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Cancer cachexia is a complex, multifactorial syndrome characterized by severe

weight loss, muscle wasting, and systemic inflammation, significantly

contributing to cancer-related morbidity and mortality. Signal transducer and

activator of transcription 3 (STAT3) has emerged as a central mediator in the

pathogenesis of this multifactorial condition. STAT3 regulates a broad range of

cellular processes including inflammation, proteolysis, and mitochondrial

dysfunction across multiple tissues, particularly skeletal muscle and adipose

tissue. Persistent activation of STAT3 in response to tumor-derived and host-

derived cytokines drives catabolic signaling cascades, disrupts anabolic

pathways, and impairs energy homeostasis. Recent studies have illuminated

the cross-talk between STAT3 and other signaling pathways that exacerbate

cachexia-related metabolic imbalances. These findings position STAT3 not only

as a critical mediator of cachexia progression but also as a promising therapeutic

target. Pharmacological inhibition of STAT3 signaling has demonstrated efficacy

in preclinical models, offering potential avenues for clinical intervention. This

review provides a comprehensive overview of the molecular mechanisms by

which STAT3 contributes to cancer cachexia and discusses emerging therapeutic

strategies aimed at modulating STAT3 activity to mitigate the progression of this

debilitating syndrome.
KEYWORDS
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Introduction

Cancer cachexia is a multifactorial syndrome characterized by severe body weight loss,

muscle atrophy, anorexia, and fatigue, which cannot be fully reversed through conventional

nutritional support or pharmacological interventions (1, 2). This condition arises from a

complex interplay of metabolic dysfunction and inflammatory mediators, including

elevated levels of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor

necrosis factor-alpha (TNF-a), increased energy expenditure, and tumor-derived factors
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that accelerate muscle and fat wasting (3, 4). Affecting up to 80% of

patients in advanced cancer stages, cachexia significantly

contributes to morbidity and mortality by impairing physical

function, reducing treatment tolerance, and altering drug

metabolism due to progressive muscle depletion and overall

physiological decline (5–7). The associated symptoms-weight loss,

muscle wasting, appetite loss, fatigue, and diminished quality of life-

underscore the urgent need for effective management strategies. A

multidisciplinary approach integrating nutritional support,

pharmacological therapies such as anti-inflammatory agents and

appetite stimulants, and structured physical exercise is essential to

mitigating muscle loss and improving functional outcomes (8).

Given the profound impact of cancer cachexia on patient survival

and treatment efficacy, advancing the understanding of its complex

etiology remains critical for developing more targeted and effective

therapeutic interventions.

The mammalian Signal Transducer and Activator of

Transcription (STAT) family comprises STAT1, STAT2, STAT3,

STAT4, STAT5a, STAT5b, and STAT6, all of which mediate critical

intracellular signaling pathways (9). Among these, STAT3 serves as

a key transcription factor regulating diverse cellular processes,

including cell growth (10, 11), apoptosis (12), and immune

response modulation (13, 14). Notably, STAT3 is integral to both

inflammation and cancer progression, as its persistent activation is

frequently observed in various malignancies, where it drives

tumorigenesis by promoting cell proliferation, inhibiting

apoptosis, and facilitating angiogenesis (15, 16). Beyond

oncogenesis, STAT3 plays a central role in immune regulation,

particularly through the modulation of pro-inflammatory cytokines

and the differentiation of Th17 cells (17–19), further linking it to

chronic inflammation and autoimmune disorders (20, 21).

Clinically, aberrant STAT3 signaling is implicated in multiple

diseases, with constitutive activation often correlating with poor

prognosis in cancer due to its involvement in sustaining tumor

growth and survival (17, 21). Given its broad impact, STAT3 has

emerged as a prominent therapeutic target, prompting extensive

research into the development of STAT3 inhibitors and RNA

interference strategies aimed at mitigating its pathological activity

(22–24). These ongoing efforts underscore the significance of

STAT3 in both physiological and disease contexts, highlighting its

potential as a target for novel therapeutic interventions.

STAT3’s involvement in cancer cachexia is primarily driven by

its role in mediating inflammatory responses (25) and its

contribution to muscle wasting and dysregulated fat metabolism

(26, 27). Elevated levels of pro-inflammatory cytokines, such as IL-6

and TNF-a, which are commonly observed in cancer cachexia,

trigger STAT3 activation (27, 28), leading to the transcription of

genes that exacerbate systemic inflammation, accelerate muscle

protein degradation, and disrupt lipid metabolism (1, 29, 30).

Furthermore, STAT3 facilitates the interaction between cancer

cells and the host immune system, amplifying cachexia’s

systemic effects by fostering immunosuppression and promoting

tumor progression (17, 31). This interplay between chronic

inflammation, metabolic dysfunction, and immune dysregulation

underscores STAT3’s pivotal role in cancer cachexia pathogenesis.
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Consequently, a deeper understanding of STAT3’s function in this

condition is essential for developing targeted therapeutic strategies

aimed at mitigating its debilitating effects, improving patient

outcomes, and enhancing quality of life.
Overview of STAT3 activation
pathways

STAT3 is a pivotal transcription factor that regulates diverse

cellular functions, including proliferation, differentiation, survival,

inflammation, and immune response (32, 33). STAT3 activation

occurs primarily through cytokine and growth factor signaling,

with the canonical pathway involving tyrosine phosphorylation

(33). In this mechanism, cytokines from the interleukin-6 (IL-6)

family (e.g., IL-6, IL-11, IL-31, leukemia inhibitory factor [LIF],

oncostatin M [OSM], ciliary neurotrophic factor [CNTF], and

cardiotrophin-1 [CT-1]), IL-10 family cytokines (IL-10, IL-19, IL-

20, IL-22, IL-24, and IL-26), growth factors such as epidermal growth

factor (EGF) and platelet-derived growth factor (PDGF), and

interferons (IFNs) (9, 32, 34–36) bind to their respective receptors,

triggering intracellular kinase activation. Janus kinases (JAK1, JAK2,

TYK2) and receptor tyrosine kinases (EGFR, PDGFR, FGFR)

phosphorylate STAT3 at Tyr705, inducing dimerization via SH2-

domain interactions (32, 37, 38). The activated STAT3 dimer then

translocates to the nucleus, where it binds to specific STAT-binding

elements (SBEs) in gene promoters, regulating genes associated with

survival (Bcl-xL), proliferation (Cyclin D1, c-Myc), inflammation

(IL-6, COX2), metastasis (MMPs), angiogenesis (VEGF), and

immune evasion (14, 39–43). This tightly regulated signaling

cascade underscores STAT3’s pivotal role in cellular homeostasis

and disease pathology.

Beyond the canonical pathway, STAT3 activation also occurs

through non-canonical mechanisms involving alternative post-

translational modifications and extranuclear functions (44, 45).

One such mechanism is serine phosphorylation, in which kinases

like cyclin-dependent kinase 5 (CDK5) and EGFR phosphorylate

STAT3 at Ser727, thereby enhancing its transcriptional activity and

modulating mitochondrial function (45, 46). Additionally, a

mitochondrial variant of STAT3 (mitoSTAT3) localizes to

mitochondria, interacting with electron transport chain (ETC)

complexes I and II to regulate ATP production and reactive oxygen

species (ROS) generation (45). This function facilitates metabolic

adaptation and promotes cancer cell survival (44, 47, 48). Moreover,

non-phosphorylated STAT3 (npSTAT3) is implicated in cytoplasmic

processes such as microtubule stabilization and protein degradation,

demonstrating its diverse functional repertoire beyond

transcriptional regulation (45, 49), as detailed in Figure 1A.
STAT3 activation in cancer cachexia

Cancer cachexia, a debilitating syndrome characterized by muscle

and adipose tissue wasting, is driven by elevated levels of pro-

inflammatory cytokines, including IL-6-type cytokines (IL-6, LIF,
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OSM) (15, 25, 50), IL-17A (51), tumor necrosis factor-alpha (TNF-a),
and interleukin-1 beta (IL-1b) (52, 53). Among these, IL-6 plays a

central role in activating the JAK/STAT3 signaling pathway, a key

mediator of systemic inflammation (54–56). Upon IL-6 binding to its

receptor, JAK kinases phosphorylate STAT3, leading to dimerization

and nuclear translocation (43). Within the nucleus, phosphorylated

STAT3 regulates genes associated with inflammation, muscle protein

degradation, and adipose tissue loss, exacerbating the imbalance

between muscle synthesis and degradation that characterizes

cachexia (54, 56–58). Correspondingly, cytokines such as OSM (50),

IL-17A (51), and LIF (59) exploit STAT3 signaling to mediate muscle

atrophy in cachectic models.

