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Alcohol consumption, high-
sensitivity C-reactive protein,
and estimated glomerular
filtration rate: tripartite
predictors of 10-year
cardiovascular risk progression in
patients with type 2 diabetes
mellitus after COVID-19
Yizhe Wang1,2†, Yu Duan3†, Yongcheng Zhang1,2†, Na Li2,
Ying Hu2, Liping Gu2*, Yanfang Hou2* and Yuhang Ma2*

1University of Shanghai for Science and Technology, Shanghai, China, 2Department of Endocrinology
and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China, 3Faculty of Engineering, University of New South Wales, Sydney, Australia
Objectives: To investigate the predictors influencing the advancement of 10-

year cardiovascular disease (CVD) risk after infection with Corona Virus Disease

2019 (COVID-19) in type 2 diabetes patients, and to provide a theoretical basis for

an early intervention program for the cardiovascular dimension of the

cardiovascular-kidney-metabolic syndrome (CKM syndrome).

Methods: A cohort of 378 individuals diagnosed with type 2 diabetes was

analyzed retrospectively. The progression of 10-year CVD risk was

characterized by an elevation in the 10-year CVD risk category, as determined

by the SCORE2-Diabetes scoring system, in type 2 diabetic infected with COVID-

19. Factors influencing 10-year CVD risk progression were evaluated through

univariate and multivariate stepwise logistic regression. Nonlinear relationships

between predictors and 10-year CVD progression were assessed using restricted

cubic spline (RCS) analysis, subsequently followed by an analysis of threshold

effects. Finally, the predictive performance of various factor combinations for 10-

year CVD risk progression during the post-acute COVID-19 phase in type 2

diabetes mellitus cohorts was measured by area under roc curve (AUC).

Results: After infection with COVID-19, 12.2% (n=46) experienced progression in

their 10-year CVD risk category. In multifactorial stepwise logistic regression,

alcohol consumption [odds ratio (OR) 2.10, 95% confidence interval (CI) 1.02-

4.34], estimated glomerular filtration rate (eGFR) (OR 0.96, 95% CI 0.94-0.99) and

high-sensitivity C-reactive protein (hs-CRP) (OR 1.33, 95% CI 1.13-1.57), were

found to be significantly linked to the progression of 10-year CVD risk. Restricted

cubic spline analysis (RCS) demonstrated a nonlinear correlation between hs-

CRP and 10-year CVD risk progression with a threshold of 3.0 mg/L. 10-year CVD

risk was significantly higher with increasing hs-CRP levels at hs-CRP < 3.0 mg/L

(OR 2.28, 95% CI 1.48-3.55), and the two-stage model significantly superior to a

single linear model (P = 0.028 for log-likelihood ratio). Among the different
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combinations of models for alcohol consumption, hs-CRP, and eGFR, the full

model combination of all three had the best predictive effect (AUC = 0.749).

Conclusion: Alcohol consumption and elevated hs-CRP were associated with

increased cardiovascular risk progression, while higher eGFR levels were

inversely associated with risk progression.
KEYWORDS

type 2 diabetes, cardiovascular disease, COVID-19, SCORE2-diabetes, risk factors,
cardiovascular-kidney-metabolic
1 Introduction

According to the International Diabetes Federation, over 500

million people worldwide have diabetes mellitus, with type 2

diabetes mellitus (T2DM) accounting for more than 90% of cases

(1). T2DM involves impaired pancreatic b-cell function (2), insulin

resistance, and compensatory secretory insufficiency, ultimately

leading to disrupted glucose homeostasis as the disease

progresses. Notably, CVD accounts for 40% of China’s mortality

rates (3–5), ranking as the top cause of death, and is the primary

fatal complication in individuals with T2DM. Epidemiological data

indicate that approximately 50% of diabetes-related deaths are

attributable to CVD, with T2DM patients facing a twofold higher

risk of cardiovascular mortality compared to healthy individuals (6,

7). It’s been shown through studies that individuals with T2DM

have a lifetime risk of cardiovascular diseases that’s two to four

times greater than those who don’t have diabetes, encompassing

issues like heart disease, strokes, and heart failure (8, 9). Given the

strong interplay between T2DM and CVD, the European Society of

Cardiology (ESC) emphasized integrated risk assessment in its 2023

ESC Guidelines on Cardiovascular Disease Management in

Diabetes (10), which suggests the use of the SCORE2-Diabetes

(11) to estimate the 10-year risk of CVD in individuals with T2DM

in Europe, and Fu et al. (12) confirmed the applicability of the

SCORE2-Diabetes in Chinese individuals with T2DM by

recalibrating it with a high-risk region rescaling factor, which

improved its accuracy for this population. The guidelines also

highlight the critical role of chronic kidney disease (CKD) in

CVD management for individuals with T2DM (10), as nearly

40% of T2DM patients have comorbid CKD (13), and CKD

progression exacerbates CVD susceptibility due to renal

dysfunction (14). To reflect their systemic interactions, the

concept of cardiovascular-kidney-metabolic (CKM) syndrome

(15) has proposed. In CKM progression, the cardiovascular

system of 10 serves as the primary target organ; CVD is not

merely a consequence of metabolic dysregulation and renal injury

but also accelerates global CKM deterioration, forming a vicious

cycle (15).

