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Adipose-derived mesenchymal stem cells (ADSCs), multipotent stromal cells

abundant in adipose tissue, exhibit remarkable plasticity in modulating systemic

metabolism, inflammatory responses, and immune homeostasis. Their

bidirectional interactions with the tumor microenvironment (TME) position

them as both accomplices and antagonists in cancer progression, offering

unique therapeutic opportunities. ADSCs also hold significant potential for

clinical application in the fields of regenerative medicine, tissue engineering,

and gene engineering. This review synthesizes the impacts and challenges of

ADSCs involving metabolic regulation, tumor modulation, immunomodulation,

regenerative medicine and genetic engineering therapies—while elucidating

underlying molecular mechanisms and signaling pathways, clinical studies,

applications and challenges.
KEYWORDS

adipose-derived mesenchymal stem cells (ADSCs), metabolic regulation, tumor
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1 Introduction

Adipose-derived mesenchymal stem cells (ADSCs), a subset of mesenchymal stem cells

(MSCs), are multipotent stromal cells isolated from the stromal vascular fraction (SVF) of

adipose tissue (1). These cells share fundamental molecular and functional similarities with

other mesenchymal stem cells (MSCs), such as bone marrow-derived mesenchymal stem

cells (BMSCs), including expression of characteristic surface markers (CD105, CD44,
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CD73, CD90, CD146) and absence of hematopoietic lineage

markers (CD13, CD19, CD45, HLA-DR) (2). Like other MSCs,

ADSCs exhibit self-renewal capacity and multil ineage

differentiation potential (3). Beyond differentiation, ADSCs

possess immunomodulatory properties mediated through

paracrine secretion of anti-inflammatory cytokines (e.g., IL-10,

TGF-b) and direct cell-cell interactions making them a promising

candidate for regenerative medicine and reconstructive therapies

(4, 5). Furthermore, adipose-derived mesenchymal stem cell

exosomes (ADSC-Exos), enriched with diverse bioactive

molecules including miRNAs, proteins, and lipids, significantly

contribute to anti-inflammatory responses and immune

regulation, while their cell-free transplantation circumvents risks

of immune rejection and tumorigenesis associated with traditional

stem cell therapies (6). ADSCs are easily accessible and minimally

invasive procedures such as liposuction (7, 8). And their abundance

in adipose tissue, coupled with low donor-site morbidity, positions

ADSCs as a clinically viable resource for applications including

anti-inflammatory, immunomodulatory, metabolic regulation and

therapeutic potential (9, 10). Current research on ADSCs remains

predominantly confined to elucidating basic molecular

mechanisms, with insufficient preclinical validation and clinical

translation to establish systematic frameworks or practical

guidelines. To address these limitations, this study adopts a

translational pipeline spanning “basic medical research (molecular

pathways)→ preclinical testing (in vitro/animal models)→ clinical

trials → therapeutic applications” to comprehensively evaluate

ADSCs’ roles and challenges in metabolic regulation (diabetes,

obesity) , tumor modulation (pro-/anti-tumor effects) ,

immunomodulation (autoimmune diseases, transplantation),

regenerative medicine (tissue repair, osteoarthritis, cardiac/neural

regeneration), and genetic engineering therapies.
2 Metabolic regulation

2.1 Diabetes mellitus

Diabetes mellitus (DM), encompassing both type I and type II

forms with distinct pathogenic mechanisms, is characterized by

persistent hyperglycemia; inadequate glycemic control frequently

leads to severe complications such as retinopathy, neuropathy, and

vasculopathy, all of which profoundly compromise patient health.

Type 1 diabetes mellitus (T1DM) is primarily characterized by

autoimmune-mediated destruction of pancreatic b-cells, while type

2 diabetes mellitus (T2DM) manifests as a triad of insulin resistance

in target organs (skeletal muscle, liver, and adipose tissue), chronic

low-grade inflammation driven by pro-inflammatory cytokines (e.g.,

TNF-a, IL-6) secreted from macrophages and other immune cells,

and progressive b-cell dysfunction due to glucolipotoxicity and

endoplasmic reticulum stress (11). ADSCs-mediated improvement

of hyperglycemia may encompass islet b-cell regeneration via

differentiation into insulin-producing cells or promotion of

endogenous b-cell proliferation, modulation of hepatic metabolism

toward enhanced glucose utilization, attenuation of chronic
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inflammation through anti-inflammatory cytokine secretion, and

