
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Jeremy Pomeroy,
Marshfield Clinic Research Institute,
United States

REVIEWED BY

Cecilia Contreras-Cubas,
National Institute of Genomic Medicine
(INMEGEN), Mexico
Debora Porri,
University of Messina, Italy
Jesse Richards,
University of Oklahoma, United States

*CORRESPONDENCE

Julie Harvengt

Julie.Harvengt@chuliege.be

RECEIVED 08 April 2025
ACCEPTED 02 June 2025

PUBLISHED 01 August 2025

CITATION

Harvengt J, Hannon M, Palmeira L,
Lebrethon M-C, Dideberg V and
Bours V (2025) Monogenic etiologies
in a cohort of early onset obesity:
a real-world experience from Belgium.
Front. Endocrinol. 16:1608398.
doi: 10.3389/fendo.2025.1608398

COPYRIGHT

© 2025 Harvengt, Hannon, Palmeira,
Lebrethon, Dideberg and Bours. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 01 August 2025

DOI 10.3389/fendo.2025.1608398
Monogenic etiologies in a cohort
of early onset obesity: a real-
world experience from Belgium
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Marie-Christine Lebrethon3, Vinciane Dideberg1

and Vincent Bours1,2

1Human Genetics Department, CHU of Liège, Liège, Belgium, 2GIGA Research, University of Liège,
Liège, Belgium, 3Pediatric Endocrinology, Pediatric Department, CHU of Liège, Liège, Belgium
Introduction:Obesity is a major global health issue with multifactorial etiologies.

Among them, recent advances in the comprehension of eating and energy

regulation showed that around 60 genes involved in the hypothalamic leptin/

melanocortin pathway contribute to the development of rare monogenic or

syndromic forms of obesity.

Objective: To better delineate the genetic diagnostic rate and the phenotype in a

cohort of early onset obesity and to integrate our results in guidance for

genetic testing.

Methods: In a diagnostic setting, 223 patients with early onset obesity were

screened through a targeted panel including 44 genes for severe early onset

obesity. Genetic results and clinical descriptions were reviewed for the

entire cohort.

Results: A diagnostic yield of 3.1% was established. Likely pathogenic or

pathogenic variants were found in MRAP2, MC4R, BBS2, and BBS4, and a

16p11.2 deletion was confirmed. Clinically, 23% of the cohort had early onset

obesity at <1 year, 47% at 1–4 years, and 30% at >4 years. No discriminative

clinical feature appears to enhance the diagnostic yield. Thirty-six percent of the

cohort presented additional neurological complaints that led to more extensive

genetic investigations with a diagnosis rate of 1.8% in this subgroup.

Conclusion: Our work found a diagnostic yield of 3.1%. Additionally, 19.7% of

heterozygous variants of unknown significance were found in genes related to

autosomal conditions and 34.9% in genes related to recessive conditions. These

results highlight the need for accurate genotype-phenotype correlations. Genetic

laboratory expertise in obesity is highly recommended, especially in the context of

the availability of new targeted anti-obesity therapies that open the field for current

and future perspectives of these targeted genetic investigations.
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Introduction

Childhood obesity has been recognized as one of the most

serious public health problems of the 21st century. In Belgium,

recent epidemiological studies (1) reveal that nearly half (49%–55%)

of the adult population aged more than 18 years is overweight (BMI

≥ 25) and 16% is obese (BMI ≥ 30). In the group of children and

adolescents (2–17 years), 19% present an excess weight (85th

percentile ≤ BMI < 95th percentile), and 5.8% are obese (BMI ≥

95th percentile). A standard pediatric categorization defines obesity

in three classes by using the 95th percentile for age and sex as the

reference threshold and categorizing 100%–120% of the 95th

percentile as class I obesity, 120%–140% as class II obesity, and

more than 140% as class III obesity (2, 3). Among the children

presenting severe obesity (i.e., classes II and III obesity), at least 5%–

10% present chromosomal abnormalities and/or highly penetrant

genetic mutations that contribute to their obesity (4).Individually,

these monogenic disorders are considered (very) rare. But at a

population level, the impact of these diagnoses may be significant

on public health care. Moreover, the current medical practices tend

to be more oriented to a better precision medicine that might be

started at younger ages for children accurately diagnosed.