The COVID-19 pandemic has further amplified health risks for

T2DM patients. Abe et al. (16) found that diabetic individuals with
02
COVID-19 infection experienced worse cardiovascular outcomes,

such as a combination of cardiovascular events, acute heart failure,

and the onset of atrial fibrillation. Koyama et al. (17) showed that

individuals with diabetes who had been infected with COVID-19

experienced significantly greater post-acute cardiovascular risks

compared to uninfected controls. According to Nandy et al. (18),

individuals with diabetes were about 3.07 times more likely to have

severe outcomes from COVID-19, those suffering from CVD faced

a 4.5 times greater likelihood, and for those battling chronic kidney

disease (CKD), the odds of a bad outcome after catching COVID-19

were a whopping 5.3 times greater. These effects likely involve

multifactorial mechanisms such as direct viral injury and

inflammatory storm activation (19, 20), potentially undermining

the predictive validity of current SCORE2-Diabetes 10-year CVD

risk models (11).Although integrated CKM management is widely

endorsed, independent risk pathways within its components require

further elucidation. Particularly in the context of COVID-19,

identifying post-infection CVD progression risk factors in T2DM

patients could provide pivotal evidence for precision stratification

in CKM interventions.

This study aims to investigate risk factors for 10-year CVD risk

progression in T2DM patients following COVID-19 infection,

offering a theoretical foundation for early cardiovascular-directed

interventions in CKM syndrome.
2 Materials and methods

2.1 Study population

We carried out a retrospective cohort analysis to evaluate 10-

year CVD risk progression in T2DM patients after COVID-19

infection at the Metabolic Management Center (MMC) of Shanghai

First People’s Hospital. A total of 1,324 patients with diabetes who

joined MMC between June 1, 2022, and December 8, 2022, were

included in the COVID-19 survey, which concluded in April 2022.

This study used the most recent diabetes-related laboratory tests

conducted within the six months prior to the patient’s COVID-19

infection date as baseline data, including sociodemographic

characteristics, medical records, lifestyle behaviors, and laboratory
frontiersin.org
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test results. Among these, 218 patients were excluded due to

incomplete COVID-19 questionnaires or missing baseline data.

As of June 2023, 688 of the remaining 1,106 participants had

completed follow-up diabetes-related tests post-pandemic. After

excluding cases with missing data required for the SCORE2-

Diabetes model, T1DM cases not classified as T2DM, and cases

with a history of CVD, a total of 378 T2DM patients were included

in the final analysis.(Figure 1).

Prior to implementation, the Ethics Committee at Shanghai

General Hospital, part of Shanghai Jiao Tong University’s Medical

School, had reviewed and sanctioned this research (No.

2017KY209). All methodologies conformed to the Declaration of

Helsinki principles governing biomedical research ethics. Informed

consent was obtained from all participants before enrolment.
2.2 Data collection

Data were gathered by the trainees following the MMC

standard protocol (21), and according to the MMC standard

operating procedures (21), spanning socio-demographic details,

medical records, lifestyle behaviors, and laboratory tests such as

glycosylated hemoglobin albumin (HbA1C), glycosylated serum

albumin (GA), fasting glucose (FPG), fasting C-peptide (FC-P), as

well as lipid profiles like total cholesterol (TC), triglycerides (TG),

high-density lipoprotein cholesterol (HDL-C) and low-density

lipoprotein cholesterol (LDL-C) (22). We also looked at kidney

function markers such as blood urea nitrogen (BUN), serum
Frontiers in Endocrinology 03
creatinine (Scr) and morning urine albumin/creatinine (UACR)

(23), and the inflammatory marker high-sensitivity C-reactive

protein (hs-CRP) (24).

In our study, we defined the diagnosis of patients infected with

COVID-19 as a positive test result after the viral gene detection by

RT-PCR (25). Based on the questionnaire results collected in

accordance with the MMC standard protocol (21), patients who

drank alcohol weekly or almost weekly were defined as having a

drinking habit, and smokers who smoked cigarettes daily or almost

daily and less than once a day or less than 7 cigarettes a week were

defined as having a smoking habit. Body mass index (BMI) was

determined using the formula weight (kg)/height²(m²) (26). For

insulin-treated patients, homeostasis model assessment of insulin

resistance (HOMA-IR) and b-cell function (HOMA-b) were

derived from FPG and FC-P levels (27). Estimated glomerular

filtration rate (eGFR) was determined using the serum creatinine-

based CKD-EPI equation developed by the U.S. Chronic Kidney

Disease Epidemiology Collaborative Working Group in 2009 (28).