amelioration of insulin resistance (IR) in peripheral tissues via

regulation of lipid homeostasis and insulin signaling pathways (12–

15). ADSCs transplantation facilitates the restoration of islet function

through the promotion of b-cell regeneration, attenuation of

apoptosis and inflammation, and enhancement of islet

vascularization (12, 16). Mechanistically , ADSCs mitigate insulin

resistance in T2DM by suppressing chronic inflammation via

polarization of pro-inflammatory M1 macrophages to anti-

inflammatory M2 phenotypes, a process mediated by interleukin-

10 (IL-10) and inhibition of NLRP3 inflammasome activation (17,

18) . In T1DM, ADSCs restore immune homeostasis by

downregulating pathogenic Th1/Th17 responses and promoting

regulatory T-cell (Treg) expansion, thereby attenuating

autoimmune b-cell destruction (19, 20) . Molecularly , ADSC-Exos

deliver microRNAs (e.g., miR-146a) that inhibit NF-kB and STAT3

signaling, reducing cytokine storms in pancreatic islets (21) .

Additionally, ADSCs enhance b-cell survival and function via

paracrine secretion of hepatocyte growth factor (HGF) and vascular

endothelial growth factor (VEGF) to promote b-cell proliferation and
reduce apoptosis (22) . Preclinically , in streptozotocin-induced

T1DM rodent models, systemic ADSC administration improves

glycemic control by restoring b-cell mass, reducing hyperglycemia

(22, 23). In high-fat-diet-induced T2DM mice, ADSCs alleviate

insulin resistance via AMPK/SIRT1-mediated enhancement of

mitochondrial metabolism in adipose tissue and skeletal muscle

(24, 25). Clinically , phase II trials in T2DM patients demonstrate

that umbilical cord-derivedMSCs (UC-MSCs) reduce HbA1c by 1.5–

2.0% and improve insulin sensitivity, correlating with decreased

serum TNF-a and increased adiponectin levels (26) . For T1DM,

prior case reports have indicated that the infusion of in vitro-

differentiated insulin-producing cells derived from ADSCs into

patients led to sustained stabilization of blood glucose levels and

glycosylated hemoglobin (HbA1c) (27), and a prospective dual-arm

clinical trial demonstrated that autologous ADSCs combined with

bone marrow-derived hematopoietic stem cells (BM-HSCs) enable

sustained glycemic regulation (28). Other clinical trials report

transient C-peptide preservation and reduced exogenous insulin

requirements, though long-term efficacy remains inconsistent (29) .

Challenges include donor-dependent variability in ADSC secretome

potency, risks of iPSC-derived b-cell teratoma formation due to

residual pluripotency , and fibrotic complications linked to TGF-b
overactivation during immunomodulation (30) . Emerging strategies

to address these limitations involve biomaterial encapsulation for

targeted pancreatic delivery and IFN-g preconditioning to enhance

immunosuppressive capacity (31) .
2.2 Obesity and metabolic syndrome

Obesity induces a decline in ADSC activity, with studies

demonstrating a 40% reduction in ADSC activity in obese

populations compared to healthy individuals, directly impairing

tissue regenerative capacity and potentially triggering metabolic

disturbances such as arteriosclerosis and insulin resistance (32).
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Under obese conditions, ADSCs exhibit a shift toward a pro-

inflammatory secretory profile characterized by increased

secretion of IL-1b, IL-6, and IL-8 cytokines, accompanied by a

concomitant reduction in immunomodulatory, insulin-sensitizing,

and weight-regulatory adipokines (e.g., IL-10, TGF-b, and

adiponectin), thereby exacerbating metabolic dysfunction (33–35).