Clinicians face the challenge of identifying the rare genetic

forms of obesity among the large population group of severely obese

young children and adolescents. Until now, one major criterion has

been to start genetic investigations in cases of inappropriate weight

gain in comparison to diet and lifestyle. As a main symptom,

sustained severe hyperphagia (moreover with nocturnal eating)

from early childhood is a feature of the genetic obesity syndromes

(5, 6). Learning and behavioral troubles, developmental delay (e.g.,

Prader–Willi syndrome), ophthalmological issues and/or kidney

failure (e.g., visual loss/renal abnormalities encountered in Bardet–

Biedl syndrome (7)) are classically encountered in these syndromes,

leading generally to an exhaustive genetic work-up at a very young

age. However, over the last 20 years, a group of genetic disorders

with severe obesity as the only presenting feature has emerged.

These monogenic non-syndromic obesity disorders are mainly

driven by molecular alterations in hypothalamic pathways

involved in appetite regulation and weight regulation through the

leptin-melanocortin pathway.

In this context, we have performed since 2022 a custom NGS

targeted panel of 44 genes dedicated to monogenic and syndromic

forms of severe and early onset obesity. The aim of this study is to

assess the diagnostic yield of our approach in a diagnostic setting

and to propose a clinical description of the whole cohort studied
Abbreviations: BMI, Body mass index; LEP, Leptin; LEPR, Leptin receptor;

POMC, Proopiomelanocortin; MC4R, Melanocortin 4 receptor; PCSK1,

Proprotein convertase, subtilisin/kexin-type, 1; BDNF, Brain-derived

neurotrophic factor; MRAP2, Melanocortin 2 receptor accessory protein 2;

EMA, European Medicines Agency; VUS, Pathologic variant (Class 5 variant in

ACMG classification); LPV, Likely Pathologic variant (Class 4 variant in ACMG

classification); PV, Variant of uncertain significancy (Class 3 variant in

ACMG classification).
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and a short description of individual cases to illustrate, secondarily,

the perspectives and the need for guidance for genetic testing.
Materials and methods

Patients: inclusion criteria and data
collection

Patients investigated through our targeted genetic obesity panel

must present a severe early onset obesity starting ≤ 4 years of age as

an isolated symptom or an obesity starting at 4 years or a few years

later (in a pre-puberty stage) as a non-isolated symptom. Symptoms

are assessed by the specialists who prescribe the analysis: (pediatric)

endocrinologists but also other experts in the field of obesity

management. Important, but not mandatory, criteria for genetic

testing are the hyperphagia (defined by pathologic, insatiable

hunger accompanied by abnormal food-seeking behaviors,

including sometimes nocturnal eating) (8) or the lack of satiety.

At that time, no mandatory dedicated and validated hyperphagia

questionnaire was in use in Belgium, leaving this clinical criterion to

the evaluation of the specialist. A family history is not mandatory,

knowing that some genetic conditions are de novo.

A cohort of a total of 223 probands was tested between February

2022 and May 2024. Our cohort included only those patients for

whom we received a well-filled clinical form that included specific

clinical criteria and familial data (Table 1). For each patient, all the

items have been recorded in an anonymized Excel database in

accordance with the PGDR legacy and our internal hospital

ethical legacy.

Patients were included to perform solo, duo (proband and one

parent), or trio (proband and both parents) analyses depending on

the availability or not of the blood samples from the parents.

All the patients agreed to this study through the signatures of a

consent form.
TABLE 1 Cohort description.
Number of index patients and genre repartition. Percentages of obesity targeted panels
performed in trio, duo or solo.
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Sequencing and bioinformatics methods

Our genetic test is an “in-house LDT test” developed from

commercial kits. The targeted obesity gene panel contains 44

obesity-related genes: ADCY3, ALMS1, BBS1, BBS2, BBS3 (ARL6),

BBS4, BBS5, BBS6 (MKKS), BBS7, BBS8 (TTC8), BBS9, BBS10,

BBS11 (TRIM32), BBS12, BBS13 (MKS1), BBS14 (CEP290), BBS15

(WDPCP), BBS16 (SDCCAG8), BBS17 (LZTFL1), BBS18 (BBIP1),

BBS19 (IFT27), BDNF, CREBBP, EP300, DYRK1B, GNAS, INPP5E,

LEP, LEPR, MAGEL2, MC3R, MC4R, MRAP2, MYT1L, NTRK2,

PCSK1, PHF6, POMC, RAB23, SETD2, SH2B1, SIM1, TBX3,

and TUB.