Hs-CRP levels were stratified according to CDC/AHA guidelines

(29): low-risk (<1.0 mg/L), medium-risk (1.0–3.0 mg/L), and high-

risk (>3.0 mg/L).
2.3 Statistical analysis

Normally distributed data are expressed as the mean plus or

minus the standard deviation (Mean ± SD), while non-normally

distributed values are reported as the median with interquartile
FIGURE 1

Flow chart of the study population.
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range (M(IQR)) (30). Categorical variables, on the other hand, are

displayed as frequency counts alongside their corresponding

percentages (30). One-way analysis of variance (ANOVA) (31)

was employed to compare the means of normally distributed

variables across the three CVD risk groups at baseline: low,

intermediate, high, and very high risk, and independent samples

t-tests (31) were conducted to assess the mean differences between

the 10-year CVD risk progression group and the no progression

group; for skewed distribution variables, the Kruskal-Wallis H-test

(32) was applied to analyze the median differences in the data

between multiple groups, and the Wilcoxon rank sum test (33)

served to assess the median difference between the 10-year CVD

risk progression and no progression groups. The chi-square test

(34) was applied to compare categorical variables.

Univariate and multivariate stepwise logistic regression was used

to further identify risk indicators associated with 10-year CVD risk

progression after COVID-19 infection in T2DM patients. Variables

with P < 0.20 in univariate analyses were entered into a multivariate

logistic regression model using a stepwise selection procedure. Entry

and exit criteria were set at P < 0.05 and P > 0.10, respectively. Logistic

regression results are presented as odds ratio (OR) with 95%

confidence interval (CI) and a two-sided P<0.05 was regarded as

statistically significant (35). The risk indicators screened by

multifactorial stepwise logistic regression were then stratified. The

relationship with the 10-year CVD risk progression was characterized

by nonlinearity, using restricted cubic spline (RCS) analysis, followed

by threshold effects analysis. Finally, the performance of the

predictors was evaluated using AUC. Statistical analyses were

conducted using R version 4.4.2 software.
3 Results

A total of 378 T2DM patients infected with COVID-19 were

included in this study. Table 1 lists the baseline demographic and

clinical characteristics of the participants grouped according to the

SCORE2-Diabetes model. Of the 378 participants, 173 (45.8%)

showed low risk, 123 (32.5%) were at intermediate risk, and 82

(21.7%) were at high or very high risk, in this study, the high and

very high risk groups were combined into one group. The

proportion of male rate, smoking rate, alcohol consumption rate,

age, and age at diagnosis of diabetes (ADOD) all gradually increased

and were significantly different among the three groups (P < 0.02),

and SBP, HbA1c, FPG, GA all increased significantly with

increasing risk class (P < 0.02). In contrast, FC-P and HOMA-b
decreased significantly with decreasing risk class (P < 0.05). BUN,

Scr and UACR all increased significantly with higher risk classes,

whereas eGFR decreased significantly (P < 0.001).

The baseline characteristics of T2DM patients with (332, 87.8%)

and without (46, 12.2%) progression in 10-year CVD risk in the

SCORE2-Diabetes after COVID-19 infection are shown in Table 2.

Alcohol consumption, hs-CRP and eGFR were significantly

different in the progressed group (P<0.05). However, no

discrepancies were detected in additional clinical attributes across

the groups (Table 2).To identify risk factors for 10-year CVD risk
Frontiers in Endocrinology 04
progression in T2DM patients post-COVID-19, we conducted both

univariate and multivariate logistic regression analyses using key

data points from Table 2 (Table 3). Multivariate analysis revealed

that alcohol consumption and hs-CRP were positively associated

with 10-year CVD risk progression, while eGFR showed a negative

association, all with statistical significance (OR 2.10, 95% CI 1.02-

4.34; OR 1.33, 95% CI 1.13-1.57; OR 0.96, 95% CI 0.94-0.99).