And Yu Meng et al.’s study demonstrates that obesity impairs the

structural integrity and functional capacity of ADSCs ’

mitochondria, potentially mediated in part through miRNA-

induced regulation of mitochondrial genes, leading to an

escalation in oxidative stress (36). Moreover, studies in diet-

induced obesity models have established that PD-L1 upregulation

contributes to T cell dysfunction, characterized by a marked

impairment in cytolytic activity (37). Beyond investigations in

animal models, a clinical study involving 47 reproductive-aged

African women demonstrated that serum from overweight/obese

individuals (with or without metabolic syndrome) significantly

impaired ADSCs proliferation and migration, linked to elevated

IL6 levels, and induced lipid accumulation during osteogenic

differentiation, highlighting systemic inflammatory dysregulation

as a key driver of ADSC functional decline in metabolic disorders

(38). Although the reciprocal interactions between obesity and

ADSCs remain incompletely elucidated, inspired by existing

research, ADSCs may hold broad clinical application prospects in

obesity and obesity-related diseases. ADSC-derived exosomes

ameliorate obesity-associated metabolic dysregulation by

promoting M2 macrophage polarization, enhancing white adipose

tissue beiging, and improving insulin sensitivity through STAT3-

mediated arginase-1 activation (39). Numerous in vivo studies have

demonstrated the efficacy of ADSCs in promoting weight loss and

ameliorating hyperlipidemia (40–42). Non-alcoholic fatty liver

disease (NAFLD), a spectrum ranging from hepatic steatosis to

non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and

hepatocellular carcinoma, is closely associated with obesity and

metabolic syndrome (43, 44). Studies indicate that ADSCs mitigate

NAFLD progression by homing to damaged liver tissue, enhancing

hepatocyte regeneration, and exerting anti-inflammatory/

antioxidant effects through their self-renewal and multipotent

differentiation capabilities (45, 46). Although current studies on

the mechanisms and preclinical research of ADSCs in obesity and

metabolic disorders suggest their potential therapeutic roles,

translating these findings into clinical applications remains a

protracted process. This transition necessitates rigorous

optimization of multiple procedures, including standardized

isolation, purification, expansion, and clinical validation of

ADSCs, as well as comprehensive safety and efficacy evaluations

in human trials.
3 Tumor-related application

3.1 ADSCs and tumor microenvironment

ADSCs exhibit a multifaceted and bidirectional relationship

with the tumor microenvironment (TME), a heterogeneous
Frontiers in Endocrinology 03
ecosystem comprising immune cells, stromal fibroblasts,

extracellular matrix (ECM), and metabolic mediators that

collectively drive tumor progression and therapeutic resistance

(47, 48) . A vitro study demonstrates that bidirectional crosstalk

between human adipose-derived stem cells (ADSCs) and malignant

melanoma cells (MMCs) in an indirect co-culture model

significantly enhances tumor-promoting behaviors, including

migration, invasion, and angiogenesis, via upregulation of pro-

angiogenic factors (VEGF, IL-8, CCL2), matrix metalloproteinases

(e.g., MMP-2), and oncogenic mediators (CXCL12, PTGS2, IL-6,

HGF) (49, 50). ADSCs are recruited to the TME via tumor-secreted

chemotactic signals, such as CCL2 and CXCL12, where they

undergo functional reprogramming to adopt pro-tumorigenic

roles (49, 51). Within the TME, ADSCs contribute to

immunosuppression by secreting anti-inflammatory cytokines

(e.g., IL-10, TGF-b) and exosomes that dampen cytotoxic T-cell

activity, promote regulatory T-cell (Treg) expansion, polarize

macrophages toward an immune-tolerant M2 phenotype, inhibit

of dendritic cells differentiation, promoting immune escape of

tumor cells (18, 19) . The TME reciprocally shapes ADSC

behavior through metabolic crosstalk. Hypoxia and nutrient

deprivation in the TME drive ADSCs to release fatty acids and

lipid metabolites, which tumor cells exploit to fuel oxidative

phosphorylation (OXPHOS) and mitigate metabolic stress (52) .

This lipid transfer is further amplified by ADSC-derived exosomal

miRNAs (e.g., miR-21, miR-155), which activate oncogenic

pathways such as PI3K/Akt and Wnt/b-catenin in adjacent tumor

cells (53, 54) . Notably, obesity exacerbates this metabolic symbiosis,

as high-fat diets enhance lipid availability in the TME, impairing

CD8+ T-cell function and accelerating tumor growth—a

mechanism conserved across murine and human cancers (55–57)

. Furthermore, a vitro study demonstrates MSCs promote reversible

metastatic enhancement in breast carcinoma through TME-driven

CCL5/RANTES secretion, which activates CCR5-mediated

paracrine signaling to potentiate cancer cell motility, invasion,

and distant dissemination (58). In contrast to their tumor-

promoting effects, MSCs have also been shown to inhibit the

progression of malignancies such as leukemia and hepatocellular

carcinoma; therefore, as multipotent stromal cells, MSCs can secrete

context-dependent factors within the tumor microenvironment that

either suppress or exacerbate neoplastic growth through

bidirectional modulation of oncogenic signaling pathways (59).