The list of the 44 genes was established based on an extensive

literature review and a comparative review of the previously described

worldwide obesity panel. Technically, each gene included in the panel

had sufficient coverage by NGS sequencing. All the materials and

methods used for the design of our custom panel were documented

and accredited according to local regulations.

Genomic DNA was extracted from peripheral blood

mononuclear cells in EDTA tubes using the Nucleomag Blood

200 µl kit (Macherey Nagel, Germany) on a MICROLAB STARlet

(Hamilton, Reno, USA). DNA was quantified using NanodropOne

(Thermo Fischer Scientific, MA, USA).

NGS sample preparation and enrichment was performed on 50

ng of DNA using the TWIST technology according to the

manufacturer’s recommendations (TWIST Biosciences, CA,

USA). The custom probes were designed to capture the exonic

regions ± 14 bp of our targeted genes (captured region of about 134

kb). Samples were pooled by 16 before cluster generation and

paired-end sequencing on a MiSeq using the MiSeq Reagent Kit

V3 150 cycles (Illumina, San Diego, USA).

Raw data demultiplexing and generation of the FASTQ files

were performed internally using “bcl2fastq” (Illumina). Sequencing

reads were then analyzed via our internal bioinformatics pipeline

(Humanomics, https://doi.org/10.5281/zenodo.13739359), which

maps and prepares raw reads before inferring SNPs and INDELs

following the GATK Best Practices. QC parameters are monitored

following our internal diagnostics procedure and presented for

interpretation using MultiQC.
Variant interpretation

The analysis and interpretation of variants reaching a minimal

30X coverage were performed using Alissa Interpret Software 5.3

(Agilent Technologies, CA, USA) and according to ACMG

interpretation variant guidelines (9) and their updates by the

Sequence Variant Interpretation Working Group published on

the ClinGen website.
Results

Our total cohort includes 223 patients. (Table 1) For 110

patients, we had trio samples, and for 33 patients, we collected
Frontiers in Endocrinology 03
duo samples. Thirty percent of samples came from national external

centers, and 70% came from the geographical area linked to our

university location.

The clinical dataset from all the cohorts of the 223 recruited

patients reveals that 45% (N = 102/223) are described as hyperphagic.

Regarding the other patients (121 of 223), the eating behavior was not

clearly mentioned to allow an appropriate interpretation.

To evaluate epidemiologically the type of early onset obesity

tested, patients were divided into three groups: weight gain started ≤ 1

year of age, between 1 and 4 years of age, or after 4 years of age. Data

are missing for seven of the 223 patients. The first group represents

23% of the cohort, the second 47%, and the third 30%. (Table 2)

Associated symptoms or features are detailed in Table 2. Specifically,

among the 2.3% of patients reported with red hair, no POMC variants

have been detected. Only two patients presented with retinitis

pigmentosa. One of them has a confirmed diagnosis of BBS. The

second had all the criteria for BBS without molecular confirmation at

that time. Overgrowth was reported for 10% of the cohort (22 of 220),

and no positive cases were found among these 10%. A subset of 3.7%

of this last group of patients was found to be investigated also by an

overgrowth-targeted panel. More generally, 36% of the cohort was

reported with neurological concerns, including motor delay (11%),

language delay (19%), and intellectual disabilities (16%). Neurological

features were found in the same ratio between the patients with

positive or negative results. Additional genetic investigations for

neurodevelopmental troubles have been performed using an array

CGH in 37% (79 of 214), an intellectual disability panel in 7.4% (16 of

216), and a dedicated test for FMR1 in 12.5% (Table 3).

Parents themselves are reported with the general criteria of

being affected by obesity (BMI > 30 with no precision) in 59.5%

(112 of 188) of the mothers and 48.8% (82 of 168) of the fathers.