In addition to cytokine-driven activation, tumor-derived

cachexia-inducing factors [such as IL-6, LIF, and G-CSF (59, 60)]

and immune cells within the tumor microenvironment secrete

active molecules that further enhance STAT3 activation, thereby

promoting muscle atrophy. Among these factors, heat shock

protein 90 (HSP90), receptor for advanced glycation end-

products (RAGE) ligands, and S100B have emerged as novel
Frontiers in Endocrinology 03
contributors to muscle degradation. These factors induce muscle

wasting through the p38 mitogen-activated protein kinase

(MAPK)/myogenin axis (61) and STAT3 signaling (61, 62).

Furthermore, receptor tyrosine kinases (RTKs), such as EGFR

(63, 64), and metabolic regulators like leptin (65, 66) activate

STAT3 via their respective homologous receptors, further

implicating STAT3 in cachexia pathology. This intricate signaling

network highlights the potential of STAT3 as a therapeutic target in

cachexia management (Figure 1B). Future research focusing on

STAT3 modulation could provide novel insights into intervention

strategies, ultimately improving patient outcomes and quality of life.
Mechanistic insights into STAT3 in
cancer cachexia

As previously mentioned, pro-inflammatory cytokines such as

IL-6 activate STAT3, which subsequently induces the expression of

atrogenes, including atrogin-1 and MuRF1. These atrogenes play a
FIGURE 1

Activation of STAT3 signaling pathways and their role in cancer cachexia. (A) Both canonical and non-canonical STAT3 signaling pathways are crucial
for cellular signaling. In the canonical pathway, cytokines such as IL-6, LIF, and OSM bind to their receptors, inducing receptor dimerization and the
recruitment of JAKs. This interaction results in receptor phosphorylation at specific tyrosine residues, creating docking sites for STAT3. STAT3 is then
phosphorylated by JAKs, dissociates from the receptor, forms homodimers or heterodimers, and translocates to the nucleus to regulate gene
transcription. In contrast, the non-canonical STAT3 pathway involves mitochondrial STAT3 (mtSTAT3), unphosphorylated STAT3, and serine 727-
phosphorylated STAT3 (p-STAT3 Ser727), alone or in combination with tyrosine 705-phosphorylated STAT3 (p-STAT3 Tyr705). These variants play a
role in mitochondrial function, emphasizing STAT3’s involvement beyond transcriptional regulation. (B) In cancer cachexia, STAT3 activation occurs
through both receptor- and non-receptor-mediated mechanisms. Pro-inflammatory cytokines or growth factors bind to cell surface receptors,
leading to tyrosine phosphorylation, which facilitates the recruitment of JAKs or direct binding of STAT3 via its Src homology 2 (SH2) domain.
Phosphorylated STAT3 dimerizes and enters the nucleus, promoting the transcription of genes involved in catabolic processes, driving tissue
degradation and metabolic imbalance.
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key role in promoting muscle proteolysis and impeding muscle

regeneration by inhibiting satellite cell differentiation. In addition to

its effects on muscle tissue, STAT3 also contributes to adipose tissue

loss by upregulating lipolysis and suppressing lipogenesis.

Furthermore, STAT3 facilitates the browning of white adipose

tissue, leading to increased energy expenditure. This multifaceted

role of STAT3 encompasses the regulation of protein and lipid

metabolism, appetite control, and tumor immune responses. In the

following sections, we will explore the key functions of STAT3

(Figure 2) and its cross-talk with other signaling pathways involved

in these processes (Figure 3).
STAT3 and systemic inflammation

Chronic inflammation, sustained by elevated levels of IL-6 and

other pro-inflammatory cytokines, perpetuates persistent activation

of STAT3, establishing a self-reinforcing cycle that drives the

progression of cancer cachexia (14, 15, 29, 30). STAT3 activation

enhances the transcription of inflammatory mediators such as IL-6,

IL-1b, and COX-2, further amplifying cytokine production and

systemic inflammation (14, 17, 30, 67). This pro-inflammatory

feedback loop is compounded by multiple cytokines, including
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IL-6, leukemia inhibitory factor (LIF), and oncostatin M (OSM)

(50, 56, 58, 68), as well as IFN-g, TNF-a (69), and IL-17A (51),

which converge on the STAT3 pathway, ensuring its sustained

activation and contributing to metabolic dysregulation. While acute

exposure to IL-6 and LIF can transiently promote protein synthesis

via STAT3 and the Akt-mTORC1 pathway, it also induces SOCS3

expression to limit cytokine signaling (70). However, in chronic

inflammatory states, prolonged STAT3 activity overrides this

regulatory feedback, promoting muscle catabolism and systemic

metabolic imbalance (68). Importantly, the influence of STAT3

extends beyond peripheral tissues. Neuroinflammatory signaling

impacts the hypothalamus, disrupting appetite regulation by

impairing orexigenic pathways and exacerbating anorexia, one of

the cardinal features of cancer cachexia (25, 71, 72). This highlights

the multifactorial nature of STAT3’s role, linking peripheral

inflammation to central behavioral and metabolic dysfunction.

STAT3 also operates in concert with other inflammatory

signaling cascades that further disrupt metabolic homeostasis. For

instance, IFN-g and TNF-a promote STAT3 phosphorylation at

Y705, facilitating its interaction with NF-kB and forming a nuclear

complex that induces the iNOS/NO pathway, a key contributor to

inflammation-induced muscle wasting (69) (Figure 3A).

Simultaneously, TNF-a and IL-1b activate NF-kB-dependent
FIGURE 2

Pathological mechanisms of STAT3 in cancer cachexia. This figure illustrates the diverse roles of STAT3 activation in cancer patients, emphasizing its
contribution to systemic inflammation, muscle atrophy, metabolic dysfunction, appetite regulation, and immune suppression. (A) In systemic
inflammation, activated STAT3 triggers the release of pro-inflammatory cytokines such as IL-6, IL-1, and COX-2, exacerbates inflammation in the
central nervous system, and contributes to anorexia. (B) In skeletal muscle, STAT3 activation induces atrophy by stimulating the ubiquitin–
proteasome system and autophagy-related pathways, while impairing muscle regeneration by disrupting the differentiation, proliferation, and self-
renewal of muscle satellite cells. Additionally, it compromises mitochondrial function. (C) In adipose tissue, activated STAT3 promotes lipolysis and
metabolic dysregulation, inhibits lipogenesis, and suppresses brown adipose tissue differentiation and the expression of uncoupling protein 1 (UCP1).
(D) In appetite regulation, STAT3 enhances the activity of pro-opiomelanocortin (POMC) neurons, increasing a-melanocyte-stimulating hormone (a-
MSH) production to promote satiety, while simultaneously suppressing agouti-related peptide (AgRP) neurons that normally stimulate hunger,
leading to reduced food intake and body weight loss. (E) STAT3 contributes to immune suppression by upregulating immune checkpoint molecules
such as CTLA-4, PD-1, PD-L1, and PD-L2. Its activation alters the differentiation and function of immune cells, including macrophages, T cells,
natural killer (NK) cells, and dendritic cells, reshaping the immune microenvironment and accelerating tumor progression.
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transcription of SOCS-box protein 1 (SPSB1) (Figure 3B), while IL-

6 induces SPSB1 via the gp130/JAK2/STAT3 axis, collectively

impairing myogenic differentiation and enhancing proteolytic

activity through the ubiquitin–proteasome system (73, 74)

(Figure 3D). Although NF-kB can inhibit apoptosis in some

contexts, its chronic activation sustains oxidative stress and

promotes muscle degradation (75). Furthermore, STAT3 impairs

anabolic signaling by upregulating SOCS3, which suppresses the

PI3K/Akt/mTOR pathway (Figure 3E). This inhibition reduces

protein synthesis and exacerbates proteolysis, intensifying muscle

atrophy (30, 76). These interactions position STAT3 as a

central mediator linking inflammatory signaling to disrupted

muscle metabolism.