Beyond their established roles in promoting tumorigenesis,

progression, and metastasis, ADSCs are also closely associated

with chemoresistance to antitumor agents.
3.2 ADSCs and chemoresistance

ADSCs drive chemoresistance in malignancies through

multifaceted mechanisms within the TME. Primarily, ADSCs

engage in bidirectional crosstalk with tumor cells via paracrine

signaling, exemplified by the TSG-6/COX-2 axis: Tumor necrosis

factor alpha-stimulated gene/protein 6 (TSG-6) upregulates

cyclooxygenase-2 (COX-2) expression, fostering prostaglandin E2
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(PGE2)-mediated angiogenesis, immunosuppression, and apoptosis

evasion, a mechanism validated by the abrogation of

chemoresistance upon TSG-6 silencing in ADSCs (60–63).

Furthermore , ADSCs secrete interleukin-6 (IL-6), which activates

STAT3 in tumor cells to enhance DNA repair and upregulate

multidrug resistance (MDR) transporters such as P-glycoprotein

(64, 65). Concurrently , metabolic reprogramming induced by

ADSCs—such as the release of platinum-induced polyunsaturated

fatty acids (PIFAs) to scavenge reactive oxygen species (ROS)—

protects tumor cells from cytotoxic damage, a process reversible

through COX-1/thromboxane synthase inhibition (66).

Additionally , ADSCs remodel the extracellular matrix (ECM) via

matrix metalloproteinase (MMP)-mediated stiffening, creating

physical barriers that impede drug penetration while promoting

hypoxia-driven angiogenesis through HIF-1a/VEGF activation

(67). Critically , ADSCs enhance tumor cell stemness by

inducing epithelial-mesenchymal transition (EMT) and cancer

stem cell (CSC) phenotypes via Wnt/b-catenin and Notch

signaling, thereby amplifying self-renewal capacity and

therapeutic resistance (68, 69). Notably , targeting these

pa thways— such as COX-2/PGE2 inh ib i t ion , TSG-6

neutralization, or metabolic disruption of PIFA synthesis—holds

therapeutic potential to restore chemosensitivity. In summary ,

ADSCs orchestrate a pro-survival TME through integrated

paracrine, metabolic, and structural adaptations, highlighting the

urgency of developing stroma-targeted adjuvants to overcome

multidrug resistance in oncology.
3.3 Tumor related application

Although ADSCs may exhibit pro-tumorigenic effects, including

tumor initiation, progression, and metastatic dissemination through

crosstalk with the tumor microenvironment, emerging evidence

paradoxically highlights their significant clinical potential as anti-

neoplastic agents through immunomodulatory mechanisms and

targeted therapeutic delivery. Preclinical studies demonstrate their

capacity to suppress tumor growth in glioblastoma (70),

hepatocellular carcinoma (71, 72), colon cancer (73, 74) and other

tumor models (75). Meanwhile, the homing capacity of ADSCs to

tumor niches positions them as ideal cellular vectors for targeted drug

delivery. Engineered ADSCs overexpressing TNF-a or TRAIL via

CRISPR/Cas9 have shown enhanced tumor-specific cytotoxicity in

murine models, selectively localizing to metastatic sites while

minimizing off-target effects (76, 77). Additionally, ADSC-derived

exosomes loaded with chemotherapeutic agents (e.g., doxorubicin) or

oncolytic viruses achieve precise intratumoral delivery, overcoming

biological barriers and reducing systemic toxicity (78, 79). Recent

advances highlight their utility in photodynamic therapy, where

photoactivated ADSCs release reactive oxygen species (ROS) to

induce localized tumor cell death, synergizing with checkpoint

inhibitors to amplify anti-PD-1/PD-L1 efficacy (80). ADSCs, in

addition to their direct/indirect antitumor effects, have also

demonstrated positive clinical effects in managing toxic side effects

associated with chemoradiotherapy, including cisplatin-induced
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fertility impairment (81), salivary gland dysfunction following

radiotherapy for head and neck tumors (resulting in xerostomia)

(80, 82), and chemotherapy-induced granulocytopenia through

secreting Granulocyte Colony-Stimulating Factor (G-CSF (83, 84).

