confirmed that

Magnesium inhibited caspase-3 activity and apoptosis (61).

In summary, Magnesium regulates mitochondrial apoptosis,

thereby protecting the kidney from damage during renal injury

progression. Magnesium deficiency induces apoptosis and impairs

cellular function (62, 63). Magnesium plays a central role in several

key signaling pathways that inhibit renal apoptosis and fibrosis, as

illustrated in Figure 2.
4 Mechanisms of magnesium
regulating cell signaling pathway to
improve DKD

Numerous signaling pathways influence DKD, with FoxO

family proteins being of particular interest due to their significant

role in DKD progression (64). Increasing evidence suggests that

FoxO transcription factors have antioxidant activity, primarily

reducing oxidative stress in DKD (64, 65). Recent research also

indicates that the FoxO family plays a crucial role in DKD

progression by inhibiting ferroptosis (66). Moreover, Magnesium

can regulate the FoxO family through various signaling pathways,

improving DKD outcomes.
4.1 The FoxO family and DKD

The FoxO fami l y in c l ude s FoxO1 Forkhead in

Rhabdomyosarcoma), FoxO3 (Forkhead in Rhabdomyosarcoma-
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like 1), FoxO4 (Acute lymphoid leukemia fused gene), and FoxO6

proteins. FoxO1 is predominantly expressed in adipose tissue, liver,

skeletal muscle, pancreas, and brain. FoxO3 is primarily expressed

in the liver, FoxO4 in muscle, and FoxO6 in the brain. These

proteins are encoded by distinct genes but share a common DNA-

binding domain. The FoxO domain consists of a forkhead region at

the N-terminal, a transactivation region at the C-terminal, and

nuclear localization/export domains that regulate its entry and exit

from the nucleus (67). Post-translational modifications can activate

or inhibit FoxO’s transcriptional activity by regulating its nuclear

localization (68, 69). FoxO plays a crucial role in cellular processes

such as proliferation, apoptosis, metabolism, oxidative stress, DNA

repair, and cell cycle arrest.

DKD is characterized by structural and functional

abnormalities of the kidneys in patients with diabetes. Structural

abnormalities include benign renal hypertrophy, increased

glomerular membrane thickness, interstitial fibrosis, and

glomerulosclerosis, whereas functional changes encompass

alterations in glomerular filtration rate, proteinuria, and

albuminuria (70). Oxidative stress is a primary driver of DKD

onset and progression. The study has shown that FoxO

transcription factors are strongly correlated with DKD and are

primarily involved in mitigating oxidative stress (64).
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FoxO transcription factors are categorized into four main

classes, with FoxO3a playing a crucial role in the progression of

DKD. Given FoxO3a’s crucial role in maintaining ROS

homeostasis, along with its widespread expression and

endogenous characteristics, it provides new opportunities for

studying antioxidant defense mechanisms.

4.1.1 FoxO3a
Functional studies have shown that phosphorylation and

acetylation of FoxO3a often occur simultaneously and interact with

each other (71). Non-phosphorylated FoxO3a remains in the nucleus,

while phosphorylation via the PI3K/Akt pathway translocates it to

the cytoplasm, inhibiting the transcriptional activation of its target

genes (72). Additionally, p38b-mediated phosphorylation

upregulates BCL-associated protein expression, leading to apoptosis

(73). Inmouse models of DKD, FoxO3a activation has been identified

as a potential antioxidant mechanism for alleviating DKD,

particularly through its translocation from the cytoplasm to the

nucleus (74). FoxO3a can also be activated by SIRT1 and SIRT3,

which deacetylate FoxO3a, enhancing its activity. Another animal

study on DKD confirmed that FoxO3a transcription factors play a

role in improving DKD (65). Under persistent hyperglycemia,

excessive ROS accumulation upregulates TGF-b1, which activates
FIGURE 2

Role of magnesium in oxidative stress and apoptosis. Magnesium deficiency also triggers oxidative stress and disrupts the integrity of cell
membranes, impairing DNA repair processes and contributing to apoptosis. In addition, Magnesium deficiency can also activate the caspase-8
signaling pathway to induce apoptosis and inhibit GSH activity, causing lipid peroxidation, excessive release of ROS, and directly or indirectly act on
PGC-1a, SIRTs to induce apoptosis, in which SIRT1 and the AMPK signaling pathway can directly promote FoxO3a signaling pathway
phosphorylation, and AMPK can inhibit the phosphorylation of FoxO3a by AKT to indirectly regulate FoxO3a. AKT phosphorylation of FoxO3a, which
in turn indirectly regulates FoxO3a.
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the PI3K/Akt-FoxO3a pathway. This leads to FoxO3a