The exact BMI (normal or in the criteria of obesity) was specifically

recorded for 82 fathers and 92 mothers, of whom 51 and 65,

respectively, had a BMI ≧ 30 kg/m2. The median BMI for the

fathers affected by obesity is 35.3 kg/m2 (M = 36.8; SD = 6.64), and

the median BMI for the mothers affected by obesity is 38.05 kg/m2

(M = 39.1; SD = 7.03). Only one father has been reported to have

died (unexplained cause).

As an indicator of familial severe obesity, parental history of

bypass surgery was reported in 13% (n = 21/164) of fathers and 25%

of mothers (n = 47/187).

The diagnostic yield of our targeted panel is 3.1% (7 of 223)

(Table 4A). The seven positive results identified in six families are

listed in Table 4B. Our panel was performed as a first-tier analysis in

71.5% of the cases (156 of 218). The genetic test for Prader-Willi

was additionally requested for 9.1% (19 of 218) of the patients and

showed no positive results.

However, additional positive results were found in the cohort:

array CGH revealed positive results for three patients (Table 4A),

but we know that one of these three patients was initially identified

with a 16p11.2 deletion by the obesity-targeted panel. For this

specific case, array CGH was completed to investigate additional

chromosomal abnormalities.

A pathologic variant in DDX3X was found through an

intellectual disabilities WES panel. Finally, six patients from the
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cohort were investigated by a WES, with one positive result

identified for one of the 6 patients: a young girl with HIDEA

Syndrome previously published in 2023 (10).

Out of our cohort, seven patients presented an LPV or PV in the

genes MC4R, MRAP2, and BBS2, and a 16p11.2 deletion for one

patient. (Table 4B) The median BMI for these positive cases is 35.2

kg/m2 (SD = 10.4, n = 6/7), and the median age at the time of genetic

investigations is 11.66 years (SD = 6.6). Five out of the seven positive

patients presented an early onset of obesity starting ≤ 4 years; more

specifically, two of them started ≤ 1 year.

A carrier status was found for nine patients (9/223 = 4%)

(Table 4A). They present either heterozygous LPV or PV in genes

related to recessive OMIM conditions. The genes encountered in

this subgroup are LZTFL1, BBS7, BBS1, CEP290, POMC, LEP,

and PCSK1.

Regarding the percentage of VUS found in our gene panel, 44

patients (19.7%) present at least one VUS in genes associated with

conditions with an autosomal dominant inheritance, and 78
Frontiers in Endocrinology 04
patients (34.9%) of the cohort present at least one VUS associated

with a recessive condition. (Table 4A) Lack of segregation analyses

or lack of literature consensus are the main reasons why the

pathogenicity of these variants remains uncertain until now.

Reevaluation of these 122 (54.7%) patients [considering patients

with a VUS for both AD (19.7%) and AR (34.9%) conditions] might

be proposed in the next few years to perform a reevaluation of the

genotype-phenotype correlations and expand the genetic testing

thanks to the new genomic technologies that should be available in a

diagnostic setting.

Regarding specifically the BBS variants, 38 patients (17%)

encountered at least one BBS VUS, and seven LPV/PV were

found in seven additional patients. These seven patients are

heterozygous, and no second variant in BBS genes was identified.

For three patients, the clinical suspicion remains highly significant

and investigations encompassing intronic region analyses are still

ongoing to try to identify a second variant for one patient.

Segregation analyses are still lacking for two patients.
TABLE 2 Auxological and clinical descriptive features of the total cohort.
Auxological data. For each patient, age of onset of obesity, birth parameters, BMI at last visit and associates’ symptoms were collected.
To assess the timing of early onset obesity, patients were divided into three groups: weight gain started ≤1 year of age (23%), between 1 and 4 years of age (47%), or after 4 years of age (30%).
Birth parameters show that 8.4% of the patients were born prematurely (<35GA). To estimate the number of patients in the criteria of macrosomia/overgrowth at birth, we calculated that 15%
presented a BW >4kg and 12% a BH >52cm.
For each patient, available data from the parents included BMI >30, exact BMI at the time of sample collection and bypass history. Each item was calculated in percentage or mean BMI for both
groups of mothers and fathers.
Clinical descriptive features. For each patient, associated symptoms were described by the prescribers and/or reviewed by our team. The list of features is described with the number (n) and the
percentage (%) of positive patients for each item and for each group (total cohort, patients with a positive genetic result and patients with a negative genetic result).
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Discussion

The diagnosis of monogenic obesity in children remains a

current challenge. In that view, since 2022, a targeted panel of 44

genes specifically dedicated to the genetic forms of severe and early

onset obesity has been implemented in the CHU of Liège, Belgium.