Ongoing research focuses on bioengineering strategies to “lock”

ADSCs in anti-tumor states through metabolic priming (e.g.,

mTOR inhibition) or epigenetic modulation to suppress pro-

metastatic gene networks . These innovations underscore ADSCs’

versatility as modular therapeutic platforms, though rigorous

characterization of their spatiotemporal dynamics within the TME

remains critical to mitigate context-dependent risks.
4 Immunomodulatory effects

ADSCs exhibit multifaceted immunomodulatory properties in

the treatment of autoimmune diseases and mitigation of post-

transplant immune rejection, primarily through paracrine

signaling and direct cell-cell interactions. Mechanistically ,

ADSCs secrete anti-inflammatory cytokines (e.g., IL-10, TGF-b)
and induce regulatory T-cell (Treg) expansion while suppressing

pro-inflammatory Th17 and effector T-cell activation (19).

Additionally, ADSCs upregulate PD-1/PD-L1 interactions to

induce T-cell anergy and apoptosis (85). In vitro studies support

above results and also demonstrate that mesenchymal stem cells

(MSCs) exert immunomodulatory effects by suppressing T-cell

proliferation, cytotoxicity, and Th1/Th2 cytokine secretion,

inhibiting dendritic cell maturation via Notch pathway activation,

and attenuating B-cell proliferation and antibody production (86).

We examine the latest research progress on the immunoregulatory

effects of adipose-derived mesenchymal stem cells in autoimmune

disorders and graft-versus-host disease (GVHD).
4.1 Autoimmune disorders

Autoimmune disorders, encompassing various chronic organ-

specific and systemic diseases caused by immune system malfunction

that mistakenly attacks the body’s own cells and tissues, affect

approximately 8-10% of the population, resulting in significant

health impairments, elevated mortality rates, and substantial medical

burdens (87, 88). As summarized in Table 1, numerous preclinical and

clinical studies have investigated the therapeutic potential of adipose-

derived mesenchymal stem cells (ADSCs) in managing various

autoimmune disorders. Rheumatoid arthritis (RA), multiple sclerosis

(MS), inflammatory bowel disease (IBD), and type 1 diabetes mellitus

(T1DM) represent the most prevalent systemic autoimmune

conditions globally. These chronic disorders share a common

pathogenesis characterized by dysregulated immune responses

leading to persistent organ inflammation and progressive tissue

damage. Current standard treatments, including non-steroidal anti-

inflammatory drugs (NSAIDs), corticosteroids, immunosuppressants,

and chemotherapeutic agents such as methotrexate (MTX), often

present significant limitations. Given their demonstrated anti-
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inflammatory properties and immunomodulatory capabilities, ADSCs

have emerged as a promising therapeutic alternative for autoimmune

diseases, offering the potential to restore immune homeostasis while

avoiding the detrimental side effects of conventional

pharmacotherapies. This unique biological profile positions ADSC-

based therapy as a novel paradigm in the evolving landscape of

autoimmune disease management.
4.2 Graft-versus-host disease

Acute and chronic graft-versus-host disease (GVHD) are

common yet challenging clinical complications following allogeneic

hematopoietic stem cell transplantation and solid organ

transplantation (such as ocular grafts, kidneys, etc.). Given the

immunomodulatory and anti-inflammatory properties of adipose-

derived mesenchymal stem cells, they hold potential for combating

GVHD (97–99). Animal model studies have clarified the effectiveness

of ADSCs against bone marrow aplasia in GVHD (100), while

another animal study demonstrated that subconjunctival injection

of ADSCs significantly improved post-transplant corneal integrity

and promoted wound healing, highlighting their clinical potential in

this context (101). Beyond animal research, clinical data on ADSCs

for GVHD management have also been reported. A single-arm

clinical study involving pediatric patients with refractory

bronchiolitis obliterans syndrome (BoS) following allogeneic

hematopoietic stem cell transplantation (allo-HSCT) showed that
Frontiers in Endocrinology 05
ADSCs could be safely administered (102). Additionally, a phase I/II

study indicated that combining ADSCs with immunosuppressive

therapy is feasible and safe for chronic GVHD post allo-HSCT, with

potential positive impacts on disease progression (103). More studies

are warranted to understand the potential benefits of ADSCs

in GVHD.
5 Regenerative medicine and tissue
engineering

ADSCs have emerged as a promising therapeutic tool in

regenerative medicine and tissue engineering due to their

multifaceted mechanisms of action. Mechanistically, ADSCs

possess the ability to self-renew and exhibit multipotent

differentiation capacity, differentiating into various cell lineages

such as fibroblasts, myocytes, chondrocytes, adipocytes, and

immune cells (e.g., macrophages or lymphocytes) under specific

microenvironmental cues. This versatility endows ADSCs with

broad applications in various medical fields.