Additional analyses assessed the link between identified risk

factors and 10-year CVD risk progression (Table 4). Alcohol

consumption (OR, 95%CI: 2.01, 1.08-3.75, P=0.028) significantly

increased 10-year CVD risk progression in Model 1 (unadjusted),

and this correlation persisted (Model 2) post-adjustment for age, sex,

smoking status, and BMI (OR, 95%CI: 2.08, 1.01-4.29, P=0.047),

indicating it as an independent risk factor. Elevated hs-CRP

(≥1.0 mg/L) showed significant association with risk progression in

both models, though the highest group (>3.0 mg/L) did not

demonstrate further increased risk, suggesting potential

nonlinearity. In contrast, the highest eGFR quartile group (≥108.43

mL/min/1.73m²) demonstrated a significant protective effect (OR,

95%CI: 0.05, 0.01-0.36, P=0.003), which remained stable in Model 2

(OR, 95%CI: 0.05, 0.00-0.29, P=0.003).

We used restricted cubic sample (RCS) analysis to test for a

nonlinear relationship between hs-CRP levels and 10-year CVD risk

progression. After adjusting for potential confounding variables,

found a nonlinear relationship between hs-CRP levels and 10-year

CVD risk progression in T2DM patients infected with COVID-19

(P-overall<0.001, P-nonlinear=0.014) (Figure 2). The threshold

effect analysis pinpointed 3.0 mg/L as the critical hs-CRP value.

Below this threshold, every 1 mg/L rise in hs-CRP corresponded to a

striking 128% increased risk (OR 2.28, 95% CI 1.48-3.55, P<0.001).

No statistically meaningful association emerged when hs-CRP levels

exceeded 3.0 mg/L (OR: 1.17, 95% CI 0.82-1.66, P=0.382), as

detailed in Table 5.

To assess the effect of alcohol consumption, hs-CRP and eGFR

in predicting the progression of the 10-year CVD risk in T2DM

patients infected with a COVID-19, we constructed receiver

operating characteristic (ROC) curves (Figure 3). For combined

predictors: Model 1 (alcohol consumption + eGFR) and Model 2

(alcohol consumption + hs-CRP) showed similar AUC [0.665 (95%

CI: 0.583-0.748) vs 0.684 (95%CI: 0.594-0.774)]. Model 3 (eGFR +

hs-CRP) improved predictive performance [0.727 (95%CI: 0.653-

0.802)], while the full model (alcohol consumption + eGFR + hs-

CRP) achieved maximal AUC [0.749 (95%CI: 0.674-0.824)].
4 Discussion

In this retrospective cohort analysis, alcohol consumption, hs-

CRP levels and eGFR significantly correlated with 10-year CVD risk

progression in T2DM patients. Higher hs-CRP levels and alcohol

consumption were significantly associated with increased CVD risk,

while higher eGFR levels were inversely associated with

risk progression.

High-sensitivity C-reactive protein (hs-CRP) serves as a

significant inflammatory marker linked to atherosclerotic
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cardiovascular disease (36–38). Research in a Chinese ischemic

stroke cohort linked elevated hs-CRP levels to higher all-cause

mortality risk (39). Our study also confirmed elevated hs-CRP

correlated with increased CVD risk (OR, 95% CI: 1.33, 1.13-1.57,

P<0.001). Several studies have linked elevated hs-CRP levels to less

favorable clinical outcomes in COVID-19 patients, dictating its

potential as a biomarker for predicting clinical severity. This

association might be explained by the cytokine storm induced by

severe COVID-19, which can worsen insulin resistance (40, 41).

Pro-inflammatory agents like tumor necrosis factor-a (TNF-a),
interleukin-6 (IL-6), interleukin-1b (IL-1b), and vascular

endothelial growth factors can further exacerbate vascular injury

and endothelial dysfunction, leading to vascular remodeling (42).

IL-6 is a potent stimulator of CRP production, produced by vascular
Frontiers in Endocrinology 05
smooth muscle cells in reaction to atherosclerosis. CRP binds

directly to severely atherosclerotic oxidized LDL-C and is found

in lipid-rich plaques (43). CRP contributes to plaque development

through complex proatherogenic interactions with various

atherogenic cells (44). CRP potentially fosters monocyte

attachment and movement within vessel walls, a key early phase

of atherosclerosis (45). Furthermore, CRP-catalyzed M1

macrophage polarization acts as a pro-inflammatory initiator in

plaque development, promoting macrophage accumulation in

adipose tissue and atherosclerotic plaques (46). Monomeric CRP,

an isoform activated by platelets, exhibits distinct prothrombotic

and inflammatory characteristics (47), and it’s also occurs within

plaques, notably regions displaying monocyte-driven inflammation,

as well as in the lipid microstructural domains of endothelial cells
TABLE 1 Comparison of general information at baseline for T2DM according to 10-year CVD risk grading.