223 index probands were tested. Seven patients were found with

LPV or PV, which represents a diagnostic yield of 3.1%.
Frontiers in Endocrinology 05
Nevertheless, this descriptive series also highlights a significant

number of heterozygous class 3 variants (19.7% related to

autosomal dominant conditions and 46.6% to recessive

conditions) and 4% of heterozygous carriers of an LPV or PV in

a gene encountered in recessive conditions.

The seven positive cases diagnosed in our cohort present variants

in MC4R, MRAP2, and BBS genes and a 16p11.2 deletion. All these

molecular alterations lead to a dysregulation of the appetite control,

mainly through a disturbance of the hypothalamic leptin-

melanocortin pathway, the main cause of monogenic non-

syndromic obesities (Figure 1). Clinically, it is well known that a

deficiency of POMC (bi-allelic variants) leads to hyperphagia, lower

resting metabolic rate, and severe obesity with cutaneous

pigmentation abnormalities (red hair and pale skin) (16). However,

the impact of heterozygous POMC variants on obesity is still unclear.

A recent publication of 2023– (17) concludes that heterozygous

pathogenic POMC variants do not contribute to monogenic obesity

but that they slightly increase the BMI (17). Further data will probably

be more accurate in the next few years considering the subsequent

question of the relevance (or not) of using new treatments such as

setmelanotide in this indication. In our cohort, we found three patients

with POMC VUS for whom the interpretation should improve with

better segregation data, but familial DNA samples are not available.

One of them presents, nevertheless, a highly questioning VUS that

raises the question of the impact of specific variants located on

cleavage sites of the POMC protein. (Figure 2) POMC is cleaved by

pro-hormone convertases at dibasic sites, which are generally well

conserved between species (18). The expression of the POMC gene is

based on complex mechanisms that regulate the release of POMC-

derived peptides such as MSH, ACTH, and ß-endorphins (Figure 2).

Our patient presents the variant POMC c.706C>G, p.(Arg236Gly),
TABLE 4A Results summary showing the number of variants (P/LP/VUS) identified in the cohort through the different genetic tests.
The diagnosis yield for the obesity panel is 3.1%. The total diagnosis yields all tests included for the whole cohort is 4.9.%. The results discriminate furthermore the number of patients who are
carriers of a heterozygous LP/P in a gene associated with a recessive condition and the number of patients for whom the genetic test found at least one VUS in respectively autosomal conditions
and recessive conditions.
*The P/PL variants reported for the patients with a confirmed diagnosis are in heterozygous state for autosomal conditions or in a homozygous or composite heterozygous state for
recessive conditions.
TABLE 3 Number and type of additional genetic investigations
performed in the cohort.

Number and type of additional genetic investigations

% n

Array CGH 37% 79/214

ID gene panel 7.4% 16/216

Overgrowth gene panel 3.7% 8/215

FMR1 gene analysis 12.5% 27/216

Prader-Willi Syndrome 9.1% 19/208

Whole Exome Sequencing 2.8% 6/212

Angelman 3

BBS targeted gene panel 3

BWS 3

Temple syndrome 6

MODY panel 3

Metabolic work-up 4
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which is located on the cleavage site involved in the generation of ß-

endorphins. ß-endorphins are known to play a role in the regulation of

analgesia but also in the regulation of food intake through their specific

activation of the µ-opioid receptors and not the MC4R. A study of

mice with deletion of ß-endorphins reveals that male mice were obese

and hyperphagic (19). In addition to this anorexigenic role, ß-

endorphins are also involved in the positive regulation of the

appetite through the reward behavior system. Processing of POMC

is therefore a complex and subtle pathway that might need more

detailed knowledge to better appreciate the functional consequences of

each specific variant. Notably, in the case of a variant leading to a

specific ß-endorphin deficiency, a treatment such as MC4R-agonist

would not be indicated.