In plastic surgery and wound repair, ADSCs promote tissue

regeneration through paracrine secretion of angiogenic factors (e.g.,

VEGF, PDGF, bFGF), which stimulate neovascularization (104–106).

Additionally, they exhibit immunomodulatory properties by

suppressing pro-inflammatory cytokines (TNF-a, IFN-g) and

upregulating anti-inflammatory mediators (IL-10, IL-4) (107–109).

These mechanisms facilitate wound healing and tissue repair by
TABLE 1 Preclinical and clinical studies in autoimmune disorders.

Disease Author(year) NCT
number

Clinical
Trial phase

Key points Reference

RA Álvaro-Gracia, J.M., et al.(2017) NCT01663116 Phase Ib/IIa Intravenous infusion of allogeneic expanded ADSCs
demonstrated good overall tolerability and potential clinical

efficacy in refractory RA

(89)

RA Vij, R., et al.(2022) NCT03691909 Phase I/IIa Single intravenous infusion of autologous ADSCs is safe and
effective for improving joint function in active RA patients.

(90)

MS Fernández, O., et al.(2018) NCT01056471 Phase I/II Intravenous infusion of autologous ADSCs is safe and
feasible in patients with secondary progressive multiple

sclerosis (SPMS)

(91)

IBD Panés, J., et al.(2016) NCT01541579 Phase III Allogeneic expanded ADSCss represent an effective and safe
therapeutic approach for complex perianal fistulas in
Crohn’s disease patients refractory to conventional or

biologic therapies

(92)

IBD Lightner, A.L., et al.(2020) Unknown Phase I ADSC therapy demonstrates safety, feasibility, and efficacy
in the treatment of refractory Crohn’s rectovaginal fistulas

(93)

IBD de la Portilla, F., et al.(2013) NCT01372969 Phase I/IIa Local injection of allogeneic ADSCs is a simple, safe, and
beneficial therapeutic approach for perianal fistulas in

Crohn’s disease patients.

(94)

IBD Furukawa, S., et al.(2023) NCT03706456. Phase III Expanded allogeneic ADSCs are safe and effective for
refractory Crohn’s perianal fistulas.

(95)

T1DM Dantas, J.R., et al. NCT03920397 Pilot Study Allogeneic ADSCs with vitamin D safely preserved b-cells in
recent-onset T1DM without immunesuppression

(96)
RA, rheumatoid arthritis; MS, multiple sclerosis; IBD, inflammatory bowel disease; T1DM, type 1 diabetes mellitus.
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enhancing keratinocyte migration and proliferation, modulating

extracellular matrix (ECM) remodeling, and suppressing apoptosis

(110–112). Animal models of full-thickness skin defects and ischemic

flaps have demonstrated accelerated wound closure, increased capillary

density, and reduced fibrosis in ADSC-treated groups, attributed to

enhanced angiogenesis and attenuated oxidative stress (113–115).

ADSCs have also shown promise in repairing radiation-induced/UV-

induced tissue damage (116–119), chronic diabetic ulcers (120–123),

and in aesthetic procedures such as facial volumization and breast

reconstruction, where their adipogenic potential of improving graft

retention and reducing scar formation (124–128).