Variable
Low risk

(n = 173, 45.8%)
Moderate risk
(n = 123, 32.5%)

High and very high risk
(n = 82, 21.7%)

P-value

Male, n (%) 100 (57.8) 82 (66.7) 69 (84.1) <0.001

Smoking, n (%) 15 (8.7) 44 (35.8) 45 (54.9) <0.001

Alcohol consumption, n (%) 47 (27.2) 42 (34.1) 37 (45.1) 0.017

Age (years) 47.00 (44.00-52.00) 57.00 (51.00-62.00) 63.00 (59.00-66.00) <0.001

ADOD (year) 43.00 (40.00-48.00) 49.00 (44.00-56.00) 53.00 (45.25-59.75) <0.001

Height (cm) 167.00 (160.50-173.50) 169.50 (163.25-174.50) 168.50 (163.50-173.75) 0.266

Weight (kg) 70.72 ± 11.09 69.84 ± 11.03 69.85 ± 10.54 0.74

BMI (kg/m²) 25.00 (23.20-26.90) 24.10 (22.40-26.25) 23.95 (23.02-26.08) 0.073

SBP (mmHg) 127.06 ± 16.07 130.21 ± 15.10 133.35 ± 16.67 0.011

DBP (mmHg) 77.02 ± 10.70 76.87 ± 9.17 75.50 ± 10.68 0.518

HbA1C (%) 6.20 (5.80-6.70) 6.80 (6.00-7.30) 7.30 (6.70-8.35) <0.001

GA (%) 13.94 (12.38-16.20) 15.58 (13.42-17.79) 17.45 (14.87-20.40) <0.001

FPG (mmol/L) 5.94 (5.32-6.67) 6.23 (5.38-7.27) 7.06 (6.05-8.11) <0.001

FC-P (pmol/L) 540.42 (364.31-765.56) 488.07 (312.21-656.53) 458.26 (282.45-660.08) 0.038

HOMA-IR 2.65 (2.26-3.06) 2.51 (2.19-3.13) 2.66 (2.17-3.33) 0.629

HOMA-b 56.47 (36.72-90.11) 47.12 (31.03-72.15) 33.54 (19.13-49.98) <0.001

TG (mmol/L) 1.38 (0.97-2.01) 1.31 (0.94-1.79) 1.29 (0.94-1.79) 0.626

TC (mmol/L) 4.28 (3.63-4.97) 4.37 (3.62-5.10) 4.39 (3.34-5.66) 0.912

HDL-c (mmol/L) 1.08 (0.90-1.28) 1.09 (0.90-1.31) 1.00 (0.85-1.20) 0.117

LDL-c (mmol/L) 2.48 (1.77-2.98) 2.42 (1.85-3.09) 2.30 (1.66-3.51) 0.972

BUN (mmol/L) 5.58 (4.80-6.60) 6.12 (5.05-7.21) 6.44 (5.41-7.58) 0.004

eGFR (mL/min/1.73m²) 107.47 (99.69-112.84) 99.93 (93.67-106.08) 94.80 (85.06-99.65) <0.001

Scr (mg/dL) 63.60 (51.40-73.90) 66.00 (56.40-75.05) 69.70 (62.95-82.85) <0.001

UACR (mg/g) 11.45 (7.24-20.12) 12.95 (7.60-24.87) 18.16 (9.79-45.01) 0.004

hsCRP (mg/L) 0.60 (0.30-1.80) 0.60 (0.30-1.70) 0.80 (0.40-2.25) 0.186
ADOD, Age at Diagnosis of Diabetes; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1c, hemoglobin A1c; GA, Glycated Serum Albumin; FPG, fasting
plasma glucose; FC-P, Fasting C-peptide; HOMA-IR, Homeostasis Model Assessment of Insulin Resistance; HOMA-b, Homeostasis Model Assessment of Beta Cell Function; TG, triacylglycerol;
TC, total cholesterol; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; Scr, serum creatinine; BUN, blood urea
nitrogen;UACR, urinary albumin/creatinine ratio; hs-CRP, high-sensitivity C-reactive protein.
Values in bold denote statistical significance (p < 0.05).
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(48). Clinical trials have examined hs-CRP thresholds of both 2 mg/

L and 3 mg/L to ascertain heightened CVD risk (37, 49). Research

consistently shows a marked link between cardiovascular incidents

and hs-CRP levels exceeding 3 mg/L, when contrasted with those

below 1 mg/L (50–52), the Multi-Ethnic Study of Atherosclerosis

(MESA) reported a 50% increased risk at the 2 mg/L threshold (50–

52). Specifically, this subjects showed a mean hs-CRP of 3.76 mg/L

and with notably elevated levels in those who had future coronary

events and those who did not (53). This discrepancy may stem from

population differences in inflammatory baseline levels or distinct

CVD risk stratification methods. In contrast, our study identified

3.0 mg/L as a potential inflection point. Differently, when in the

range of hs-CRP <3.0 mg/L, for every 1 mg/L rise in hs-CRP, the

likelihood of a 10-year CVD risk escalation grew by 128% (OR, 95%

CI: 2.28, 1.48-3.55, P<0.001), with high statistical significance,
Frontiers in Endocrinology 06
suggesting that hs-CRP is a key driver of CVD risk at low

inflammation levels. When hs-CRP was ≥3.0 mg/L, the hs-CRP

level was still positively correlated with CVD risk (OR=1.17), but

this correlation was not statistically significant. This attenuation

may reflect reduced statistical power due to a smaller subgroup size,

or it may suggest a more complex risk landscape in high-

inflammatory states where other pathological mechanisms coexist.