In parallel, circulating cytokines influence AMP-activated

protein kinase (AMPK), a key regulator of energy homeostasis.

IL-6 increases AMPK activity in C2C12 cells and murine cachexia

models, contributing to catabolic signaling (77, 78) (Figure 3G). In

contrast, exercise training during early cachexia attenuates AMPK

activation, restoring mTOR signaling and anabolic balance (78).

Conversely, TNF-a suppresses AMPK via TNFR1 engagement,

exacerbating metabolic dysfunction (79). Notably, chronic AMPK

activation enhances protein degradation through both the
Frontiers in Endocrinology 05
autophagy–lysosome pathway and the ubiquitin–proteasome

system (80–82). Collectively, these mechanisms form an intricate

inflammatory-metabolic axis that drives the relentless tissue

wasting characteristic of cancer cachexia.
STAT3 in muscle wasting

Muscle wasting, a hallmark of cancer cachexia, is closely

associated with aberrant activation of the STAT3 signaling

pathway, which exerts multifaceted effects on muscle cell

physiology and pathology (83, 84). STAT3 promotes muscle

atrophy by mediating crosstalk between C/EBPd and myostatin

pathways, thereby repressing muscle growth and enhancing

catabolic signaling (83). This leads to the upregulation of muscle-

specific E3 ubiquitin ligases, including MuRF1 and Atrogin-1,

which are central components of the ubiquitin–proteasome

system responsible for proteolytic degradation of myofibrillar

proteins (76, 85). In addition to proteasomal degradation, STAT3

contributes to autophagy-mediated muscle catabolism. Both

nuclear and cytoplasmic STAT3 modulate autophagy-related

processes, and its inhibition has been shown to restore autophagic
FIGURE 3

Signaling cross-talk between STAT3 and other pathways in cancer cachexia. (A) IFNg/TNFa signaling induces phosphorylation of STAT3 at Y705,
promoting its interaction with NF-kB to form a nuclear complex that activates the iNOS/NO pathway, a critical mediator of muscle loss. (B) TNF-a
and IL-1b upregulate SOCS-box protein 1 (SPSB1) expression through NF-kB signaling. (C) IL-6 enhances SPSB1 expression via the glycoprotein 130/
JAK2/STAT3 pathway, while TGF-b activates STAT3 in a SMAD-dependent manner. (D) TGFb1 induces Tyr705 phosphorylation of STAT3 in C2C12
cells. (E) STAT3 signaling interacts with the PI3K/Akt/mTOR pathway by suppressing p-Akt activity. (F) Myostatin and Activin A activate SMAD2/3
signaling similarly and inhibit the insulin/IGF-1/Akt/mTOR pathway, reducing muscle mass and function. (G) IL-6 increases AMPK activity in C2C12
cells and mouse cancer cachexia models, and AMPK activation enhances myofibrillar protein degradation. (H) HIF-1a shifts muscle metabolism by
upregulating glycolysis and downregulating oxidative phosphorylation. (I) The role of miRNAs in regulating STAT3 activation and enhancing its
cachectic effects.
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flux by upregulating autophagy-related genes and altering

eukaryotic initiation factor 2a (eIF2a) phosphorylation (86). This

suggests that targeting STAT3 may be a viable strategy to rebalance

protein turnover in cachectic muscle. Moreover, excessive STAT3

activity disrupts skeletal muscle regeneration by impairing satellite

cell differentiation, proliferation, and self-renewal, ultimately

leading to regenerative failure, premature differentiation, and

age-associated muscle decline (86–88). Collectively, these

mechanisms highlight STAT3’s central role in promoting muscle

atrophy through enhanced proteolysis, dysregulated autophagy,

and impaired regenerative capacity, key drivers of cancer

cachexia progression.

Mitochondrial dysfunction further amplifies muscle

degeneration and is increasingly recognized as a critical feature of

cachexia-associated muscle wasting (89). STAT3 impairs

mitochondrial biogenesis and function, leading to energetic

deficits and contributing to muscle fatigue and weakness (88).

Pharmacological inhibition of the JAK/STAT3 pathway has been

shown to reverse myotube atrophy and restore mitochondrial

protein levels in murine models of colorectal cancer cachexia (90)

Additionally, IL-6 signaling through the gp130 receptor regulates

mitochondrial quality control in skeletal muscle. During Lewis lung

carcinoma (LLC)-induced cachexia, gp130-STAT3 signaling

activates p38 MAPK, which in turn stimulates FOXO3 and

Atrogin-1 expression, promoting muscle degradation (91, 92).

STAT3 also exhibits immunomodulatory properties by engaging

the PI3K/Akt axis, indicating potential crosstalk between

inflammatory and metabolic pathways in cachectic muscle (93).

Together, these findings highlight STAT3’s critical role in muscle

wasting by integrating mitochondrial dysfunction, protein

degradation, and metabolic disturbances, thereby reinforcing its

potential as a therapeutic target for mitigating cancer cachexia.

The interplay between STAT3 and other muscle-wasting

signaling pathways further exacerbates muscle atrophy. STAT3

upregulates myostatin, a potent inhibitor of muscle growth, which

activates Smad2/3 signaling to suppress the Akt/mTOR axis and

reinforce proteasomal degradation via MuRF1 and Atrogin-1 (26,

76, 83, 84, 94) (Figure 3F). TGF-b, another activator of Smad2/3,

synergizes with STAT3 to intensify muscle wasting and fibrosis, in

part through IL-6 amplification (95, 96). Notably, STAT3 activity

correlates with cachexia severity in mouse models overexpressing

TGF-b1 in skeletal muscle, further emphasizing this pathological

axis (97) (Figure 3C). Synchronously, hypoxia-inducible factor 1a
(HIF-1a), which is elevated in tumor-bearing conditions (98, 99),

collaborates with STAT3 to shift muscle metabolism from oxidative

phosphorylation to glycolysis (Figure 3H). This metabolic

reprogramming impairs mitochondrial ATP production and

contributes to muscle fatigue. Intriguingly, tumor-derived

exosomal miR-183-5p activates both HIF-1a and STAT3,

establishing a link between hypoxic signaling and enhanced

proteolysis (100). The integration of these inflammatory,

catabolic, and metabolic pathways underscores STAT3’s pivotal

role in the rapid loss of muscle mass and function characteristic of

advanced cancer cachexia.
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STAT3 in adipose loss

Cancer cachexia is marked not only by progressive skeletal

muscle wasting but also by profound adipose tissue atrophy.

Emerging evidence identifies STAT3 as a central mediator of

these metabolic disturbances. In the C26 mouse model of cancer

cachexia, elevated levels of STAT3 and its activated form (pY705-

STAT3) have been observed in white adipose tissue, implicating this

pathway in adipocyte dysfunction and fat loss (101). STAT3

activation drives lipolysis and systemic metabolic imbalance by

promoting the breakdown of triglycerides and impairing lipid

storage mechanisms, thereby exacerbating energy depletion

characteristic of cachexia. IL-6 family cytokines, particularly

leukemia inhibitory factor (LIF), initiate adipocyte lipolysis

through a STAT3-dependent mechanism. Specifically, LIF-

induced STAT3 activation upregulates adipose triglyceride lipase

(ATGL) and its coactivator CGI-58, facilitating triglyceride

hydrolysis (57). Concurrently, STAT3 suppresses peroxisome

proliferator-activated receptor alpha (PPARa), a key transcription

factor involved in lipid uptake and storage, thereby reducing

lipogenesis and worsening adipose tissue dysfunction (59).

