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Value of a BRAFV600E and
lymphocyte subset-based
nomogram for discriminating
benign lesions from papillary
thyroid carcinoma in C-TIRADS
3 and higher nodules
Wenran Zhang, Simei Zeng, Jiaqing Dou* and Chenfan Yu

Department of Endocrinology, Chaohu Affiliated Hospital of Anhui Medical University, Hefei, China
Background: The BRAFV600E mutation and lymphocyte subsets may be

associated with papillary thyroid carcinoma (PTC). This study established and

validated a nomogram model to quantitatively predict the malignant risk of

papillary thyroid carcinoma in thyroid nodules classified as C-TIRADS category

3 or higher, providing a reference for precise diagnosis and treatment of these

moderately or highly suspicious nodules.

Methods: This retrospective study analyzed 210 patients with thyroid nodules (C-

TIRADS ≥3), stratified by fine-needle aspiration biopsy (FNAB) results into benign

and PTC groups. Clinical and laboratory parameters were systematically

collected for all patients. Variable selection was performed using least absolute

shrinkage and selection operator (LASSO) regression, with multicollinearity

assessed using variance inflation factors (VIF < 5). Subsequently, significant

predictors were incorporated into a multivariate nomogram. Binary logistic

regression analysis was employed to identify independent risk factors for PTC

following adjustment for potential confounding variables. Internal validation was

performed using bootstrap resampling (1,000 iterations) to assess the model’s

predictive accuracy, clinical utility, and discriminative ability. Comparative

analysis was conducted against the conventional C-TIRADS classification

system to evaluate relative performance.

Results: Significant differences were observed between benign thyroid nodules

and PTC in age, BRAFV600E genotype, natural killer (NK) cell counts, NK cell

percentages, CD4+ T cell percentages, and ultrasound characteristics including

size, echogenicity, composition, boundary, and morphology (P < 0.05). Five

variables, including age, BRAFV600E genotype, NK cell counts, NK cell%, and CD4

+ T cell%, were selected through LASSO regression with collinearity diagnostics

for nomogram construction. The model demonstrated excellent discrimination

(AUC=0.861, C-index=0.861), good calibration (Hosmer-Lemeshow c²=6.72,
P=0.57), and superior accuracy compared to random prediction (Brier

score=0.1061, P<0.05). Decision curve analysis confirmed its clinical utility

across relevant probability thresholds. Finally, the comparative analysis

demonstrated superior diagnostic performance of the novel nomogram

relative to the C-TIRADS system (AUC: 0.862 vs. 0.752; P<0.01).
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Conclusion: The BRAFV600E-lymphocyte subset nomogram demonstrates

robust clinical utility for discriminating benign lesions from PTC in C-TIRADS 3

+ thyroid nodules, offering superior diagnostic performance to conventional risk

stratification systems.
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1 Introduction

In recent years, the global incidence of thyroid cancer has

escalated rapidly. Over the past three decades, the incidence of

thyroid cancer has increased by approximately 300%, with PTC

being the primary subtype contributing to this rise (1). This increase

is largely attributable to advancements in imaging technologies,

which have led to an upsurge in the detection of thyroid nodules.

Consequently, there has been a significant rise in the number of

patients undergoing nonessential investigations and surgeries.

Notably, a substantial proportion of these patients, who are

diagnosed with incidentally detected thyroid nodules, ultimately

undergo surgery. Yet, the majority of these cases are found to be

benign upon final pathology (2).

The BRAF mutation in thyroid tissue is mainly caused by the

T→A conversion at 1799 nucleotide of exon 15, that is, the

mutation at codon V600E. The BRAFV600E oncoprotein is known

to enhance kinase activity, which subsequently activates the MAPK

(MEK1/2 and ERK1/2) signaling pathway (3–6). However, the role

of the BRAFV600E mutation as an independent predictor of thyroid

cancer remains inconclusive in clinical practice.

The overall immune activity in thyroid cancer is elevated,

enabling various immune cells to exert both pro- and anti-

tumor effects through distinct pathways, thereby shaping a

conducive immune landscape. Tumorigenesis recruits peripheral

immune cells, such as B cells and T cells, into the tumor

microenvironment, facilitating their interaction with tumor cells.

Consequently, monitoring changes in circulating immune cells can

provide indirect insights into the tumor microenvironment. Given

the lack of quantitative indicators for distinguishing benign from

malignant thyroid nodules, peripheral blood cytology testing holds

significant clinical potential in aiding the diagnosis of papillary

thyroid carcinoma.

Ultrasonography serves as the primary modality for thyroid

nodule evaluation, providing real-time assessment of morphological

features (size, margins, echogenicity) and vascular patterns. When

integrated with the C-TIRADS classification system, it enables

reliable differentiation of benign and malignant lesions and guides

clinical decision-making regarding fine-needle aspiration biopsy or

surgical intervention (7). Its non-invasive nature and diagnostic

accuracy establish ultrasonography as the first choice for initial
02
screening, diagnostic evaluation, and longitudinal monitoring of

thyroid nodules (8).