Inflammation control may be particularly critical in the lower hs-

CRP range, while a multifactorial approach may be warranted in

individuals with elevated hs-CRP. This observation warrants further

investigation, including studies employing non-linear modeling and

biological validation to assess the potential existence and clinical

relevance of such thresholds.

The cardiovascular-kidney-metabolic (CKM) syndrome

concept highlights the interconnected nature of T2DM, CKD, and
TABLE 2 Comparison of general information at baseline between progressive and non-progressive T2DM with 10-year CVD risk.

Variable Non-progression (n = 332, 87.8%) Progression (n = 46, 12.2%) P-value

Male, n (%) 217 (65.4) 34 (73.9) 0.325

Smoking, n (%) 87 (26.2) 17 (37.0) 0.176

Alcohol consumption, n (%) 104 (31.3) 22 (47.8) 0.04

Age (years) 53.00 (46.00-60.00) 55.50 (50.00-60.75) 0.212

ADOD (years) 46.50 (41.00-54.00) 47.50 (43.00-55.00) 0.778

Height (cm) 167.62 ± 8.29 169.34 ± 7.90 0.187

Weight (kg) 69.45 (62.77-78.03) 69.75 (63.45-76.45) 0.747

BMI (kg/m²) 24.70 (22.90-26.70) 23.70 (22.40-26.17) 0.086

SBP (mmHg) 129.00 (118.00-141.00) 129.00 (120.50-136.00) 0.769

DBP (mmHg) 76.87 ± 10.32 74.98 ± 9.32 0.239

HbA1c (%) 6.50 (5.90-7.23) 6.55 (6.00-6.90) 0.374

GA (%) 14.93 (12.80-17.76) 15.11 (13.83-17.51) 0.640

FPG (mmol/L) 6.23 (5.46-7.27) 6.15 (5.32-6.94) 0.370

FC-P (pmol/L) 530.31 (338.46-725.31) 512.80 (323.45-710.41) 0.554

HOMA-IR 2.67 (1.55-3.17) 2.55 (1.43-3.05) 0.170

HOMA-b 48.91 (28.48-77.84) 45.66 (31.09-62.09) 0.493

TG (mmol/L) 1.35 (0.96-1.91) 1.15 (0.86-1.79) 0.160

TC (mmol/L) 4.32 (3.57-5.05) 4.15 (3.61-5.32) 0.736

HDL-c (mmol/L) 1.07 (0.89-1.26) 1.08 (0.91-1.28) 0.682

LDL-c (mmol/L) 2.46 (1.80-3.11) 2.42 (1.62-2.93) 0.693

eGFR (mL/min/1.73m²) 101.70 (94.03-109.50) 97.34 (90.73-103.01) <0.001

Scr (mg/dL) 0.74 ± 0.24 0.78 ± 0.50 0.064

BUN (mmol/L) 5.95 (4.90-7.16) 6.30 (5.72-7.03) 0.120

UACR (mg/g) 13.11 (7.53-26.26) 12.00 (7.23-26.01) 0.701

hs-CRP (mg/L) 0.60 (0.30-1.63) 1.75 (0.52-2.80) 0.002
ADOD, Age at Diagnosis of Diabetes; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1c, hemoglobin A1c; GA, Glycated Serum Albumin; FPG, fasting
plasma glucose; FC-P, Fasting C-peptide; HOMA-IR, Homeostasis Model Assessment of Insulin Resistance; HOMA-b, Homeostasis Model Assessment of Beta Cell Function; TG, triacylglycerol;
TC, total cholesterol; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; Scr, serum creatinine; BUN, blood urea
nitrogen;UACR, urinary albumin/creatinine ratio; hs-CRP, high-sensitivity C-reactive protein.
Values in bold denote statistical significance (p < 0.05).
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CVD. T2DM, as a core driver of metabolic abnormalities, directly

damages the glomerular basement membrane integrity and vascular

endothelium activity, leading to the synergistic progression of CKD

and atherosclerotic CVD (54). The COVID-19 pandemic

exacerbates renal function decline in patients with T2DM through

direct infection of renal tubular cells via the ACE2 receptor, as well

as the exacerbation of podocyte injury by hyperglycemia, leading to

decreased eGFR and increased proteinuria (55). In addition,

COVID-19-induced cytokine storm and oxidative stress,

synergized with the pathomechanisms of diabetic nephropathy,

accelerate glomerulosclerosis and eGFR decline (56). Bowe et al.