Interestingly, MC4R remains the first cause of monogenic

obesity, with an estimated prevalence of 5% and 2% in the obese

pediatric and adult cohorts, respectively (16). MC4R is expressed in

the hypothalamus, brain, muscle, adipocytes, and astrocytes and is

involved not only in energy homeostasis and food intake but also in

anti-inflammatory regulation, drug tolerance, and sexual behavior

(20, 21). Patients with homozygous variants are extremely rare in

Europe; a few consanguineous families are described showing a

highly severe phenotype with a very early onset of hyperphagia. In

contrast, heterozygous patients present a wide phenotypical

spectrum ranging from very early onset hyperphagia to minor

excess weight in adulthood. Three patients with an LPV or PV in

MC4R were detected in our cohort (3/223 = 1.35%): two MC4R

pathogenic variants previously published (22, 23) and one MC4R

LP variant c.535delG (p.(Val179Phefs*39) never reported until

now. (Patient 2, Figure 3). Our diagnosis yield is probably
Frontiers in Endocrinology 06
lowered because, in case of suspicion of MC4R, Belgian clinicians

have the possibility to prescribe MC4R-targeted tests, leading to a

statistical estimation of the incidence of MC4R-positive patients

that is difficult without a specific registry.

Another key component in the leptin-melanocortin pathway is

the melanocortin 2 receptor accessory protein 2 (MRAP2). (Figure 1)

Since 2023, MRAP2 is known to be required for the localization of

MC4R to the primary cilia and the function of MC4R neurons (24),

an emerging knowledge providing new insights in recent theories

linking energy homeostasis and primary cilia. In this perspective,

research for new candidate genes should also be oriented to genes

controlling the localization of MC4R to the primary cilia (24). Loss-

of-function pathogenic variants in MRAP2 are related to monogenic

hyperphagic obesity associated with hyperglycemia and hypertension,

contrasting with the other monogenic forms of obesity that present

generally with low blood pressure and normal glucose tolerance. As

deficiency in MRAP2 partly affects the MC4R pathway, the

subsequent energy homeostasis dysregulation and obesity in

MRAP2-deficient subjects might be theoretically improved by an

MC4R-agonist treatment (25). However, further studies are needed to

better delineate mechanisms and efficacy of this therapeutic option in

MRAP2-related obese patients. In our cohort, a new MRAP2 variant

was found in two related probands: MRAP2 loss-of-function LPV

c.91_92delinsTA, p.(Gly31*) (Figure 3).

Early onset obesi ty causes are evidently broader ,

encompassing environmental, hormonal, and oligogenic factors.

Among these oligogenic predispositions, the MC4R pathway

seems to play a key role, and the future would be to consider

both genetic studies, monogenic and oligogenic, of our patients in
TABLE 4B Molecular results identified for each patient (total of 11 positive case) and listed according to the genetic test performed.

Patient ID Results from the targeted panel

1 Class 4 variant c.68G>C, p.(Arg23Pro) homozygous in the BBS2 gene NM_031885.4 (BBS2)

And a classs 3 variant c.884G>A, p.(Arg295Gln) in the BBS4 gene NM_033028.5 (BBS4)

2
Class 4 variant c.535delG, p.(Val179Phefs*39) in the MC4R gene (NM_005912.3) at a heterozygous status.
Maternally inherited. NM_005912.3

3 Class 4 variant c.181G>T, p.Glu61* in the MC4R gene at a heterozygous status. Parental analyses not performed. NM_005912.3 NM

4 Class 4 variant c.240C>A, p.(Tyr80*) in the MC4R gene at a heterozygous status NM_005912.3

5 Class 4 variant c.91_92delinsTA, p.(Gly31*) in the MRAP2 gene at a heterozygous status. Maternally inherited. NM_138409.4

6 Class 4 variant c.91_92delinsTA, p.(Gly31*) in the MRAP2 gene at a heterozygous status. Maternally inherited. NM_138409.4

7 Deletion of the exon 1 of the SEZ6L2 gene at a heterozygous status (region of the deletion 16p11.2) NM_012410

Array CGh results

7 arr[GRCh37] 7q36.3(158269643_158599209)x3 pat,16p11.2(29592783_30190568)x1 pat

8 arr[GRCh37] 16p12.2(21837492_22407931)x1 dn

9 arr[GRCh37] 9p21.1(28219132_28377937)x1 including LINGO2.