This study systematically evaluates associations among

BRAFV600E mutation status, peripheral blood lymphocyte subsets,

and ultrasonographic features with PTC risk in thyroid nodules

classified as C-TIRADS categories 3+. With PTC as the primary

endpoint, key predictive biomarkers were identified and

incorporated into a validated nomogram for clinical risk

stratification. We anticipate that these findings will help reduce

unnecessary surgeries for benign thyroid nodules while providing a

foundation for personalized treatment strategies. Specifically,

BRAFV600E mutation testing may guide targeted therapy selection,

including BRAF/MEK inhibitors such as dabrafenib/trametinib

combination therapy, while lymphocyte subset profiling could

provide immunological insights for potential PD-1/PD-L1

checkpoint inhibitor applications in refractory cases.
2 Materials and methods

2.1 Patient selection

A total of 210 patients with thyroid nodules (C-TIRADS ≥3),

diagnosed in Chaohu Hospital affiliated with Anhui Medical

University, from September 2023 to May 2025, were

retrospectively included in this study. Based on ultrasound-guided

FNAB, Bethesda II nodules were classified into the benign nodule

group (n=160), while nodules classified as Bethesda V or above were

assigned to the PTC group (n=50). Post hoc power analysis was

performed using R version 4.4.1 (effsize package v0.8.1) and

G*Power 3.1.9.7, confirming adequate statistical power (92%) to

detect the observed intergroup differences (Cohen’s d = 0.42, a=
0.05). The map of G*Power calculation parameters is provided in

Supplementary Image 1.

Inclusion Criteria: (a) Thyroid nodules detected by color Doppler

ultrasound and classified as TI-RADS category 3 or higher by two

experienced sonographers. (b) Availability of detailed and complete

clinical data for each patient. (c) Patients whose clinical data were

authorized for retrospective analysis by the hospital ethics committee.

Exclusion Criteria: (a) Nodules with non-diagnostic FNAB results

(Bethesda I), indeterminate cytology (Bethesda III-IV), or cytologically
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malignant results (Bethesda V-VI) showing non-PTC on final

pathology. (b) Patients with comorbidities, such as other infectious or

hematologic diseases, that could affect inflammatory markers. (c)

Pregnant or lactating women. (d) Patients with a history of other

malignant tumors. (e) Patients who have used immunosuppressive

drugs within the last six months. (f) Patients who have used

anticoagulant drugs in the past week, or those with coagulation

abnormalities or hemophilia. The study was reviewed and approved

by the Medical Ethics Committee of Chaohu Hospital Affiliated with

Anhui Medical University (approval no. KYXM-202409-012).
2.2 Patient data and laboratory
measurements

Patient demographics were recorded. Peripheral venous blood

was collected between 06:00-07:00 the morning post-admission

following ≥8h fasting, using standardized tubes by a dedicated

team. Medical records and patient interviews confirmed no

immune-affecting medications/interventions preceded collection.

Analysis of peripheral blood lymphocyte subsets was performed

using the BioCyte B5R3 flow cytometer. Fresh anticoagulated whole

blood samples were subjected to erythrocyte lysis followed by

staining with the following antibody panel: CD3-PE-Cy5/CD4-

PE-Cy7/CD8-APC-Cy7/CD16/56-PE for T cell subset analysis

and CD19-APC for B cell identification (all antibodies from

Zhong Sheng Medical Technology, Hefei, China). Appropriate

isotype controls including IgG1-PE (for PE/PE-Cy conjugated

antibodies) and IgG2b-APC (for APC/APC-Cy conjugated

antibodies) were used to account for nonspecific binding. A

minimum of 10,000 lymphocyte events were acquired for each

sample. The gating strategy was initiated with the identification of

total leukocytes using CD45-FITC in combination with side scatter

(SSC) characteristics. Doublets were subsequently excluded based

on FSC-A versus FSC-W correlation analysis. Lymphocyte

populations were then precisely gated using forward scatter (FSC)

and SSC parameters. Data analysis was performed using

BioCyteCluster software, with the detailed gating hierarchy

illustrated in Supplementary Image 2.
2.3 BRAFV600E genetic testing protocol

Patients were positioned supine with neck hyperextension for

optimal exposure. Following standard disinfection, ultrasound-

guided fine-needle aspiration was performed on suspicious

thyroid nodules using a multipass technique. The obtained

specimens were subjected to DNA extraction using a micro-

pathological DNA extraction kit, with DNA quality verified by

fluorescence quantification (SLAN-96S PCR system). BRAFV600E

mutation status was determined by real-time PCR, with a FAM

channel Ct value <38 and DCt <9 set as the positive threshold.