Inhibiting the JAK/STAT3 pathway in murine models

significantly attenuates lipolysis and prevents adipose tissue

wasting, highlighting the therapeutic potential of STAT3 blockade

in cancer cachexia (57). Moreover, STAT3 activation correlates with

elevated lactate dehydrogenase (LDH) levels and diminished

adiponectin production in adipocytes, further contributing to

systemic metabolic disruption (102). Beyond white adipose tissue,

STAT3 also regulates brown adipose tissue (BAT) homeostasis.

Constitutive activation of STAT3 enhances brown fat

thermogenesis and energy expenditure, as demonstrated by the

reversal of obesity in TYK2 knockout mice through increased BAT

differentiation (103). Conversely, STAT3 inhibition boosts the

expression of uncoupling protein 1 (UCP1) and improves

mitochondrial function in brown adipocytes, suggesting its dual

role in modulating both lipolytic activity and thermogenic

capacity (104).

STAT3’s regulatory role in adipose tissue wasting is further

compounded by its interaction with the AMPK and Wnt/b-catenin
pathways. While AMPK activation generally supports energy

homeostasis by promoting fatty acid oxidation, its chronic

stimulation in cachexia leads to destabilization of the AMPK

complex in adipocytes, aggravating lipid depletion and energy

imbalance (105, 106). Notably, systemic delivery of an AMPK-

stabilizing peptide in tumor-bearing mice preserved adipose tissue

mass and mitigated body weight loss without affecting tumor

growth, underscoring the therapeutic relevance of modulating

AMPK in concert with STAT3 signaling (106). Simultaneously,

Wnt/b-catenin signaling, traditionally known for its role in

adipogenesis and adipocyte differentiation, may intersect with

STAT3 to regulate lipid turnover and adipocyte browning (107).

Although this interaction remains under active investigation,

preliminary findings suggest that Wnt/b-catenin-STAT3 crosstalk

may influence adipocyte plasticity and energy metabolism,
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presenting another potential target for intervention. Collectively,

these findings underscore STAT3 ’s multifaceted role in

mediating adipose tissue atrophy in cancer cachexia through its

regulation of lipolytic enzymes, suppression of lipogenesis,

impairment of mitochondrial function, and modulation of key

metabolic pathways. Targeting STAT3 and its interacting partners

represents a promising strategy to alleviate the systemic metabolic

derangements that characterize this debilitating syndrome.
STAT3 and anorexia

Cancer cachexia-associated anorexia represents a critical

clinical challenge, affecting up to 60% of patients with advanced

malignancies (108). This condition significantly diminishes quality

of life, compromises treatment efficacy, and correlates with poor

survival outcomes (109, 110). Central to the regulation of appetite

in this context is the transcription factor signal transducer and

activator of transcription 3 (STAT3), which integrates peripheral

metabolic and inflammatory signals in the hypothalamus. Leptin, a

hormone secreted by adipose tissue, regulates energy homeostasis

by binding to the long isoform of the leptin receptor (LepRb)

expressed in the arcuate nucleus (ARC) of the hypothalamus. This

interaction activates the JAK2-STAT3 signaling cascade, which

modulates feeding behavior by acting on two distinct neuronal

populations (111, 112). STAT3 enhances the activity of pro-

opiomelanocortin (POMC) neurons, promoting satiety through

the production of a-melanocyte-stimulating hormone (a-MSH)

(113, 114), while concurrently inhibiting agouti-related peptide

(AgRP) neurons that stimulate appetite (115). As part of a

negative feedback mechanism, STAT3 upregulates suppressor of

cytokine signaling 3 (SOCS3), which inhibits further JAK2-STAT3

signaling and contributes to leptin resistance (116). Functional

studies underscore the physiological relevance of this pathway.

Mice lacking STAT3 in POMC neurons develop obesity due to

impaired satiety signaling, whereas constitutive STAT3 activation in

AgRP neurons suppresses food intake (115). These findings

illustrate the critical role of STAT3 in maintaining energy balance

and suggest that its dysregulation can lead to pathological anorexia

or hyperphagia depending on context.

Beyond leptin signaling, STAT3 is also activated by pro-

inflammatory cytokines such as TNF-a (117) and CNTF (118),

both of which suppress food intake through hypothalamic STAT3-

dependent mechanisms (119). Moreover, STAT3 may mediate

crosstalk between leptin and insulin signaling in the

hypothalamus, though this interaction remains incompletely

understood (120). Chronic overexpression of SOCS3, a direct

STAT3 target, has been implicated in leptin and insulin resistance

(113, 121), highlighting the importance of tightly regulated STAT3

activity for metabolic homeostasis. Leptin resistance is particularly

relevant in cancer cachexia, where elevated leptin levels fail to

restore appetite due to SOCS3-mediated inhibition of LepRb

signaling (122, 123). This dysregulation is exacerbated in obesity-

associated cancers, where both systemic inflammation and leptin
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resistance contribute to anorexia. Concurrently, pro-inflammatory

cytokines activate the NF-kB pathway, which acts synergistically

with STAT3 to enhance transcription of anorexigenic mediators

and promote hypothalamic inflammation (124, 125).

In addition to inflammatory and hormonal signaling, STAT3

modulates nutrient-sensing pathways. It has been shown to inhibit

AMP-activated protein kinase (AMPK), a key promoter of hunger,

and potentially stimulate mechanistic target of rapamycin (mTOR)

signaling, both of which suppress appetite during inflammatory

states (126, 127). Moreover, recent studies implicate STAT3 in the

anorexigenic GDF15-GFRAL signaling axis. Growth differentiation

factor 15 (GDF15), elevated in several cancer types, signals through

its receptor GFRAL in the area postrema and nucleus of the solitary

tract (NTS), regions involved in nausea and appetite regulation.

STAT3 activation may converge with GDF15 signaling in these

brainstem nuclei, amplifying the anorectic response (128, 129).

Altogether, these findings position STAT3 as a central node in the

neuroimmune circuitry underlying cancer cachexia-associated

anorexia. Through its integration of leptin, cytokine, and

nutrient-sensing pathways, STAT3 contributes to appetite

suppression and energy imbalance. Targeting STAT3 or its

regulatory partners, such as SOCS3, may offer a promising

therapeutic strategy for alleviating anorexia and improving

outcomes in cachectic patients.
STAT3 in immune modulation

Dysregulation of immune checkpoints is a well-established

mechanism by which many cancers evade immune surveillance,

thereby facilitating tumor progression (17). A growing body of

evidence implicates STAT3 as a central regulator of this

immunosuppressive network. Elevated STAT3 activity, frequently

driven by pro-inflammatory cytokines such as IL-6 (18, 130),

promotes immune escape through the transcriptional

upregulation of key immune checkpoint molecules, including

CTLA-4 (17), programmed cell death protein 1 (PD-1) (131), and

its ligands PD-L1 and PD-L2 (132, 133). This STAT3-mediated

enhancement of immune checkpoint expression contributes to

tumor immune evasion and may help explain the limited efficacy

of immune checkpoint blockade therapy in end-stage cancer

patients, particularly those suffering from cancer cachexia (134,

135). Beyond checkpoint regulation, STAT3 profoundly alters T cell

dynamics within the tumor microenvironment (TME). It promotes

the differentiation of CD4+ T cells into regulatory T cells (Tregs),

which facilitate immune tolerance, while simultaneously impairing

the generation and cytotoxic function of CD8+ cytotoxic T

lymphocytes (CTLs), the primary effectors of anti-tumor

immunity (136). At the same time, STAT3 activation enhances

the differentiation, expansion, and immunosuppressive activity of

myeloid-derived suppressor cells (MDSCs) (137), further

dampening adaptive immune responses and contributing to

systemic inflammation. Emerging evidence highlights that STAT3

hyperactivation occurs not only in tumor cells but also in immune
frontiersin.org

https://doi.org/10.3389/fendo.2025.1608612
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Lv and Ding 10.3389/fendo.2025.1608612
cells infiltrating the tumor microenvironment (TME) (138),

affecting a broad spectrum of immune populations, including

macrophages (139), T cells (140, 141), NK cells (142), and

dendritic cells (143). This widespread STAT3 activity reshapes the

immune landscape to favor tumor progression and contributes to

the development of cancer cachexia.