(57) demonstrated that COVID-19 survivors exhibited higher rates

of acute kidney injury (AKI), eGFR decline, end-stage renal disease

(ESKD), major adverse renal events (MAKE), and a steeper

longitudinal decline in eGFR within 30 days post-acute phase.
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This renal impairment induced by COVID-19 may further

amplify the established association between renal dysfunction and

cardiovascular outcomes. eGFR’s association with CVD risk

exhibits non-linearity, with both low eGFR and glomerular

hyperfiltration increasing CVD risk (58). This non-linear

relationship may be explained by the fact that glomerular

hyperfiltration reflects glomerular hypertension, while low

filtration reflects impaired excretory function. The Second

National Health and Nutrition Examination Survey (NHANES II)

(59) indicated that patients with an eGFR below 70 mL/min/1.73 m²

faced a 68% heightened risk of overall mortality and a 51% greater

risk of cardiovascular death versus those with an eGFR of 90 mL/

min/1.73 m² or higher. The Atherosclerosis Risk in Communities

Study (ARIC) (60) showed that individuals with baseline eGFR in

the range of 15–59 mL/min/1.73 m² had a 38% elevated risk of
TABLE 3 Univariate and multivariate logistic regression analysis of 10-year risk of CVD progression.

Variable
Univariate Multivariate

Odds Ratio (95% CI) P-value Odds Ratio (95% CI) P-value

Male, n (%) 1.50 (0.75,3.01) 0.252

Smoking, n (%) 1.65 (0.86,3.15) 0.129 1.36 (0.67,2.77) 0.400

Alcohol consumption, n (%) 2.01 (1.08,3.75) 0.028 2.10 (1.02,4.34) 0.045

BMI (kg/m²) 0.91 (0.82,1.01) 0.086 0.90 (0.80,1.01) 0.064

Age (years) 1.02 (0.98,1.06) 0.247

hs-CRP (mg/L) 1.27 (1.11,1.47) <0.001 1.33 (1.13,1.57) <0.001

eGFR (mL/min/1.73m²) 0.96 (0.94,0.98) <0.001 0.96 (0.94,0.99) 0.002
CI, Confidence Interval.
BMI, body mass index; hs-CRP, high-sensitivity C-reactive protein; eGFR, estimated glomerular filtration rate.
Values in bold denote statistical significance (p < 0.05).
TABLE 4 Associations of potential risk factors on 10-year CVD risk progression in T2DM patients infected with COVID-19.

Categories
Model 1 Model 2

OR (95%CI) P-value OR (95%CI) P-value

Alcohol consumption

No 1 1

Yes 2.01 (1.08,3.75) 0.028 2.08 (1.01,4.29) 0.047

hs-CRP (mg/L)

< 1.0 1 1

1.0~3.0 3.78 (1.81,7.86) <0.001 3.81 (1.83,7.95) <0.001

>3.0 3.25 (1.22,8.66) 0.018 3.23 (1.21,8.62) 0.019

eGFR (mL/min/1.73m²)

<92.93 (Q1) 1 1

92.93~100.88 (Q2) 0.58 (0.25,1.30) 0.183 0.58 (0.26,1.24) 0.194

100.89~108.42 (Q3) 0.65 (0.30,1.48) 0.315 0.65 (0.26,1.26) 0.302

≥108.43 (Q4) 0.05 (0.01,0.36) 0.003 0.05 (0.00,0.29) 0.003
Model 1: Non-adjusted.
Model 2: Adjusted for age, gender, smoking and BMI.
Values in bold denote statistical significance (p < 0.05).
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cardiovascular disease compared to the eGFR 90–150 mL/min/1.73

m² group. Furthermore, Seung et al. (61) reported that glomerular

hyperfiltration was associated with CVD, especially myocardial

infarction and heart failure. In our study, after infection with

COVID-19 in T2DM patients, the baseline level of eGFR was

significantly lower in the population with a progressive 10-year

CVD risk than in the non-progressive population (P<0.001). In

multivariate stepwise logistic regression analyses, higher eGFR

levels were significantly associated with lower odds of 10-year

CVD risk progression (OR, 95%CI: 0.96, 0.94-0.99, P=0.002). The

inverse association was most pronounced in the highest quartile of

eGFR (≥108.43 mL/min/1.73m²), where participants had

substantially lower odds of risk progression (OR, 95%CI: 0.05,

0.01-0.36, P=0.003). This association remained consistent after

adjustment for age, sex, BMI, and smoking in Model 2 (OR, 95%

CI: 0.05, 0.00-0.29, P=0.003). A comprehensive meta-analysis

encompassing 12 cohort studies (62) revealed that participants

with an eGFR between 75–105 mL/min/1.73m² exhibited the

lowest risk of all-cause and CVD mortality. Conversely, those

with an eGFR below 60 mL/min/1.73m²faced a nearly twofold

higher mortality rate (P<0.001). From the CKM perspective,
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T2DM, CKD, and CVD are tightly intertwined. Maintaining