Samples meeting both criteria were classified as mutation-positive;

all others were considered negative.
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2.4 Ultrasound examination protocol

Standardized thyroid ultrasound examinations were performed

using a Samsung HERA W9 color Doppler system with patients in

the supine position and neck hyperextended. Systematic evaluation

of thyroid nodules was conducted in both transverse and

longitudinal planes by at least two board-certified sonographers

working independently. Each nodule was carefully assessed for size,

echogenicity, composition, multifocality, boundary, and

morphology to ensure comprehensive diagnostic evaluation.
2.5 Statistical analysis

Statistical power analysis was performed using R 4.4.1 (effsize

package v0.8.1) and G*Power 3.1.9.7. All statistical analyses and

data visualization were conducted using SPSS 27.0, R 4.4.1, and

GraphPad Prism 10.1.2. Normality assessment was performed

separately for the benign (n=160) and malignant (n=50) nodule

groups. The Kolmogorov-Smirnov test with Q-Q plot visualization

was applied to the benign group, while the Shapiro-Wilk test with

Q-Q plot analysis was used for the malignant group. Normality was

confirmed when Q-Q plot points demonstrated linear alignment

with the diagonal reference line. Normally distributed continuous

variables were expressed as mean ± standard deviation (c ± s) and

compared using independent samples t-tests. Non-normally

distributed data were presented as M (P25, P75) and analyzed

using Mann-Whitney U tests. Categorical variables were reported as

percentages with between-group comparisons performed using chi-

square tests. Binary categorical covariates (including sex, BRAF

genotype, and ultrasound features) were dummy-coded (0/1), with

complete coding schemes detailed in S3. To identify independent

risk factors for PTC, we performed multivariable binary logistic

regression analysis with adjustment for potential confounding

factors. Before model construction, we rigorously assessed

multicollinearity among predictor variables using three

complementary diagnostic measures: (1) Pearson correlation

coefficients (|r| >0.7 indicating potential collinearity), (2)

tolerance values (<0.1 suggesting collinearity), (3) variance

inflation factors (VIF >5 indicating collinearity).

The initial set of independent variables included demographic

characteristics (age and sex), BRAFV600E mutation status, clinical

laboratory parameters (lymphocyte subsets including T cell

percentages, absolute T cell counts, CD4+ T cell counts, CD8+ T

cell counts, NK cell counts, B cell counts, CD4+ T cell percentages,

CD8+ T cell percentages, NK cell percentages, B cell percentages,

and CD4+/CD8+ ratio), and comprehensive ultrasound

characteristics (including nodule size, echogenicity, composition,

multifocality, boundary, and morphology). Variable selection was

performed using LASSO regression in R 4.4.1 (glmnet v4.1–8

package), with the optimal lambda value selected through 10-fold

cross-validation. Significant predictors (b ≠ 0) were incorporated

into a nomogram (rms v7.0–0 and Hmisc v5.2–2 packages) to

estimate PTC probability. Internal validation included bootstrap
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resampling (1000 iterations) to assess discrimination (ROC

analysis), calibration (Hosmer-Lemeshow test, calibration curves),

model fit (Brier score), and clinical utility (decision curve analysis)

using relevant R packages. The software packages used in these

analyses include “car”(v3.1-3), “survival”(v3.8-3), “pROC”(v1.18.5),

“tcltk”(v4.4.1), “ResourceSelection”(v0.3-6), “DescTools”(v0.99.60),

“rmda”(v1.6), “Rcpp”(v1.0.14). Finally, the performance of the

prediction model was compared with the TI-RADS classification

system by receiver operating characteristic (ROC) curve analysis

using GraphPad Prism 10.1.2, with the area under the curve (AUC)

serving as the primary comparative metric.
3 Results

3.1 Comparative analysis of clinical
characteristics between PTC and benign
thyroid nodules

Patients with PTC demonstrated significantly younger age,

lower NK cell counts and percentages, and higher CD4+ T cell

percentages compared to those with benign nodules. The PTC

group exhibited a higher prevalence of BRAFV600E mutations and

ultrasonic features , including smaller s ize (<10mm),

hypoechogenicity, solid composition, irregular margins, and

irregular morphology. No statistically significant differences were

observed in gender distribution, T cell absolute counts, T cell

percentages, CD4+ T cell counts, CD8+ T cell counts, B cell

counts, CD8+T cell percentages, B cell percentages, and CD4

+/CD8+ or multifocality between the groups (Table 1).
3.2 Feature selection using LASSO
regression

We performed LASSO regression analysis incorporating

demographic characteristics (age, gender), sonographic features

(nodule size, echogenicity, composition, multifocality, boundary,

and morphology), BRAFV600E mutation status, and comprehensive

lymphocyte subset profiles (including T cell percentages, T cell

absolute counts, CD4+ T cell counts, CD4+ T cell percentages, CD8

+ T cell counts, CD8+ T cell percentages, NK cell counts, NK cell

percentages, B cell counts, B cell percentages and CD4+/CD8+

radio) to identify the most discriminative predictors of thyroid

nodule malignancy. Through 10-fold cross-validation, the optimal

penalty parameter (lambda = lambda.min) yielded a parsimonious

model containing five key variables: patient age, BRAFV600E

mutation status, NK cell counts, NK cell percentages, and CD4+

T cell percentages. The variable selection process is visualized

in Figure 1A (coefficient profiles), while Figure 1B displays the

cross-validation curve demonstrating model optimization. The

assignment table for categorical variables is provided in

Supplementary Table 1.
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3.3 Collinearity assessment