In cachexia-prone malignancies, the TME is enriched with pro-

inflammatory cytokines such as IL-6, TNF-a, IL-1b, and IFN-g,
secreted by both tumor and immune cells including macrophages,

MDSCs, and T cells (4, 144). These cytokines promote chronic

systemic inflammation and metabolic dysfunction, driving catabolic

processes in skeletal muscle and adipose tissue. Within this

inflammatory milieu, STAT3 plays a key role in skewing

macrophage polarization toward the M2 phenotype (145, 146),

which, although traditionally viewed as anti-inflammatory (147),

contr ibutes to tumor immune evasion by producing

immunosuppressive cytokines such as IL-10 and TGF-b (148,

149). These cytokines, in turn, sustain a suppressive TME and

reinforce STAT3 signaling, forming a self-perpetuating loop that

fuels both tumor growth and cachexia-associated wasting (150).

Importantly, preclinical studies have demonstrated that blockade of

the IL-6/STAT3 axis restores anti-tumor immune responses by

relieving T cell suppression and enhancing adaptive immunity

(151). These findings underscore the pivotal role of STAT3 in

orchestrating immune evasion and systemic catabolism, positioning

it as a promising therapeutic target for addressing both cancer

progression and the immunometabolic dysfunctions characteristic

of cancer cachexia.
Regulatory networks and post-
transcriptional modulation: role of
microRNAs

MicroRNAs (miRNAs) serve as key post-transcriptional

regulators of STAT3 and its associated pathways. For instance,

miR-203 targets SOCS3, indirectly enhancing STAT3 signaling,

while miR-183-5p simultaneously activates Smad3 and STAT3,

promoting muscle degradation via upregulation of Atrogin-1 and

MuRF1 (100, 152). Additionally, pancreatic cancer-derived

exosomal miRNA let-7b-5p activates STAT3/FOXO1 signaling,

exacerbating insulin resistance and muscle wasting (153). These

findings underscore the critical role of miRNAs in modulating

STAT3 activity and amplifying its cachectic effects (Figure 3I).
Therapeutic perspectives

Given its central role in orchestrating inflammation, metabolic

dysregulation, and tissue catabolism, STAT3 represents a highly

promising but complex therapeutic target in cancer cachexia. This

section explores current and emerging strategies aimed at

modulating STAT3 signaling through cytokine inhibition,

pharmacological agents, physical exercise, nutritional modulation,

and integrated multi-targeted approaches (Figure 4).
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Upstream cytokine blockade

The JAK-STAT3 pathway, predominantly activated by

cytokines such as IL-6, IFNg, LIF, and OSM (69, 154, 155), plays

a central role in cancer cachexia pathogenesis. Among these, IL-6 is

a major activator of STAT3, with neutralization strategies showing

substantial therapeutic promise. Preclinical studies using anti-IL-6

or anti-IL-6 receptor (IL-6R) antibodies in tumor-bearing mice

demonstrate attenuation of muscle atrophy, adipose tissue loss, and

systemic inflammation (27, 41, 145–147). Clinically, tocilizumab, a

humanized monoclonal antibody targeting IL-6R, has improved

symptoms and prognosis in cachectic patients, with Phase II trials

in lung cancer confirming its ability to alleviate anorexia and weight

loss (149, 156).

Other IL-6 family cytokines, including oncostatin M (OSM)

and leukemia inhibitory factor (LIF), also contribute to cachexia

through STAT3 activation. OSM induces myotube atrophy, while

muscle-specific deletion of the OSM receptor (OSMR) preserves

muscle mass in preclinical models (32). LIF promotes hepatic

metabolic dysfunction via STAT3, and liver-specific deletion of

the LIF receptor ameliorates cachexia-related lipid abnormalities

(62). Neutralizing antibodies against OSM and LIF have shown

efficacy in preclinical studies, making them viable adjuncts or

alternatives to IL-6 blockade (150). Further, inhibition of IL-17A

and small-molecule blockade of STAT3 phosphorylation (e.g.,

AG490) reduce cachexia severity (33), reinforcing the need for

multi-cytokine targeting strategies (Figure 4A). Such combinatorial

approaches may be particularly relevant for malignancies

with high cytokine redundancy, such as pancreatic ductal

adenocarcinoma (PDAC).
JAK inhibitors

Inhibiting Janus kinases (JAKs) upstream of STAT3 has

emerged as another promising therapeutic strategy. Agents such

as ruxolitinib and INCB018424 have shown preclinical efficacy in

mitigating cachexia symptoms by suppressing STAT3

phosphorylation, normalizing cytokine/adipokine profiles, and

reducing tissue wasting (54, 57, 157, 158). Notably, JAK

inhibition also prolongs survival in murine models of cancer

cachexia, possibly by dampening systemic inflammation and

restoring metabolic homeostasis (159). However, JAK inhibitors

may affect multiple downstream targets beyond STAT3,

necessitating strategies to enhance tissue specificity and minimize

immunosuppressive side effects (Figure 4B).
Pharmacological inhibitors of STAT3

Direct inhibition of STAT3 presents a promising therapeutic

strategy, offering greater specificity and efficacy in preclinical

models of cancer cachexia. Small-molecule inhibitors such as

STATTIC, C188-9, and napabucasin act by disrupting STAT3

dimerization, DNA binding, or phosphorylation (160). Notably,
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C188–9 significantly reduced phosphorylated STAT3 (pY705-

STAT3) levels in skeletal muscle from both chronic kidney

disease and C26 tumor-bearing mice, accompanied by

preservation of muscle mass, grip strength, and myofiber size (25,

161, 162). These inhibitors also ameliorate muscle wasting by

restoring mitochondrial function, reducing proteolysis, and

improving systemic metabolic parameters (15, 163–166). In

addition to intrinsic STAT3 activation, tumor-associated

macrophages (TAMs) exacerbate muscle degeneration by

secreting pro-inflammatory cytokines, particularly IL-1a and

IL-6, which activate STAT3 signaling in muscle fibers.

Pharmacological blockade of macrophage-derived cytokines or

direct inhibition of STAT3 in myofibers significantly attenuates

muscle atrophy in pancreatic cancer models (139). Furthermore,

targeting the HSP90/STAT3/FOXO1 signaling axis using inhibitors

such as 17-DMAG and PU-H71 has been shown to suppress

atrogene expression and mitigate muscle wasting (42). Moreover,
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the multi-kinase inhibitor sorafenib has demonstrated the ability to

modulate STAT3 activity, preventing the accumulation of atrogin-1

and Pax7 in skeletal muscle, thereby improving functional capacity

and reducing fatigue in tumor-bearing animals (167). In total, these

findings underscore the therapeutic potential of STAT3-targeted

interventions in cancer cachexia (Figure 4C).