phosphorylation and its binding with 14-3–3 proteins, resulting in

cytoplasmic translocation and inhibition of its activity, exacerbating

DKD progression (64), the relationship between FoxO3a and the

nucleus is shown in Figure 3. Inhibition of TGF-b1 and PI3K

preserves FoxO3a nuclear localization. Increased TGF-b1
expression in diabetes activates Akt, phosphorylating FoxO3a and

causing its nuclear export, regulating FoxO3a activity through the

TGF-b1-PI3K-Akt pathway. Thus, FoxO3a plays a crucial role in

mitigating oxidative stress in DKD. Additionally, hypoglycemic drugs

alleviate DKD by increasing FoxO3a and SIRT3 expression in

hyperglycemic conditions (75). Resveratrol activates the AMPK-

SIRT1-PPARa pathway, reducing FoxO3a phosphorylation and

increasing its expression in the renal cortex, improving DKD

symptoms (76).

Furthermore, FoxO3a plays a role in inducing cellular

autophagy—a highly conserved process in eukaryotes responsible

for recycling or degrading misfolded proteins and damaged

organelles to maintain cellular homeostasis (77). Autophagy is a

critical cellular process that regulates DKD progression. A recent

study by Dusabimana et al. demonstrated that reduced expression

of SIRT1 and FoxO3a inhibits autophagy gene induction and

promotes DKD progression, whereas restoring FoxO3a and

SIRT1 signaling pathways enhances autophagy, thereby reducing

DKD-associated pathological changes (78).
4.2 Mechanisms of magnesium regulating
the FOXO family to improve DKD

4.2.1 Regulating the PI3K/Akt/FOXO3a pathway
to alleviate oxidative stress

PI3K is a phosphoinositide kinase with three isoforms, of which

PI3K I is the most common (79). PI3K is activated by growth
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factors, cytokines, hormones, tyrosine kinases, and G-protein-

coupled receptors. In response to extracellular stimuli (e.g.,

insulin resistance), PI3K phosphorylates phosphatidylinositol 4,5-

bisphosphate (PIP2), producing phosphatidylinositol-3,4,5-

trisphosphate (PIP3), which leads to AKT translocation and

activation, catalyzed by phosphoinositide-dependent kinase-1

(PDK1) (80). Activated PI3K also recruits signaling proteins,

primarily AKT, to the intracellular membrane (81).

AKT, a serine/threonine kinase, is a central hub in numerous

signaling pathways and a critical mediator of the PI3K signaling

pathway. It exists in three isoforms: AKT I, ubiquitously expressed;

AKT II, predominantly found in insulin-sensitive tissues; and AKT

III, expressed in the testes and brain, regulating glucose and lipid

metabolism (82, 83). AKT activation occurs via two key

phosphorylation processes: PDK1 phosphorylates the kinase

domain of AKT1, initiating activation, followed by phosphorylation

of the C-terminal regulatory region by mTOR complex 2 (mTORC2)

via a PI3K-dependent mechanism (84, 85). Activated AKT regulates

cell survival, proliferation, migration, metabolism, and angiogenesis

(86). In insulin-responsive tissues, AKT II promotes GLUT4

translocation to the plasma membrane (87). AKT activation further

enhances PI3K/AKT signaling and regulates downstream molecules

such as glycogen synthase kinase, increasing insulin sensitivity and

protecting the vascular endothelium (88). In DKD, endothelial

dysfunction and glomerular damage exacerbate proteinuria and

promote DKD progression (89). Thus, alleviating oxidative stress

and endothelial dysfunction via the PI3K/AKT pathway is crucial for

improving DKD.

Magnesium regulates the PI3K/AKT signaling pathway in

DKD. Recent studies have shown that Magnesium reduces

vascular neointima formation after arterial injury by activating

the antioxidant transcription factor Nrf2 through the PI3K/AKT

pathway (90), thereby alleviating DKD progression. Additionally,

Magnesium exerts anti-inflammatory effects in diabetes by
FIGURE 3

Dynamic equilibrium and functional switching mechanism of FoxO3a between the nucleus and cytoplasm of cells.
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enhancing PI3K/AKT activity (91). Magnesium also serves as a

cofactor for the insulin receptor b-subunit, regulating tyrosine

kinase activity in peripheral tissues. Insulin promotes glucose

transport, glycogen synthesis, and protein synthesis through the

PI3K/AKT signaling pathway (92). The insulin receptor comprises

two a-subunits and two b-subunits. Upon insulin binding, tyrosine

residues in the b-subunits are phosphorylated, activating complex

intracellular signaling networks. Studies have shown that

Magnesium enhances GLUT4 activation by promoting AKT

activation and GLUT4 translocation, thereby regulating insulin

signaling and glucose uptake in peripheral tissues (93).