Following LASSO regression selection, we evaluated potential

multicollinearity among the identified predictors (age, BRAFV600E

genotype, NK cell counts, NK cell percentages, and CD4+ T cell

percentages) using Pearson correlation analysis and VIF

diagnostics. Initial correlation analysis revealed a possible

association between NK cell counts and NK cell percentages

(r=0.763, P<0.01), exceeding our predefined threshold of |r|>0.7

for potential collinearity (Table 2). Subsequent multicollinearity

testing demonstrated acceptable tolerance values (>0.1) and VIF

(<5) for all variables (Table 3), confirming the absence of significant

multicollinearity in our final model.
3.4 Multivariate regression analysis of
thyroid nodules with C-TIRADS category 3
and above

Multivariate logistic regression analysis (forward conditional

method) was performed with five variables: age, BRAFV600E

genotype, NK cell counts, NK cell percentages, and CD4+ T cell

percentages. The analysis identified BRAFV600E genotype as an

independent risk factor for PTC (OR = 36.088, 95% CI

[12.984~100.297], p < 0.001), indicating a significantly elevated

malignancy risk in mutation-positive patients. Conversely, age (OR =

0.962, 95% CI [0.926~0.999], p = 0.045) and NK cell counts (OR =

0.995, 95% CI [0.992~0.998], p = 0.002) emerged as protective factors.

Neither NK cell percentage nor CD4+ T cell percentage retained

statistical significance in the final model. Model fit was confirmed by

Hosmer-Lemeshow testing (c² = 7.198, p = 0.515), with an overall

classification accuracy of 87.6% (Table 4).
3.5 Construction and validation of the
nomogram model

3.5.1 Construction of the nomogram
Using the independent predictors identified by LASSO

regression (age, BRAFV600E genotype, NK cell counts, NK cell

percentages, and CD4+ T cell percentages), we constructed a

clinically applicable nomogram (Figure 2) to estimate the

individualized risk of malignancy in thyroid nodules classified as

C-TIRADS category 3 or above.

3.5.2 Curve of calibration
Internal validation using 1000 bootstrap resamples

demonstrated excellent model discrimination, with an AUC and

concordance index (C-index) of 0.861 (95% CI: 0.859–0.863). The

Hosmer-Lemeshow goodness-of-fit test (c² = 6.72, p = 0.57) and

calibration curve analysis (MAE=0.023) (Figure 3) indicated strong

agreement between predicted and observed outcomes, confirming

robust model calibration.
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3.5.3 Brier score
Internal validation via 1000 bootstrap resamples demonstrated

superior predictive accuracy of our model (Brier score = 0.1061)

compared to random guessing (Brier score = 0.1814, 95% CI: 0.073-

0.134, Figure 4). These results confirm the model’s robust

discriminative ability for distinguishing benign lesions from PTC

in thyroid nodules classified as C-TIRADS category 3 or above.

3.5.4 Decision curve analysis
Decision curve analysis demonstrated the superior clinical utility of

our prediction model across a wide range of risk thresholds (Figure 5).

Themodel’s net benefit curve substantially exceeded both the “treat-all”

and “treat-none” reference strategies, indicating robust clinical

applicability for decision-making in thyroid nodule management.
3.6 Comparative performance of
prediction model versus C-TIRADS system

All 210 thyroid nodules (160 benign, 50 PTC) were classified

according to C-TIRADS guidelines, demonstrating progressively

increasing malignancy rates across categories: 9.40% (11/117) for

category 3, 34.78% (24/69) for 4a, 57.14% (12/21) for 4b, 100% (2/2)

for 4c, and 100% (1/1) for category 5 (P<0.001, Table 5). For

quantitative analysis, the C-TIRADS was assigned numerical codes

as follows: C-TIRADS 3 = 0, C-TIRADS 4a = 1, C-TIRADS 4b = 2,

C-TIRADS 4c = 3, and C-TIRADS 5 = 4. ROC curve analysis was

performed to compare the diagnostic efficacy between our

prediction model and the C-TIRADS for differentiating benign

and malignant thyroid nodules. The developed prediction model for

assessing PTC risk in C-TIRADS category 3+ demonstrated

significantly superior discriminative ability, with an AUC of 0.862

(95% CI: 0.802-0.922; P<0.001). At the optimal cutoff value of 0.320,

the model achieved a specificity of 93.7% and sensitivity of 66.0%,

yielding a Youden’s index of 59.7%. In comparison, the C-TIRADS

showed an AUC of 0.752 (95% CI: 0.672-0.832; P<0.001), with 0.5
TABLE 1 Comparative analysis of clinical characteristics between the
two groups.