Despite advances, several barriers hinder effective STAT3-

targeted therapy. To enhance efficacy and minimize systemic

toxicity, the development of tissue-specific delivery systems, such as

nanoparticles or antisense oligonucleotides, is essential. First, tissue-

specific actions of STAT3 necessitate precision in therapeutic

targeting to avoid adverse effects (25). Second, off-target toxicity

and resistance mechanisms limit the utility of current inhibitors (15,

168, 169). Development of highly selective, delivery-optimized agents

(e.g., nanoparticle-based siRNAs or antisense oligonucleotides) is

urgently needed. Additionally, identifying reliable biomarkers for

STAT3 activation and cachexia progression remains a challenge.
FIGURE 4

Therapeutic potential of targeting the STAT3 signaling pathway in cancer cachexia. (A) Therapeutic strategies aimed at upstream inhibitors, including
recombinant cytokines, cytokine antibodies, receptor neutralization, and inhibitors of heat shock proteins (HSPs), hold promise in modulating STAT3
activation and mitigating cachexia. (B) Janus kinase (JAK) inhibitors, such as Ruxolitinib and INCB018424, effectively inhibit the JAK/STAT3 pathway.
(C) Direct STAT3 inhibition can be achieved through small molecule inhibitors, peptide inhibitors, and tyrosine kinase inhibitors (TKIs) such as
Sorafenib, which prevent STAT3 dimerization and nuclear translocation. (D) Natural compounds, including plant-derived phytochemicals, also target
the STAT3 signaling axis. (E) Nutritional and metabolic modulators, particularly nutraceuticals, have the potential to influence STAT3-mediated
pathways and restore the balance between protein synthesis and degradation. (F) Furthermore, exercise interventions targeting STAT3 signaling offer
a promising strategy to counteract the muscle wasting and metabolic imbalance characteristic of cancer cachexia.
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Personalized therapeutic approaches based on patient-specific

cytokine profiles, tumor types, and metabolic status will be crucial

for optimizing outcomes. Future directions include exploring

combination therapies and integrating pharmacologic treatments

with exercise and nutrition. A comprehensive, multi-targeted

approach centered on STAT3 inhibition holds promise to

transform cachexia management and improve quality of life in

cancer patients.
Natural products targeting STAT3

Several natural compounds have shown promising potential in

inhibiting STAT3 activity, and are currently being investigated for

their anti-cachexia effects (Figure 4D, Table 1). These compounds

exhibit anti-inflammatory, lipid-sparing, and muscle-preserving

properties by targeting various mechanisms, including the

inhibition of STAT3 activation and the downregulation of pro-

inflammatory cytokines, which drive muscle degradation. For

instance, alantolactone (28), ursolic acid (170), and brassinin

(171) reduce pro-inflammatory cytokines (such as IL-6 and TNF-
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a), as well as COX-2, and directly inhibit STAT3 signaling, thus

alleviating tissue wasting. Additionally, compounds such as

atractylenolide I (172), saikosaponin D (173), cucurbitacin IIb

(174), imperatorin (175), ginsenoside Rd (176), cryptotanshinone

(177), and Z526 (178) have also demonstrated the ability to

suppress STAT3 activation and mitigate body weight and muscle

loss in cachectic models. Notably, alantolactone (28),

atractylenolide I (172), imperatorin (175), ursolic acid (170, 179),

and brassinin (171) have further emphasized the therapeutic

potential of targeting STAT3 to prevent fat loss in cancer

cachexia. While these natural compounds show encouraging

preclinical efficacy in targeting STAT3 to alleviate cancer

cachexia, further clinical studies are necessary to confirm their

therapeutic potential and safety for use in treating this condition.
Physical exercise targeting STAT3

A growing body of evidence from both preclinical and clinical

studies indicates that multimodal exercise interventions can

effectively mitigate STAT3-driven muscle atrophy in cancer
TABLE 1 Natural compounds in ameliorating cancer cachexia via targeting STAT3 signaling.

Natural
Products

Cachexia
Model

Administration Mechanism Functions References

Alantolactone C26 tumor-bearing
cancer cachexia
model

10 mg/kg, i.p.,
qd, 13d.

Targeting STAT3 and
NF-kB

Ameliorating muscle wasting and lipolysis,
anti- inflammation.

(28)

Ursolic acid C26 tumor-bearing
cancer cachexia
model

100 mg/kg, gavage,
qd, 14d.

Inhibiting STAT3
and NF-kB

Increasing body weight, muscle mass, epididymal fat
and food intake. Reduction of inflammatory factors

(170)

Brassinin HT-29 cells-xenograft
cancer cachexia
model

1 mg/kg, i.p., 3 times
a week, 4 weeks.

Inhibition of STAT3 Inhibiting weight loss, skeletal wasting, fat atrophy
and inflammatory cytokines.

(171)

Atractylenolide I C26 tumor-bearing
cancer cachexia
model

25 mg/kg, i.p.,
qd, 18d

Targeting STAT3/
PKM2/
SNAP23 pathway.

Attenuating weight loss, anorexia, glycolysis effect,
muscle wasting, and adipose degradation.

(172)

Saikosaponin D C26 tumor-bearing
cancer cachexia
model.

2.4 mg/kg, gavage,
qd, 16d.

Binding to SH2
domain of STAT3.

Muscle Preservation
Improving loss of body weight.

(173)

Cucurbitacin IIb C26 tumor-bearing
cancer cachexia
model.

2 mg/kg, i.p.,
qd, 14d.

Regulating IL-6/JAK/
STAT3/FoxO
Signaling Pathway

Alleviating skeletal muscle and epididymal fat loss. (174)

Imperatorin C26 tumor-bearing
cancer cachexia
model.

25 or 50 mg/kg,
gavage, qd, 15d.

Binding to the SH2
domain of STAT3

Preventing body weight loss and wasting of multiple
tissues, such as skeletal muscle, fat and kidney.

(175)

Ginsenoside Rd LLC1 and CT26
tumor-bearing cancer
cachexia model.

10 mg/kg, gavage,
qd, 5 weeks

Inhibiting STAT3
nuclear
translocalization

Suppressing muscle atrophy
Reducing ROS levels and protecting mitochondrial
integrity.

(176)

Cryptotanshinone CT26 tumor-bearing
cancer cachexia
model.

20 or 60 mg/kg,
gavage, qd, 10d.

Prevention of STAT3
transcriptional
activity

Increasing epididymal fat, skeletal muscle and
myocardial mass, ameliorating food intake, inhibiting
tumor growth and inflammation.

(177)

Z526 C26 tumor-bearing
mice treated
with oxaliplatin.

2.5 or 5 mg/kg,
gavage, qd, 15d.

Inhibiting the
activation of STAT3
and NF-kB.

Mitigating body weight, fat and muscle loss, and
reducing oxidative stress.

(178)
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cachexia by modulating inflammatory signaling and enhancing

anabolic pathways. During exercise, skeletal muscle fibers release

IL-6 via a TNF-independent mechanism, which promotes the

systemic release of anti-inflammatory cytokines such as IL-1

receptor antagonist (IL-1ra) and IL-10, while concurrently

suppressing pro-inflammatory mediators including TNF-a and

NF-kB activity (180–183). This anti-inflammatory cytokine

profile contributes to the attenuation of chronic inflammation

that sustains aberrant STAT3 activation in skeletal muscle.

Resistance training, in particular, plays a critical role by not only

reducing IL-6-induced STAT3 phosphorylation but also by

upregulating suppressor of cytokine signaling 3 (SOCS3), a

negative feedback regulator that directly inhibits STAT3 signaling

(184). Endurance exercise complements these effects by reducing

circulating levels of TNF-a and IL-6 and by promoting

mitochondrial biogenesis and oxidative metabolism (185), thereby

preserving muscle mass and function. Interestingly, exercise-

induced IL-6 also exerts context-dependent protective effects,

counteracting the catabolic actions of systemic inflammatory

cytokines such as TNF-a, likely through autocrine and paracrine

mechanisms (186–189). All in all, these findings highlight the

therapeutic potential of structured exercise interventions

in modulating STAT3 activity, offering a promising, non-

pharmacological strategy to ameliorate muscle wasting and

improve clinical outcomes in cancer cachexia.
Nutritional and metabolic modulators

Recent therapeutic strategies have increasingly focused on

targeting the STAT3 pathway to mitigate the muscle and adipose

tissue wasting characteristic of cancer cachexia. Among these

strategies, nutritional and metabolic modulators, particularly

nutraceuticals, have emerged as promising adjuncts to conventional

therapies (Figure 4E). Notably, omega-3 polyunsaturated fatty acids

(n-3 PUFAs), especially eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA), have demonstrated significant anti-

inflammatory properties. These effects are primarily mediated

through the downregulation of pro-inflammatory cytokine

signaling upstream of STAT3. For instance, n-3 PUFAs have been

shown to suppress levels of IL-6 and TNF-a in cancer patients (190),

as well as reduce IL-17A-mediated inflammation (191) and IL-11

expression in hepatocytes during acetaminophen-induced

hepatotoxicity (192). These cytokines are known activators of

STAT3 and play critical roles in sustaining chronic inflammation

and tissue catabolism.