Magnesium also increases AKT gene expression in type 2 diabetic

rats, thereby improving insulin resistance (94). Magnesium

treatment improved AKT and PI3K phosphorylation levels in the

brains of rats with renal failure (95). Impairment of the PI3K/AKT

pathway in various tissues leads to insulin resistance and type 2

diabetes, which subsequently exacerbates PI3K/AKT pathway

dysfunction, creating a vicious cycle (92). In summary,

Magnesium mitigates DKD progression by upregulating the

PI3K/AKT pathway, though the precise mechanism regulating

downstream signaling requires further elucidation.
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The PI3K/AKT pathway enhances cell proliferation and inhibits

apoptosis, primarily by regulating its downstream transcription

factor, FoxO3a (96). Under normal conditions, FoxO3a functions

as a transcription factor in the nucleus, binding to DNA as a

monomer. In the context of sustained hyperglycemia in DKD, ROS

overproduction activates the TGF-b1-PI3K/AKT pathway, leading

to FoxO3a phosphorylation, nuclear export, and inhibition of its

normal transcriptional activity (65). FoxO3a regulates the

transcription of several pro-apoptotic genes, including BIM,

NOXA, TRAIL, PUMA, and FASL (97).

Therefore, elucidating the composition and interrelationships

of the FoxO3a signaling pathway is crucial for understanding its

redox nature and enabling precise therapeutic interventions.

Investigating the regulation and mechanisms of FoxO3a under

various pathophysiological conditions may offer new avenues for

clinical DKD treatment. The pathways involving FoxO3a in

oxidative stress are depicted in Figure 4. FoxO3a transcription

factors are involved in various cellular processes, with their

primary role in mitigating DKD progression being linked to

antioxidant activity (64, 65). Further research is required to

elucidate additional pathways through which FoxO3a
FIGURE 4

Role of the FOXO3a signaling pathway in oxidative stress and apoptosis. FoxO localization is induced by AMPK (AMP-activated protein kinase), p38
MAPK (p38 mitogen-activated protein kinase), Erk (extracellularly regulated kinase), JNK (c-Jun-N-terminal kinase), and MST1 (macrophage-
stimulated gene 1), which increases FoxO transcriptional activity. When the PI3K signaling cascade is activated, the PI3K/Akt pathway in the FoxO3a
signaling pathway phosphorylates FoxO3a at the sites of threonine residue 32 (Thr32), serine residue 253 (Ser253), and serine residue 315 (Ser315),
and the phosphorylated FoxO3a binds to 14-3–3 proteins to form a complex, which translocates from the nucleus to the cytoplasm, reducing the
ability of FoxO3a to bind to DNA and contributing to its accumulation in the cytoplasm as well as ubiquitination and degradation.
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transcription factors may contribute to inhibiting or slowing

DKD progression.