Characteristics
Benign
nodule
group

PTC group
Z/
t/x2

P

Age
55.50
(50.00,60.00)

52.00
(41.75,58.00)

-2.187 0.029

Sex 0.371 0.542

Woman 131 (81.9) 39 (78.00)

man 29 (18.1) 11 (22.00)

BRAFV600E 71.377 <0.001

wild type 150 (93.80) 20 (40.00)

mutant type 10 (6.30) 30 (60.00)

T cell % 70.69±9.01 72.31±8.04 -1.142 0.255

T cell
absolute counts

1100.28
(823.25,1332.00)

1034.50
(809.00,1267.91)

-0.809 0.418

CD4+ T cell counts
628.50
(482.75,802.46)

595.00
(512.25,809.88)

-0.109 0.913

CD8+T cell counts
335.86
(247.25,478.75)

328.95
(247.00,405.75)

-0.697 0.486

NK cell counts
212.50
(131.25,376.00)

167.50
(119.75,248.25)

-2.193 0.028

B cell counts
173.50
(120.50,246.25)

181.09
(145.25,251.00)

-0.823 0.411

CD4+T cell % 42.04±8.00 44.61±6.03 -2.094 0.037

CD8+T cell %
23.26
(17.79,28.84)

23.20
(20.09,26.60)

-0.229 0.819

NK cell %
14.61
(9.27,22.13)

11.52
(8.04,16.60)

-2.293 0.022

B cell %
11.74
(8.72,14.95)

12.93
(10.80,16.18)

-1.776 0.076

CD4+/CD8+ 1.78 (1.35,2.46) 1.89 (1.48,2.34) -0.753 0.451

Ultrasound features

size 5.966 0.015

<10mm 36 (22.5) 20 (40.0)

≥10mm 124 (77.5) 30 (60.0)

echogenicity 4.432 0.035

Non-hypoechoic 50 (31.3) 8 (16.0)

hypoechoic 110 (68.8) 42 (84.0)

composition 5.091 0.024

Non-solid 40 (25.0) 5 (10.0)

solid 120 (75.0) 45 (90.0)

multifocality 0.025 0.874

Solitary 21 (13.1) 7 (14.0)

Multiple 139 (86.9) 43 (86.0)

(Continued)
TABLE 1 Continued

Characteristics
Benign
nodule
group

PTC group
Z/
t/x2

P

Ultrasound features

boundary 5.446 0.020

clear 138 (86.3) 36 (72.0)

obscure 22 (13.8) 14 (28.0)

Morphology 5.612 0.018

regular 131 (81.9) 33 (66.0)

irregular 29 (18.1) 17 (34.0)
frontie
T cell %, T cell percentages; CD4+ T cell %, CD4+ T cell percentages; CD8+ T cell %, CD8+ T
cell percentages; NK cell %, NK cell percentages; B cell %, B cell percentages; CD4+/CD8+,
CD4+T cell counts/CD8+T cell counts ratio; Non-hypoechoic, isoechoic or hyperechoic;
Non-solid, cystic or spongiform or mixed.
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(corresponding to category ≥4a) as the optimal cutoff (specificity:

66.25%; sensitivity: 78.0%; Youden’s index: 44.25%). These results

demonstrate that our novel prediction model significantly

outper forms the convent iona l C-TIRADS sys tem in

discriminating benign lesions from PTC among C-TIRADS

category 3 and above nodules, suggesting its potential clinical
Frontiers in Endocrinology 06
utility for improved decision-making in thyroid nodule

management (Figure 6).
4 Discussion

Building upon prior research, this study innovatively

investigated the diagnostic value of lymphocyte subsets in

differentiating benign from malignant thyroid nodules. Our

analysis revealed that NK cell counts serve as a protective factor

against malignancy in thyroid nodules classified as C-TIRADS

category 3 or higher. We developed a novel nomogram model

incorporating five key variables (BRAFV600E genotype, NK cell

counts, NK cell percentage, CD4+ T cell percentage, and age) to

predict malignancy risk in these nodules. Validation demonstrated

that the model exhibits excellent discriminative ability, strong

calibration, and superior predictive performance compared to the

traditional C-TIRADS. These findings suggest significant potential

for clinical translation in thyroid nodule risk stratification.
TABLE 2 Correlation analysis of predictor variables.

Characteristics Age
BRAFV600E

genotype
NK cell counts NK cell % CD4+T cell %

Age 1.000

BRAFV600E genotype -0.069 1.000

NK cell counts 0.128 0.008 1.000

NK cell % 0.157 -0.002 0.763* 1.000

CD4+T cell % 0.006 0.044 -0.378 -0.483 1.000
NK cell %, NK cell percentages; CD4+ T cell %, CD4+ T cell percentages; *represents P<0.01.
TABLE 3 Collinearity diagnosis.