Beyond their anti-inflammatory properties, n-3 PUFAs have

potential applications in enhancing exercise recovery and

preserving skeletal muscle mass and strength (193–195).

Mechanistically, supplementation with n-3 PUFAs has been

found to activate the mechanistic target of rapamycin complex 1

(mTORC1) pathway, reduce intracellular protein degradation, and

promote mitochondrial biogenesis and function (196).

Additionally, dietary n-3 PUFAs may protect against muscle
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mitochondrial oxidative stress and attenuate muscle wasting in

chronic heart failure (197), likely by enhancing oxidative

phosphorylation efficiency, increasing ATP production, and

reducing reactive oxygen species (ROS) accumulation and

muscle fatigue.

In tandem, other nutritional agents such as leucine and its

metabolite b-hydroxy b-methylbutyrate (HMB) have also

demonstrated anti-cachectic potential, partly through modulation

of STAT3 activity. Leucine enhances mitochondrial biogenesis and

activates mTOR signaling in skeletal muscle while simultaneously

decreasing STAT3 phosphorylation and associated inflammatory

signaling in tumor-bearing mice (198, 199). Moreover, HMB has

been shown to reduce muscle proteolysis and prevent apoptosis of

myonuclei by inhibiting both the ubiquitin–proteasome and

autophagy–lysosome pathways (197, 200). These effects

collectively support its therapeutic value in various forms

of cachexia.
Challenges and future directions

Despite significant progress in elucidating the role of STAT3 in

cancer cachexia, several key challenges remain that hinder the

development of effective therapeutic strategies. One major

obstacle is the complexity of STAT3 signaling pathways. STAT3

mediates a broad array of cellular functions, including immune

regulation, tumor progression, tumor inflammation, and metabolic

reprogramming (15), with tissue-specific responses across various

disease contexts (26, 43). Its multifaceted involvement makes it

difficult to delineate the exact mechanisms by which STAT3

contributes to cachexia and to develop therapies that selectively

disrupt its pathological actions. STAT3’s central role in maintaining

immune homeostasis, particularly in anti-tumor immunity, further

complicates therapeutic targeting, as systemic inhibition may result

in unintended immunosuppressive effects (17, 165).

A second major challenge lies in the tissue-specific and

sometimes opposing roles of STAT3. For instance, while it drives

skeletal muscle wasting in cancer cachexia, it also regulates lipolysis

in adipose tissue and metabolic dysfunction in the liver (25).

Dissecting these tissue-specific functions is essential for designing

targeted interventions that can suppress STAT3’s deleterious effects

in muscle without impairing its roles in other organs. Additionally,

the TME is intimately involved in STAT3-driven cachexia, as

STAT3 regulates immune cell polarization, cytokine production,

and metabolic crosstalk between tumor and host tissues (15, 201).

Therapeutic targeting of STAT3 must therefore be carefully

balanced to avoid inadvertently promoting tumor progression

while alleviating cachexia.

Despite the identification of numerous STAT3 inhibitors,

translating these agents into clinical practice remains challenging.

Many compounds suffer from poor pharmacokinetics, including

low stability, poor oral bioavailability, and limited tissue

penetration. Off-target effects and insufficient specificity have

limited the efficacy and safety profiles of several candidates in
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human trials (15, 169, 202–204). Furthermore, because STAT3 is

ubiquitously expressed and involved in essential physiological

processes, global inhibition carries the risk of side effects such as

immunosuppression, hepatotoxicity, and impaired tissue repair (18,

205). These concerns underscore the need for the development of

next-generation STAT3 modulators that are highly selective, stable,

and capable of achieving tissue-specific delivery (206).

An additional barrier to effective STAT3-targeted therapies is

the emergence of resistance mechanisms. Tumors can activate

alternative signaling pathways, such as NF-kB (20), or PI3K/AKT

(207, 208), to circumvent STAT3 inhibition. This suggests that

STAT3 monotherapy may be insufficient in many clinical contexts.

Combination strategies involving STAT3 inhibitors with agents

such as chemotherapy, radiotherapy, targeted therapy, or

immunotherapy are promising approaches to enhance efficacy

and mitigate resistance (15, 17). Despite extensive efforts to target

STAT3 in cancer therapy, cancer remains a major clinical challenge,

even with the advent of novel treatment strategies (168). Another

critical unmet need is the lack of reliable biomarkers for early

detection and monitoring of STAT3 activation in cancer cachexia.

Non-invasive biomarkers, such as circulating cytokines, or

phosphorylated STAT3, could facilitate early diagnosis, enable

stratification of patients most likely to benefit from STAT3-

targeted therapies. Incorporating such biomarkers into clinical

trial design will be essential to advance STAT3 inhibitors from

bench to bedside (209).

Given the complexity of STAT3’s biological roles and its diverse

effects depending on tumor type and disease stage, future

therapeutic strategies should adopt a personalized medicine

approach. Integration of genomic, transcriptomic, and single-cell

data can help identify context-specific STAT3 targets, allowing for

more precise intervention. Such strategies would also consider the

patient’s tumor profile, metabolic state, immune function, and

comorbidities. Personalized treatment paradigms are likely to

represent the future direction of STAT3-based therapies in cancer

cachexia. In summary, successful translation of STAT3-targeted

therapies into clinical use for cancer cachexia will require a

multifaceted approach: (1) comprehensive characterization of

tissue-specific STAT3 mechanisms, (2) development of highly

selective and bioavailable inhibitors, (3) rational combination

with other therapeutic agents, (4) discovery and application of

predictive biomarkers, and (5) implementation of individualized

treatment plans. Addressing these challenges will be key to

unlocking the full therapeutic potential of STAT3 modulation in

managing cancer cachexia.
Conclusion

This review underscores the critical role of STAT3 in the

pathophysiology of cancer cachexia, a debilitating syndrome

characterized by progressive muscle wasting, systemic inflammation,
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and metabolic dysregulation. Activation of STAT3 by pro-

inflammatory cytokines such as IL-6 and HSPs fosters a catabolic

environment that accelerates disease progression. Mechanistically,

STAT3 signaling contributes to muscle degradation by upregulating

muscle-specific E3 ubiquitin ligases while simultaneously suppressing

protein synthesis. Furthermore, it exacerbates fat loss by promoting

lipolysis and disrupting adipokine homeostasis in adipose tissue.

Given its central role in cachexia pathogenesis, therapeutic targeting

of the STAT3 pathway through small molecule inhibitors, monoclonal

antibodies, or combination therapies presents a promising avenue for

symptommanagement and improved patient outcomes. However, the

intricate interplay between STAT3 signaling, tumor biology, and host

metabolism remains incompletely understood, necessitating further

research to refine therapeutic strategies and validate their clinical

efficacy and safety. The heterogeneity of cancer cachexia, influenced by

tumor type, disease stage, and individual metabolic profiles, further

complicates treatment approaches, highlighting the need for

personalized interventions. Additionally, the potential risks

associated with prolonged STAT3 inhibition, including immune

suppression and impaired tissue regeneration, must be carefully

balanced against its therapeutic benefits. Advancing our

understanding of STAT3-targeted interventions and translating

these findings into clinical practice could significantly enhance

quality of life and survival outcomes for cancer cachexia patients.