4.2.2 Regulating the AMPK/Fox3a/Nrf2 pathway
to inhibit ferroptosis

AMPK is an enzyme widely expressed in the kidney, heart, and

other tissues, serving as a sensor of cellular energy status. In the

FoxO3a oxidative stress cascade, AMPK activates FoxO3a, enhancing

its transcriptional activity and playing a crucial role in maintaining

mitochondrial homeostasis. Upon activation, FoxO3a reduces

hypoxia-inducible factor accumulation, thereby inhibiting ROS

production (98). It has also been shown that AMPK/FoxO3a

signaling activation, mediated by energy stress, inhibits ferroptosis

through mitochondrial-dependent mechanisms (99). Additionally,

AMPK directly inhibits fatty acid synthesis by suppressing acetyl-

CoA carboxylase (ACC), thereby alleviating ferroptosis (99). Under

persistent hyperglycemia in DKD, excessive Fe2+ accumulation

increases ROS production, promoting ferroptosis (100). In DKD-

related animal models, renal tubular injury has been identified as a

key mechanism of DKD, with ferroptosis as its primary pathological

process. Increased ferroptosis levels further exacerbate renal tubular

injury, promoting DKD progression (42). A recent pharmacological

study on fenofibrate demonstrated that restoring antioxidant capacity

alleviates tubular damage and renal injury in DKD by upregulating

Nrf2 expression, which in turn regulates GPX4, SLC7A11, ferritin

heavy chain 1 (FTH-1), and transferrin receptor 1 (TFR-1) (39). Nrf2,

a key protein in the pathological process of DKD, regulates numerous

genes involved in iron storage and transport at the transcriptional

level and acts as a downstream signaling molecule of the AMPK/

FoxO3a pathway. Recent studies have shown that regulating the

FoxO3a/Nrf2 axis promotes the expression of key anti-ferroptosis

factors, such as System Xc-, GPX4, and GSH, thereby inhibiting

ferroptosis in renal tubular epithelial cells (101, 102). Additionally,

the AMPK signaling pathway enhances antioxidant effects by

promoting Nrf2 nuclear accumulation (103). An Engel-Lenin-

related study found that regulating the AMPK/Nrf2 pathway

mitigates ferroptosis in renal tubules, thereby slowing DKD

progression (104). Furthermore, the AMPK/FoxO3a pathway

regulates mitochondria to alleviate ferroptosis, and Nrf2 is a critical

regulator of mitochondrial function. Nrf2 knockdown impairs

mitochondrial function, whereas Nrf2 activation enhances it, as

demonstrated in animal experiments (105, 106). Nrf2 regulates

MEF-2 to enhance mitochondrial fusion and fission processes and

improve ferroptosis defense, thereby mitigating ferroptosis (107).

Thus, the AMPK/FoxO3a/Nrf2 axis likely plays a crucial role in

regulating ferroptosis in DKD. Magnesium, as a vital cofactor for

GPX and GSH regulation, is essential for modulating the AMPK/

FoxO3a/Nrf2 axis.

Recent studies have demonstrated that Magnesium directly

upregulates Nrf2 expression, protecting cells from inflammatory

damage and mitigating ferroptosis during DKD progression.

Magnesium upregulates Nrf2 expression by inhibiting the PKC

pathway, thereby activating the AMPK pathway and reducing lipid

deposition (108, 109). It also enhances Nrf2 transcription (110) by

inhibiting glycogen synthase kinase 3b (Gsk3b) (111, 112) and
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disrupting the interaction between Kelch-like ECH-associated

protein 1 (Keap1) and Nrf2 (113), thereby enhancing Nrf2

activity. Additionally, Magnesium directly activates the AMPK

pathway (114) and upregulates p-AMPK levels in a dose-

dependent manner (115), indirectly increasing downstream Nrf2

expression. Thus, Magnesium regulates the AMPK/FoxO3a/Nrf2

pathway to mitigate ferroptosis in DKD, with the specific

mechanism depicted in Figure 5.
5 Clinical treatment of DKD with
magnesium

DKD is the leading cause of renal failure, and current clinical

treatments for DKD focus on protecting the kidneys and reducing

proteinuria. These drugs mainly include renin-angiotensin-

aldosterone system (RAAS) blockers, angiotensin-converting

enzyme inhibitors (ACE-Is), and angiotensin receptor blockers

(ARBs), sodium-glucose transport protein 2 (SGLT2) inhibitors

(116). However, the therapeutic efficacy of conventional drugs

remains suboptimal, highlighting the urgent need for new

therapeutic strategies. Trace elements are crucial for human

metabolism and tissue function. In recent years, the biochemical

functions of trace elements and their roles in disease management

have been extensively studied (117). Previously, Magnesium was

not widely used as a therapeutic agent for DKD; however, with

advances in understanding the pathological mechanisms of DKD,

Magnesium supplementation shows potential for alleviating or

treating this condition.
5.1 Dietary magnesium supplementation

Magnesium is of particular interest due to its critical role in

glucose metabolism, insulin regulation, hypertension,

inflammation, and cardiovascular health. A study on childhood

obesity found that dietary Magnesium supplementation was

inversely associated with insulin resistance (118). Additionally,

lower dietary Magnesium intake was linked to increased insulin

resistance and higher prevalence of both fasting pancreatic

dysfunction and type 2 diabetes in adults (119, 120). The study

demonstrated that Magnesium intake was inversely correlated

with the risk of type 2 diabetes, with 17,130 participants followed

for 28 years (121). Increasing dietary Magnesium intake has been

shown to effectively prevent diabetes and improve DKD outcomes

(122). Furthermore, increasing dietary Magnesium intake can

reduce the risk of HDL cholesterol decline, decrease insulin

resistance, and lower the risk of metabolic syndrome, thereby

preventing DKD development (123). Adequate daily Magnesium

intake helps restore optimal intracellular Magnesium levels,

thereby enhancing insulin-mediated glucose uptake. A meta-

analysis of numerous studies demonstrated that appropriate

dietary Magnesium supplementation significantly improved

insulin sensitivity and metabolic control in patients with type 2

diabetes and DKD (124). Conversely, an animal study found that
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restricted dietary Magnesium intake led to a chronic inflammatory