Characteristics Tolerance VIF

Age 0.961 1.041

BRAFV600E genotype 0.992 1.008

NK cell counts 0.417 2.395

NK cell % 0.369 2.714

CD4+T cell % 0.757 1.321
NK cell %, NK cell percentages; CD4+ T cell %, CD4+ T cell percentages; VIF, variance
inflation factors.
FIGURE 1

LASSO regression analysis for feature selection. (A) LASSO coefficient path diagram: The x-axis represents log-lambda, reflecting the degree of
regularization. It shows that as the lambda value increases, the coefficient values shrink gradually to zero, and the number of retained variables
decreases. (B) LASSO regularization path diagram: The x-axis is log(lambda); the upper axis denotes the number of non-zero coefficients, while the
left y-axis represents the binomial deviance. This graph demonstrates the variation in binomial deviance with different lambda values. The two
vertical lines represent the optimal lambda values selected by cross-validation. The left dashed line is lambda.min, where lambda minimizes the
binomial deviance, and the right dashed line is lambda.1se, where lambda corresponds to the most regularized model within one standard error of
the minimum deviance.
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The Bethesda System for Reporting Thyroid Cytopathology

(TBSRTC) is a standardized classification system for thyroid FNA

cytology, demonstrating high sensitivity and specificity in

diagnosing thyroid cancer (9). Previous studies have confirmed

the diagnostic accuracy of TBSRTC categories II to VI (10).

Accordingly, this study enrolled 210 patients with thyroid nodules

classified as C-TIRADS category 3 or above. Based on FNAB results,

nodules categorized as Bethesda II were assigned to the benign

group, while those classified as Bethesda V or higher and

subsequently confirmed as PTC through postoperative

histopathological examination comprised the PTC group. The

study objectives were to identify potential risk factors associated

with PTC development and establish a risk prediction model for

discriminating between benign thyroid nodules and PTC, thereby

facilitating more accurate clinical diagnosis and treatment

decision-making.

This study demonstrated that the BRAFV600E mutation serves as

an independent risk factor for PTC. As a major oncogenic driver,

the BRAFV600E mutation is present in approximately 60% of PTC

cases (11). Located on chromosome 7q34, the BRAF gene encodes a
Frontiers in Endocrinology 07
threonine/serine protein kinase belonging to the RAF family. As a

critical component of the MAPK signaling pathway, BRAF

regulates cell growth, proliferation, and apoptosis. Dysregulation

of this pathway due to BRAF mutations can contribute to

tumorigenesis (12).

Our analysis identified age as an independent protective

factor against PTC, corroborating existing epidemiological

evidence (13). The observed inverse association may be

attributed to age-related biological mechanisms including

t e l ome r e a t t r i t i on , s t em c e l l d ep l e t i on , impa i r e d

macroautophagy, and cellular senescence - processes known to

mediate environment-dependent tumor suppression and

potentially attenuate carcinogenesis risk (14, 15).

The tumor microenvironment (TME) comprises the cellular

and molecular milieu supporting tumorigenesis and progression.

This complex ecosystem includes not only tumor cells themselves, It

also includes innate immune cells (such as macrophages, mast cells,

granulocytes, myeloid-derived suppressor cells, dendritic cells,

natural killer cells, etc.), adaptive immune cells (such as T

lymphocytes, B lymphocytes), interstitial fibroblasts, extracellular
FIGURE 2

Nomogram for the risk of PTC in thyroid nodules with C-TIRADS category 3 or above. This nomogram integrates multiple predictors identified by
lasso to estimate the probability of PTC risk in thyroid nodules classified as C-TIRADS category 3 or above. Each variable is assigned a point value
based on its contribution to the model. The total points (sum of individual variable points) correspond to the predicted mutation risk at the bottom
scale.
TABLE 4 Multivariate regression analysis of thyroid nodules with C-TIRADS category 3 and above.

Characteristics B S.E Wald df P OR (95% CI)

Age -0.039 0.019 4.032 1 0.045 0.962 (0.926~0.999)

BRAFV600E genotype 3.586 0.522 47.276 1 0.000 36.088 (12.984~100.297)

NK cell counts -0.005 0.002 9.365 1 0.002 0.995 (0.992~0.998)

Constant 1.038 1.035 1.006 1 0.316 2.823
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matrix, vascular and lymphatic networks, and inflammatory factors

and growth produced by them and tumor cells through autocrine or

paracrine Factors, chemokines and other non-cellular components.