Future research should prioritize the identification of predictive

biomarkers, the optimization of combination therapies addressing

both muscle wasting andmetabolic dysfunction, and the integration of

adjunctive strategies such as exercise and nutritional support. By

bridging the gap between molecular research and clinical

application, STAT3-targeted therapies hold the potential to

revolutionize cachexia management, offering a more comprehensive

and effective approach to improving patient care.
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46. Courapied S, Sellier H, de Carné Trécesson S, Vigneron A, Bernard AC, Gamelin
E, et al. The cdk5 kinase regulates the STAT3 transcription factor to prevent DNA
damage upon topoisomerase I inhibition. J Biol Chem. (2010) 285:26765–78.
doi: 10.1074/jbc.M109.092304

47. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE.
Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science.
(2009) 324:1713–6. doi: 10.1126/science.1171721

48. Avalle L, Poli V. Nucleus, mitochondrion, or reticulum? STAT3 à La carte. Int J
Mol Sci. (2018) 19:2820. doi: 10.3390/ijms19092820

49. Mohr A, Chatain N, Domoszlai T, Rinis N, Sommerauer M, Vogt M, et al.
Dynamics and non-canonical aspects of JAK/STAT signalling. Eur J Cell Biol. (2012)
91:524–32. doi: 10.1016/j.ejcb.2011.09.005

50. Domaniku-Waraich A, Agca S, Toledo B, Sucuoglu M, Özen SD, Bilgic SN, et al.
Oncostatin M signaling drives cancer-associated skeletal muscle wasting. Cell Rep Med.
(2024) 5:101498. doi: 10.1016/j.xcrm.2024.101498

51. Ying L, Yao Y, Lv H, Lu G, Zhang Q, Yang Y, et al. IL-17A contributes to skeletal
muscle atrophy in lung cancer-induced cachexia via JAK2/STAT3 pathway. Am J
Physiol Cell Physiol. (2022) 322:C814–c24. doi: 10.1152/ajpcell.00463.2021

52. Patel HJ, Patel BM. TNF-a and cancer cachexia: Molecular insights and clinical
implications. Life Sci. (2017) 170:56–63. doi: 10.1016/j.lfs.2016.11.033

53. Paval DR, Patton R,McDonald J, Skipworth RJE, Gallagher IJ, Laird BJ. A systematic
review examining the relationship between cytokines and cachexia in incurable cancer. J
Cachexia Sarcopenia Muscle. (2022) 13:824–38. doi: 10.1002/jcsm.12912

54. Bonetto A, Aydogdu T, Jin X, Zhang Z, Zhan R, Puzis L, et al. JAK/STAT3
pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in
experimental cancer cachexia. Am J Physiol Endocrinol Metab. (2012) 303:E410–21.
doi: 10.1152/ajpendo.00039.2012

55. Narsale AA, Carson JA. Role of interleukin-6 in cachexia: therapeutic
implications. Curr Opin Support Palliat Care. (2014) 8:321–7. doi: 10.1097/
spc.0000000000000091

56. Eskiler GG, Bezdegumeli E, Ozman Z, Ozkan AD, Bilir C, Kucukakca BN, et al.
IL-6 mediated JAK/STAT3 signaling pathway in cancer patients with cachexia. Bratisl
Lek Listy. (2019) 66:819–26. doi: 10.4149/bll_2019_136

57. Gandhi AY, Yu J, Gupta A, Guo T, Iyengar P, Infante RE. Cytokine-mediated
STAT3 transcription supports ATGL/CGI-58-dependent adipocyte lipolysis in cancer
cachexia. Front Oncol. (2022) 12:841758. doi: 10.3389/fonc.2022.841758

58. Miller A, McLeod L, Alhayyani S, Szczepny A, Watkins DN, Chen W, et al.
Blockade of the IL-6 trans-signalling/STAT3 axis suppresses cachexia in Kras-induced
lung adenocarcinoma. Oncogene. (2017) 36:3059–66. doi: 10.1038/onc.2016.437
Frontiers in Endocrinology 14
59. Yang X, Wang J, Chang CY, Zhou F, Liu J, Xu H, et al. Leukemia inhibitory
factor suppresses hepatic de novo lipogenesis and induces cachexia in mice. Nat
Commun. (2024) 15:627. doi: 10.1038/s41467-024-44924-w

60. Kandarian SC, Nosacka RL, Delitto AE, Judge AR, Judge SM, Ganey JD, et al.
Tumour-derived leukaemia inhibitory factor is a major driver of cancer cachexia and
morbidity in C26 tumour-bearing mice. J Cachexia Sarcopenia Muscle. (2018) 9:1109–
20. doi: 10.1002/jcsm.12346

61. Chiappalupi S, Sorci G, Vukasinovic A, Salvadori L, Sagheddu R, Coletti D, et al.
Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. J
Cachexia Sarcopenia Muscle. (2020) 11:929–46. doi: 10.1002/jcsm.12561

62. Niu M, Song S, Su Z, Wei L, Li L, Pu W, et al. Inhibition of heat shock protein
(HSP) 90 reverses signal transducer and activator of transcription (STAT) 3-mediated
muscle wasting in cancer cachexia mice. Br J Pharmacol. (2021) 178:4485–500.
doi: 10.1111/bph.15625

63. Bi J, Wu Z, Zhang X, Zeng T, Dai W, Qiu N, et al. TMEM25 inhibits monomeric
EGFR-mediated STAT3 activation in basal state to suppress triple-negative breast
cancer progression. Nat Commun. (2023) 14:2342. doi: 10.1038/s41467-023-38115-2

64. Zhao C, Yang L, Zhou F, Yu Y, Du X, Xiang Y, et al. Feedback activation of EGFR
is the main cause for STAT3 inhibition-irresponsiveness in pancreatic cancer cells.
Oncogene. (2020) 39:3997–4013. doi: 10.1038/s41388-020-1271-y

65. Shen L, Zhang C, Cui K, Liang X, Zhu G, Hong L. Leptin secreted by adipocytes
promotes EMT transition and endometrial cancer progression via the JAK2/STAT3
signalling pathway. Adipocyte. (2024) 13:2293273. doi: 10.1080/21623945.2023.
2293273

66. Vaisse C, Halaas JL, Horvath CM, Darnell JEJr., Stoffel M, Friedman JM. Leptin
activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db
mice. Nat Genet. (1996) 14:95–7. doi: 10.1038/ng0996-95

67. Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L, et al. The IL-6/
JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia. (2013)
15:848–62. doi: 10.1593/neo.13706

68. Agca S, Kir S. The role of interleukin-6 family cytokines in cancer cachexia. FEBS
J. (2024) 291:4009–23. doi: 10.1111/febs.17224

69. Ma JF, Sanchez BJ, Hall DT, Tremblay AK, Di Marco S, Gallouzi IE. STAT3
promotes IFNg/TNFa-induced muscle wasting in an NF-kB-dependent and IL-6-
independent manner. EMBO Mol Med. (2017) 9:622–37. doi: 10.15252/
emmm.201607052

70. Gao S, Durstine JL, Koh HJ, Carver WE, Frizzell N, Carson JA. Acute myotube
protein synthesis regulation by IL-6-related cytokines. Am J Physiol Cell Physiol. (2017)
313:C487–c500. doi: 10.1152/ajpcell.00112.2017

71. Burfeind KG, Michaelis KA, Marks DL. The central role of hypothalamic
inflammation in the acute illness response and cachexia. Semin Cell Dev Biol. (2016)
54:42–52. doi: 10.1016/j.semcdb.2015.10.038

72. Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, et al. Socs3
deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced
obesity. Nat Med. (2004) 10:739–43. doi: 10.1038/nm1071

73. Li Y, Dörmann N, Brinschwitz B, Kny M, Martin E, Bartels K, et al. SPSB1-
mediated inhibition of TGF-b receptor-II impairs myogenesis in inflammation. J
Cachexia Sarcopenia Muscle. (2023) 14:1721–36. doi: 10.1002/jcsm.13252

74. Carson JA, Baltgalvis KA. Interleukin 6 as a key regulator of muscle mass during
cachexia. Exerc Sport Sci Rev. (2010) 38:168–76. doi: 10.1097/JES.0b013e3181f44f11

75. Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia:
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