ID panel

10 Class 4 variant c.[1021T>G];[=],p.[Cys341Gly];[=] in the DDX3X gene at a heterozygous status. De novo. NM_001193416.3

WES

11 Class 5 variant c.1207_1216delinsCACTGTGACA; p. Lys406ThrfsTer3 homozygous in the P4HTM gene. NM_177939.3
frontiersin.org

https://doi.org/10.3389/fendo.2025.1608398
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Harvengt et al. 10.3389/fendo.2025.1608398
diagnostic settings. For now, current estimations from different

studies dedicated to monogenic etiologies suggest that 5% of the

patients with severe early onset obesity are linked to a monogenic

condition related to the melanocortin pathway. From one point of

view, a mean of 5% for the efficiency rate for the targeted panels

may be discussed as underestimated due to limited access to

genetic investigations for a wide range of patients. Medical

compliance and socioeconomic status should be cited as two

factors of under evaluation for this category of patients. On the

other hand, the 5% diagnostic yield should also be interpreted

with caution, as it might be overestimated. A thorough analysis of

previously published series reveals an inflated rate of positive

results due to inconsistencies between studies and differing criteria

for variant classification, which could lead to the misclassification

of variants of uncertain significance (VUS) as positive results (26–

28). In our cohort, the diagnostic yield for the targeted panel itself
Frontiers in Endocrinology 07
was 3.1%. However, a total of 4.9% of diagnoses in our cohort were

confirmed through additional genetic investigations performed on

highly suspicious cases. (Table 4B) Moreover, our results found

that 54.7% of the patients had at least one heterozygous VUS;

specifically, 19.7% of VUS were related to autosomal conditions

and 46.6% to recessive conditions. For a limited number of the

patients of the cohort, stronger genotype-phenotype correlations

or additional genetic investigations in a research setting are still

ongoing due to a high suspicion of variant pathogenicity.

Nevertheless, a systematic re-evaluation might be recommended

for all the patients presenting at least one VUS (54.7%) in a few

years to expand the potential for new positive results. Notably, we

hypothesize that the future availability in a diagnostic setting of

genomic testing technologies (WGS) or long-read sequencing

should be key next steps to improve the detection of second

variants in bi-allelic conditions.
FIGURE 1

An overview of the leptin–melanocortin pathway in the hypothalamus. Leptin is secreted in the white adipose tissue. Leptin levels depend on the
“fed status”: leptin levels increase in case of refeeding after food starvation and leptin levels decrease in case of food deprivation. Leptin hormone
peptides act on the hypothalamus where POMC-expressing neurons and agouti-related protein (AGRP)–expressing neurons are located, more
precisely in the arcuate nucleus. These neurons send a signal to the MC4R-expressing neurons in the paraventricular nucleus of the hypothalamus
(PVN) which controls through their central neural projections in fine the level of appetite or satiety. BDNF (brain-derived neurotrophic factor) is
thought to be an actor in this pathway, through its binding to NTRK2 (neurotrophic receptor tyrosine kinase 2) leading to a regulation in the synaptic
plasticity of neurons, including those present in the ARC and PVN. The transcription factor SIM1 is also essential for the correct development of the
PVN. This overview gives comprehensive examples of regulator genes investigating through our targeted gene panel. (5, 11–15). +, agonist; −,
antagonist; LEPR, leptin receptor; MRAP2, melanocortin receptor accessory protein 2; MSH, melanocyte-stimulating hormone; SH2B1, SH2B adaptor
protein 1. ARC, arcuate nucleus; AgRP, agouti related peptide; NPY, neuropeptide Y; POMC, propiomelanocortin; aMSH, a-melanocyte stimulating
hormone; MCR, melanin-concentrating hormone receptor; SST, somatostatin.
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FIGURE 2

Simplified schema of the processing of POMC leading to the generation of functional peptides including aMSH and ß-endorphins. These two
peptides act through the binding to two different types of receptors, respectively MC4R and m-opioid receptor. Red arrow shows the cleavage site
that is thought to be altered in our patient hypothesizing an alteration of the leptin melanocortin pathway through the alteration of the ß-endorphins
action which should probably lead to food intake dysregulation but also to analgesia and reward process dysregulation (17–19).
FIGURE 3