In osteochondral repair, ADSCs exhibit robust osteogenic potential

primarily through paracrine signaling, immunomodulation, and direct

differentiation. Paracrine activity enables ADSCs to secrete

osteoinductive factors, including BMPs, VEGF, and IGF-1, which

synergistically enhance angiogenesis and osteoblast differentiation

(129). ADSC-derived exosomes deliver osteogenic miRNAs that

activate Wnt/b-catenin and BMP/Smad pathways, upregulating

master regulators Runx2 and Osterix (130–133). Furthermore, ADSCs

can modulate the immune system to inhibit osteoclastogenesis in

conditions like osteoporosis and foster a pro-regenerative

microenvironment in osteoarthritic joints (134). Under osteoinductive

conditions, ADSCs directly differentiate into osteoblasts, marked by

upregulated ALP, collagen type I, and OCN expression, culminating in

mineralized matrix deposition (3, 135). These mechanisms have been

corroborated across diverse preclinical models, with in vitro and in vivo

studies demonstrating enhanced bone formation and reduced

osteoclast activity.

ADSCs also exhibit therapeutic potential in myocardial repair

and regeneration. Through paracrine secretion of bioactive

molecules and exosomes enriched with cardioprotective miRNAs,

ADSCs attenuate oxidative stress, activate PI3K/Akt and HIF-1a
pathways, enhance cardiomyocyte survival, and stimulate

angiogenesis (136–139). Furthermore, ADSCs can modulate the

phenotype of monocytes/macrophages towards a more anti-

inflammatory state, potentially beneficially influencing the

duration and intensity of the inflammatory response post-

myocardial infarction (140). Preclinical studies in rodent models

have revealed improvements in left ventricular ejection fraction,

reduction in infarct size, and increased amount of highly

vascularized granulation tissue in the border zone (141).

In neural repair and regeneration, ADSCs possess inherent

multipotency, characterized by their trilineage differentiation

potential and robust secretion of neurotrophic mediators. These

mediators orchestrate neuroprotection, axonal sprouting, and

synaptogenesis in models of neural trauma (142–145). The

immunomodulatory axis of ADSCs attenuates neuroinflammation

and microglial activation by downregulating pro-inflammatory

cytokines and upregulating anti-inflammatory interleukin-10

(146, 147). In vitro, ADSCs exhibit neurogenic differentiation

potential under inductive conditions, evidenced by upregulation

of neuronal markers and electrophysiological properties indicative

of functional neuronal networks (148–150). Preclinical in vivo

studies have demonstrated enhanced functional recovery through
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various signaling pathways and modulation of glial scar formation

(151–154).

Moreover, ADSCs and their bioactive derivatives exhibit

multifaceted anti-aging and regenerative potential. At the

molecular level, ADSCs modulate senescence-associated pathways

via paracrine signaling, releasing exosomes enriched with miRNAs,

growth factors, and anti-inflammatory cytokines (105, 108, 155,

156). These components collectively suppress oxidative stress,

inhibit the senescence-associated secretory phenotype, and

enhance mitochondrial biogenesis. Studies have explored the role

of ADSCs in aging-related conditions such as skin aging, alopecia,

and cognitive dysfunction, with promising results suggesting

potential for mitigating age-related inflammation, improving skin

elasticity, and wound healing (157, 158).
6 In genetic engineering: applications
and prospects

ADSCs have garnered significant interest in genetic engineering

due to their inherent plasticity, ease of isolation, and robust

expansion potential. Gene-editing technologies, such as CRISPR/

Cas9, TALENs, and viral/non-viral vector systems, enable precise

manipulation of ADSCs to enhance their therapeutic efficacy or

confer novel functionalities. Genetic modification of ADSCs

enhances their therapeutic paracrine signaling by co-upregulating

regenerative/immunoregulatory factors (e.g., VEGF, HGF, IL-10)