response characterized by leukocyte and macrophage activation,

increasing the risk of DKD (125). Thus, daily supplementation

with moderate amounts of Magnesium may reduce the risk of

DKD (126). For further elucidation, refer to Figure 6.
5.2 Magnesium supplements

In addition to dietary supplementation, Magnesium therapy has

emerged as a key focus of diabetes research, demonstrating beneficial

effects on diabetes mellitus and its complications in both humans and

animal models (127, 128). A significant inverse association was

observed between total magnesium intake and the risk of DN,

exhibiting an L-shaped nonlinear dose–response relationship with a

threshold of 345.00 mg/day (129). Magnesium supplementation can

alleviate insulin resistance, decrease harmful metabolite levels, and

improve blood glucose control in type 2 diabetes patients (130).
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Moreover, oral Magnesium supplementation significantly improves

abnormal insulin secretion, stimulates pancreatic cells, promotes

insulin release, enhances insulin sensitivity in peripheral tissues of

patients with type 2 diabetes and hypomagnesemia (131), and

regulates lipid levels, metabolism, and inflammation (132).

The study demonstrated that oral Magnesium citrate

supplementation significantly alleviates microalbuminuria in

patients with DKD, where microalbuminuria serves as a key

indicator for DKD progression (133). Furthermore, Magnesium

citrate supplementation demonstrated positive effects on serum

osteocalcin, lipid profiles, and patient quality of life, without

significant side effects (133, 134). A study by Morakinyo et al.

demonstrated that Magnesium supplementation regulated GLUT4

translocation and improved metabolic status in rats (135).

Magnesium supplementation also alleviated renal injury in a

mouse model of DKD, delayed diabetes progression in a type 2

diabetes mouse model, enhanced mitochondrial function, and

reduced oxidative stress (136). Moreover, oral Magnesium
FIGURE 5

Mechanism of magnesium regulation of ferroptosis in the AMPK/FoxO3a/Nrf2 pathway. In the defense system of ferroptosis, GPX4 and system Xc-
system occur mainly in the cytoplasm, while DHODH and FSP-1 occur mainly in the mitochondria. Magnesium can inhibit the HIF-1a-induced
increase in ROS by up-regulating AMPK activity FoxO3a dephosphorylation. Magnesium upregulation of AMPK activity also promotes the intranuclear
accumulation of Nrf2, which increases GPX4 activity and strengthens the ferroptosis defense system in the cytoplasm. Intranuclear FoxO3a and Nrf2
can also participate in the regulation of GPX4 and related coenzymes in mitochondria, thereby enhancing the ferroptosis defense system in
mitochondri.
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phosphate supplementation protects renal function, modulates the

intestinal microbiota, restores metabolite dysfunction (e.g., short-

chain fatty acids, amino acids), and inhibits binding of cresyl sulfate

precursors, thereby reducing plasma uremic toxin levels in DKD

mice and improving DKD (137). Therefore, more results from

clinical studies are needed to recommend Magnesium as a

treatment option for DKD.
6 Conclusion

The pathophysiology of DKD is complex and multifactorial, with

oxidative stress, ferroptosis, and chronic inflammation playing key

roles in its progression. Magnesium, as an essential cofactor for

antioxidant enzymes, is closely linked to DKD, and Magnesium

supplementation represents a promising therapeutic approach.

Magnesium ions exhibit multiple renoprotective mechanisms to

ameliorate DKD, including alleviating oxidative stress and

inflammation, protecting endothelial cells, and maintaining

vascular integrity through the PI3K/AKT/FoxO3a pathway.

Additionally, Magnesium alleviates ferroptosis in renal tubular

epithelium and podocytes, maintaining tubular integrity via the

AMPK/Nrf2/FoxO3a pathway. Clinical studies have demonstrated

that Magnesium supplementation, both dietary and pharmacological,

exerts positive effects in patients with DKD. However, further studies

are needed to fully evaluate Magnesium ‘s potential as a clinical
Frontiers in Endocrinology 11
treatment for DKD and to elucidate the underlying mechanisms of

Magnesium action.

This review explores the relationship between Magnesium and

DKD, emphasizing the effects of Magnesium deficiency, as well as

the impact of dietary Magnesium supplementation and Magnesium

supplements on DKD. The mechanisms through which Magnesium

delays DKD—by alleviating oxidative stress, inhibiting ferroptosis,

and improving mitochondrial function—are detailed. Detailed

discussion is provided on Magnesium regulates DKD via the

FoxO family, laying the groundwork for the use of Magnesium in

the treatment and management of DKD.
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