Description of three illustrative positive cases. For each patient, the familial pedigree shows the inheritance pattern. The growth curves reveal for the
three cases a severe obesity with early onset and a weight relatively stabilized at adult age for the case P1. At last evaluation, they have all a
significant pathologic BMI. P.1 presents associated features typically in accordance with a BBS syndrome. The two other cases present no
discriminative clinical pattern that may potentially orient the diagnosis hypotheses.
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In the field of monogenic obesity, depending on laboratory

resources, a targeted panel provides advantages of relatively short

turnaround times, avoidance of incidental findings, and higher

sequencing quality (by improving the coverage) (29). For these

reasons, investigations through a targeted panel as a first-tier

analysis remain currently considered to be a more effective

screening method than WES in the population of patients with

severe early onset obesity.

In pediatrics, it is currently well established that obesity starting

≤ 4 years must be investigated with a genetic test (30, 31). Our

diagnosis rate calculated for our cohort subgroup of obesity starting

≤ 4 years is 3.3%, which is not significantly discriminant compared

to obesity starting > 4 years. This cutoff age of 4 years for the onset

of obesity might not be systematically used as a stringent criterion

in clinical practice for requesting genetic testing. Among our seven

positive cases, three are presented (Figure 3) to illustrate the types of

growth curves observed in childhood genetic obesity and the

challenges in establishing a cutoff based on clinical data and

growth parameters for genetic testing. Furthermore, our findings

do not reveal any distinguishing clinical features between the seven

positive cases and the rest of the cohort (Table 2). Similarly, the

statistical comparisons between the group of patients presenting a

VUS and the rest of the cohort did not reveal any significant

differences. Larger sample sizes should be recommended to enhance

the statistical performance test. Nonetheless, the variability and

minimal clinical differences among monogenic disorders reinforce

the notion that clinical criteria alone are insufficient to restrict

access to genetic testing.

Regarding the young adult patients, no consensual

recommendations have yet been published on this topic. From our

perspective, genetic investigations should be implemented more widely

for all the young adults (especially between 18 and 25 years) with an

extremely severe BMI (BMI ≥ 40 kg/m2) and a medical history of

prepubertal childhood obesity with no evident explanation (no adverse

drug effect, no diet imbalance).

More than an added value, the confirmation of monogenic

obesity should imply therapeutic perspectives. For example, the

bariatric surgery effectiveness in patients with monogenic obesity

remains debated. Genetic alterations, such as MC4R dysfunction,

disrupt appetite regulation, potentially explaining the observation of

differences in the long-term outcome in percentage of weight loss in

comparison to patients with a non-genetic obesity (28). The new

genetics knowledge has also opened the field for current and future

therapies, as seen initially with the treatment of congenital leptin

deficiency by recombinant leptin (32). POMC, PCSK1, and LEPR

deficiencies and Bardet-Biedl syndrome (BBS) can be counter-

regulated by the MC4R agonist setmelanotide (33, 34). One

remaining question is to determine the impact of MC4R agonists

in patients with heterozygous POMC variants, identifying a targeted

group of responders based on variant types. These variants affect

protein cleavage pathways (ß-endorphins or a-MSH), paving the

way for more specific targeted therapy research.

However, improving genetic diagnosis for early onset obesity is

the way to offer appropriate, preventive, and dedicated care
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management according to the genetic etiology and its associated

risks (e.g., ophthalmopathy, renal failure, metabolic disturbances…).
Conclusion

Monogenic causes of early onset obesity are still challenging to

diagnose due to a lack of clinical discriminant criteria. Current

guidance for clinicians proposes to identify candidates for genetic

investigations among those patients with early onset obesity and

hyperphagia. In our experience, based on that guidance, the

diagnostic yield for a genetic diagnosis is 3.1% for the total cohort,

increasing to 4.9% with additional molecular investigations. However,

19.7% and 46.6% of variants, respectively, associated with autosomal or

recessive conditions, remain of unknown significance, highlighting the

need to reevaluate systematically our patients in a few years in a

diagnostic setting and to offer further research testing in selected cases.

Our literature review underlines the discrepancies between the previous

reported series and the non-uniformization for the reporting of the

positive results. In the era of precision medicine, strengthening

expertise in genetic obesity is essential for accurate diagnoses and to

orient our patients through effective targeted (future) therapies.
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