while suppressing pro-inflammatory cytokine expression, thereby

amplifying paracrine-mediated tissue regeneration through

balanced immunomodulation and matrix remodeling (159). For

instance, CRISPR-mediated upregulation of VEGF in ADSCs has

demonstrated enhanced angiogenesis in preclinical models of

ischemic cardiomyopathy and diabetic wounds. Similarly, ADSCs

engineered to express neurotrophic factors (e.g., brain-derived

neurotrophic factor, BDNF) show promise in neural regeneration

by promoting axonal growth and synaptic plasticity in spinal cord

injury models (160). Another emerging application involves

modifying ADSCs to improve their homing efficiency and

survival in hostile microenvironments. Knockdown of pro-

apoptotic genes (e.g., BAX) or overexpression of chemokine

receptors (e.g., CXCR4) via lentiviral transduction enhances their

engraftment at injury sites (161, 162). Furthermore, ADSCs can be

reprogrammed to act as targeted delivery vehicles for therapeutic

genes or RNA-based therapies (163, 164). For example, ADSCs

transfected with oncolytic viruses or tumor-suppressor genes (e.g.,

p53, PTEN) exhibit synergistic anti-tumor effects by selectively

localizing to tumor stroma and inducing apoptosis in malignant

cells while sparing healthy tissues (165). The integration of synthetic

biology platforms with ADSCs opens avenues for dynamic,

condition-responsive therapies. Engineered gene circuits, such as

hypoxia-inducible promoters or inflammation-sensitive switches,

allow ADSCs to autonomously release therapeutic payloads (e.g.,

anti-inflammatory cytokines, matrix metalloproteinase inhibitors)

in response to disease-specific cues. This approach minimizes off-
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TABLE 2 Studies covering five key aspects related to this review.
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target effects and maximizes spatiotemporal precision, as

demonstrated in rheumatoid arthritis models where IL-1b-
responsive ADSCs suppressed joint inflammation only in active

disease states (166). Prospectively, ADSCs hold transformative

potential in addressing genetic disorders through ex vivo gene

correction. Autologous ADSCs edited to rectify monogenic

mutations (e.g., in COL1A1 for osteogenesis imperfecta or CFTR

for cystic fibrosis) could be reimplanted to restore functional tissue

homeostasis (167). Additionally, ADSCs engineered to express

chimeric antigen receptors (CARs) or T-cell engagers are being

explored in adoptive cell therapies for cancers, leveraging their

tumor-tropic properties to enhance localized immune activation.

Despite these advancements, challenges persist in ensuring the

safety and scalability of genetically modified ADSCs. Risks of off-

target edits, immune rejection of engineered cells, and long-term

genomic instability necessitate rigorous preclinical validation.

Moreover, standardized protocols for GMP-compliant

manufacturing, quality control of edited clones, and regulatory

frameworks for clinical translation remain underdeveloped.

Collaborative efforts among geneticists, bioengineers, and

clinicians are critical to overcoming these barriers and unlocking

the full potential of ADSCs in next-generation gene therapies. In

summary, ADSCs serve as a versatile platform for genetic

engineering, bridging regenerative medicine and precision

therapeutics. Their applications span targeted gene delivery,

dynamic microenvironment modulation, and autologous cell-

based gene correction, with translational prospects in oncology,

degenerative diseases, and genetic disorders. Continued innovation

in gene-editing tools and biofabrication technologies will likely

propel ADSCs to the forefront of personal ized and

programmable medicine.

Despite their therapeutic promise in metabolic regulation,

immunomodulation, and tissue regeneration (as exemplified by

key studies summarized in Table 2), the clinical application of

ADSCs faces several critical challenges. First, heterogeneity in cell

populations derived from the stromal vascular fraction (SVF) and

variability in isolation/expansion protocols compromise batch-to-

batch consistency, potentially affecting therapeutic reproducibility.

Standardized Good Manufacturing Practice (GMP)-compliant

protocols, coupled with advanced single-cell sequencing to

identify subpopulation-specific biomarkers, may enhance quality

control. Second , long-term safety concerns persist, particularly

regarding the potential pro-tumorigenic effects of ADSCs in pre-

existing malignancies or their unintended differentiation post-

transplantation. Rigorous preclinical studies using lineage-tracing

models and tumor-prone animal cohorts, alongside real-time

molecular monitoring in clinical trials, are essential to elucidate

these risks. Third , the pleiotropic mechanisms underpinning

ADSCs’ efficacy—such as paracrine signaling, exosome-mediated

communication, and dynamic crosstalk with immune cells—remain

incompletely mapped. Integrated multi-omics approaches (e.g.,
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proteomic profiling of secretomes and CRISPR-based functional

screens) could clarify dominant pathways like PI3K/AKT and Wnt/

b-catenin, enabling targeted therapeutic optimization. Fourth ,

clinical translation is hindered by a paucity of robust Phase III

randomized controlled trials (RCTs) and suboptimal delivery routes

(e.g., systemic infusion vs. localized injection). Adaptive trial

designs, route-specific pharmacokinetic studies, and international

consortium-led registries may accelerate evidence generation. By

addressing these challenges through interdisciplinary innovation

and rigorous regulatory oversight, ADSCs could transition from

experimental therapies to standardized clinical tools.
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