These components engage in dynamic crosstalk that collectively

governs tumor progression and metastatic dissemination.
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Specific cellular or molecular features in TME have been shown

to be independent prognostic factors. Accumulating evidence

indicates that lymphocytic infiltration is associated with favorable

outcomes across various cancer types (16–19). During thyroid

cancer progression, patients exhibit systemic immune activation
FIGURE 3

Calibration curve of the prediction model. The diagonal dotted line representsthe ideal prediction by the perfect nomogram. The green solid ine
represents the performance of the nomogram, The closer the green solid line is to the diagonal dotted line, the stronger the predictive ability of the
model. The red solid ine indicates the apparent predictive accuracy.
FIGURE 4

Histogram of Bootstrap Brier Score Distribution. The figure depicts the distribution of Brier scores derived from 1000 bootstrap replications. The red
solid line represents the Brier score of the predictive model (0.106), and the blue dashed line indicates the Brier score of the random model (0.181).
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accompanied by a marked expansion of pro-tumorigenic immune

cell populations (20). Notably, PTC with robust pericarcinoma

lymphocytic infiltration exhibits an improved prognosis

compared to PTC lacking such infi ltration (21). This

phenomenon may arise from lymphocyte-derived cytokine-

mediated tumor suppression or cancer cell evasion of immune

surveillance via mechanisms such as major histocompatibility

complex (MHC) modulation. Peripheral blood immune cells

serve as both systemic immune indicators and active participants

in tumor immunomodulation. These cells migrate to tumor sites

where they influence local immune responses through multiple

mechanisms including chemotaxis, cell-cell signaling, and systemic

immune modulation, ultimately affecting tumor progression and

therapeutic outcomes (22). Quantitative monitoring of circulating

lymphocyte populations may offer valuable insights into cancer
Frontiers in Endocrinology 09
development and prognostic evaluation. Given these observations,

we hypothesized that peripheral blood lymphocyte subset

alterations might influence PTC development. NK cells, critical

effectors of innate immunity, contribute substantially to antitumor

responses and cancer immunosurveillance (23, 24). Depletion of

NK cells has been associated with elevated tumor susceptibility (25,

26). Our findings demonstrate that NK cells serve as protective

factors in PTC. Specifically, a 1-cell/mL increment in NK cell counts

was associated with a 0.5% reduction in PTC risk. This finding is

consistent with previous reports in lung adenocarcinoma (27),

colorectal cancer (28), gastric cancer (29), and melanoma (30).

Higher tumor-infiltrating NK cell abundance was significantly

associated with better clinical outcomes in different types of

malignancies. This may be related to the fact that NK cells

achieve tumor control by recognizing and killing tumor cells and

promoting adaptive T-cell immune responses (31–33).

Our analysis of thyroid nodules classified as C-TIRADS category

3 or higher revealed a distinct pattern in CD4+ T-cell distribution.

While absolute CD4+ T-cell counts showed no significant difference

between benign lesions and PTC, the relative percentages of CD4+ T

cells were markedly elevated in PTC patients compared to their

benign counterparts. Notably, this parameter persisted as an

independent predictive factor in our LASSO-optimized risk

stratification model. These findings contrast with previous reports

(34), suggesting complicated thyroid-specific immunomodulatory

mechanisms. An investigation in oligometastatic non-small cell

lung cancer (NSCLC) has demonstrated significantly elevated

peripheral CD4+ T-cell levels in patients with brain metastases

compared to healthy controls (35). These findings suggest CD4+ T
FIGURE 5

Decision curve analysis of the prediction model. The x-axis of this curve represents the risk threshold probability, while the y-axis indicates the net
clinical benefit derived from decision-making based on the prediction model. The red curve denotes the net benefit achieved by applying the
nomogram, the gray curve illustrates the net benefit of the “treat-all” strategy, and the black curve shows the net benefit of the “treat-none” strategy.
TABLE 5 C-TIRADS classification of thyroid nodules.

C-TIRADS
Classification

Nodule
numbers

Benign
nodules

Malignant
nodules

C-TIRADS 3 117 106 (90.60) 11 (9.40)

C-TIRADS 4a 69 45 (65.21) 24 (34.78)

C-TIRADS 4b 21 9 (42.86) 12 (57.14)

C-TIRADS 4c 2 0 (0.00) 2 (100)

C-TIRADS 5 1 0 (0.00) 1 (100)

x2 38.596

P <0.001
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cells may contribute to anti-tumor immune responses, potentially

through specific mechanisms. Substantial interindividual variability

exists in CD4+ T cell measurements, with absolute counts being

particularly susceptible to confounding factors including active

infections, pharmacologic interventions, chronic inflammatory

conditions, leukocytosis, and post-splenectomy status (36). Notably,

while these factors may significantly elevate absolute CD4+ counts,

they generally induce only marginal fluctuations in CD4+

percentages. Consequently, the CD4+ percentages appear to

represent a more stable immunological indicator.

Mantovani et al. demonstrated that both innate and acquired

immune responses can either promote cancer initiation and tumor

progression or exert anticancer effects (37). However, current

evidence on the diagnostic value of peripheral blood lymphocyte

subsets in PTC remains limited and inconsistent. Some studies

report no significant differences in the percentages of CD8+ T cells,

CD4+ T cells, and NK cells in peripheral blood between PTC

patients and those with benign thyroid nodules (38). In contrast,

other research has identified a higher proportion of T cells, CD3+ T

cells, CD4+ T cells, CD8+ T cells, and regulatory T cells (Tregs) in

the peripheral blood of PTC patients compared to benign cases (34),

correlating with PTC aggressiveness (39). Investigations focusing

on lymphocyte subset infiltration within thyroid tissue have

consistently linked CD8+ T cells, CD4+ T cells, and B cells to

PTC (38, 40–45). Notably, our findings align with prior reports (45)

indicating the minimal influence of peripheral blood T cells and B

cells on PTC development. The observed discrepancies may reflect

methodological variations across studies, particularly regarding

BRAFV600E mutation status adjustment, which was adequately

controlled in our analysis. Moreover, we employed high-
Frontiers in Endocrinology 10
resolution flow cytometry to precisely quantify both absolute

lymphocyte counts and subset percentages simultaneously, a

methodological advancement over conventional morphological

analysis that significantly improves measurement accuracy. The

compartmentalized distribution of lymphocyte subsets - with

distinct peripheral blood profiles contrasting sharply with tissue

infiltration patterns - suggests a model where T and B lymphocytes

undergo primary activation within the thyroid tumor

microenvironment before systemic dissemination, potentially

accompanied by either clonal expansion or functional exhaustion.

Consequently, while intratumoral T cells exhibit pronounced

activation in PTC, peripheral blood alterations may remain

subclinical (38, 46).

In this study, we employed LASSO regression to identify

significant predictors for PTC risk among thyroid nodules

classified as C-TIRADS category 3 or above. To facilitate clinical

implementation, we constructed a nomogram that visually

represents the model parameters, enabling intuitive and

individualized risk stratification for PTC. The nomogram

demonstrated favorable discrimination, accuracy, and clinical

utility. Comparative analysis with the conventional C-TIRADS

system revealed superior performance, offering enhanced clinical

value for individualized risk assessment of thyroid nodules.

This study has several limitations that warrant consideration.

Firstly, this study employed peripheral blood analysis to characterize

lymphocyte subsets while recognizing that circulating immune

profiles may not accurately represent the local thyroid tissue

microenvironment, particularly regarding tumor-infiltrating

lymphocytes (TILs) and tissue-resident NK cells. The biological

interpretation of our findings requires consideration of potential
FIGURE 6

ROC curves of the prediction model and the C-TIRADS system. The area under the curve (AUC) serves as an indicator of predictive accuracy and
generalization capability.
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discrepancies in immune cell migration and phenotype between

peripheral circulation and thyroid tissue. Furthermore, peripheral

lymphocyte proportions may be influenced by systemic

inflammatory status and hormonal fluctuations. Future

investigations should incorporate single-cell RNA sequencing of

FNA specimens or multiplex immunofluorescence analysis to

directly evaluate spatial lymphocyte distribution and functional

states within thyroid nodules, thereby validating the tissue-level

applicability of our model.

Secondly, the relatively small sample size from a single

institution restricted the more comprehensive variable analysis to

prevent overfitting, and although LASSO regression was used for

variable selection, potential residual confounders may remain.

Importantly, post-hoc power analysis confirmed our study

maintained 92% statistical power to detect moderate effect sizes,

ensuring robust reliability of the reported associations.

Additionally, the scarcity of Bethesda VI nodules necessitated

combining categories V and VI for statistically reliable analysis.

These constraints highlight the need for future multi-center studies

with larger cohorts to enable stratified analyses and external

validation. In subsequent research, we plan to collect

comprehensive clinical data (including peripheral blood

lymphocyte subsets, C-TIRADS classification, BRAFV600E

genotype, and histopathological type) from a minimum of 500

thyroid nodule patients across two provincial tertiary hospitals over

a 24-month period. This multicenter validation study will assess the

model’s generalizability across diverse populations and the

consistency of the NK cell counts-PTC association in different

demographic and clinical subgroups.

Thirdly, the cross-sectional nature of our study design precludes

causal inference regarding the relationship between identified

factors and PTC development. Longitudinal studies would be

required to establish temporal relationships and causality.

Finally, while FNAB represents our primary diagnostic

modality, its accuracy is inherently influenced by several technical

and biological factors including nodule characteristics (size,

location), sampling technique, and cytological preparation quality.

To maximize diagnostic reliability, we implemented rigorous

quality control measures: all procedures were performed by

experienced senior clinicians (chief or deputy chief physicians),

with strict adherence to the Bethesda System for Reporting Thyroid

Cytopathology. This standardized approach helped mitigate

potential variability, though the intrinsic limitations of cytological

interpretation remain an acknowledged constraint of this study.
5 Conclusion

This study developed and validated a clinically useful

nomogram incorporating BRAFV600E genotype and lymphocyte

subsets, which demonstrated superior diagnostic accuracy in

differentiating benign lesions from PTC among C-TIRADS

category 3 and higher nodules. The model may help refine risk

stratification and reduce unnecessary invasive interventions in

indeterminate cases.
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14. Montégut L, López-Otıń C, Kroemer G. Aging and cancer. Mol Cancer. (2024)
23:106. doi: 10.1186/s12943-024-02020-z
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