optimal eGFR may be a key strategy to delay the progression of

CKM syndrome, and a combination of multidisciplinary

interventions will be needed to improve patients’ prognosis in

the future.

Numerous studies have demonstrated a double-edged

relationship between alcohol consumption and cardiovascular

disease. Alcohol is associated with a well-documented J-shaped

dose-effect curve, with mild to moderate alcohol consumption

reducing cardiovascular and total mortality (63–65), while

excessive or binge drinking has the opposite effect (64, 66). This

may be an amplified effect of cytokine storm in T2DM patients

infected with COVID-19. Wang et al. (67) showed that the alcohol

metabolite acetaldehyde activates the NF-kB pathway and promotes

the release of pro-inflammatory factors, such as IL-6 and TNF-a,
which superimposes with the SARS-CoV-2-induced cytokine

storm, thus exacerbating CVD risk in patients with T2DM in

terms of inflammatory pathways. In the analysis of our research,

the link between drinking alcohol and the progression of CVD over

a 10-year period held strong even when we accounted for other

factors that might skew the results (OR 2.08, 95% CI 1.01-4.29).

This indicates that alcohol intake is a standalone predictor for 10-

year CVD risk for T2DM patients. Chronic hyperglycemia and

insulin resistance in T2DM trigger excessive production of reactive

oxygen species (ROS), triggering thrombosis, inflammation,

imbalance of vascular homeostasis, and cell proliferation, and

several cardiovascular risk factors correlate with elevated ROS

generation or reduced plasma glutathione (GSH) levels (68, 69).

GSH, a mitochondrial bio-antioxidant in mammalian tissues, plays

a key role in reducing oxidative stress. SARS-CoV-2 reduces

intracellular GSH levels by impairing NRF2 activity, a key

regulator of oxidative defense that enhances GSH synthesis (70,

71). Studies have shown that alcohol can exacerbate oxidative stress

in COVID-19 patients by depleting GSH through the dual pathway

of inhibiting glutathione synthase (GCL) activity and promoting
FIGURE 2

Association between hs-CRP and 10-year CVD risk progression in T2DM patients infected with COVID-19. Adjusted for age, gender, BMI and
smoking status.
TABLE 5 Threshold effect analysis of hs-CRP on 10-year CVD risk
progression in T2DM patients infected with COVID-19.

Adjusted OR (95%CI) P-value

Fitting by two piecewise vogistic model

Inflection point 3.0

High-sensitivity C
reactive protein < 3.0

OR=2.28 (95%CI:1.48-3.55) <0.001

High-sensitivity C reactive
protein ≥ 3.0

OR=1.17 (95%CI:0.82-1.66) 0.382

P for Log-likelihood ratio 0.028
Values in bold denote statistical significance (p < 0.05).
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GSH oxidation (72). Overall, alcohol consumption significantly

amplifies CVD risk in T2DM patients following COVID-19

infection by activating inflammatory pathways (e.g., NF-kB/IL-6
axis) and exacerbating oxidative stress (GSH depletion). In our

study, patients who drank alcohol weekly or almost weekly were

defined as having a drinking habit, but only frequency was

recorded, failing to differentiate on specific amounts of alcohol

consumed, which is something that might be further investigated

through detailed research to delve into the dual impact of alcohol on

heart disease risk. Future studies need to further resolve the

molecular mechanisms of alcohol-virus synergism and

incorporate lifestyle interventions such as alcohol restriction to

optimize cardiovascular risk management in the T2DM population.

Several salient strengths warrant mention in the present study.

Employing novel methodological integration, we present the first-

ever systematic analysis of 10-year CVD predictors among

individuals with type 2 diabetes during the COVID-19 era,

integrated with the SCORE2-Diabetes model, providing new

evidence for the management of CKM syndrome. Secondly, the

study used multifactorial regression, nonlinear analysis and

threshold effect validation, which made the results more reliable.

Finally, we also suggested that the joint prediction model of alcohol

consumption, eGFR and hs-CRP (AUC=0.749) has potential

clinical applications. In clinical risk prediction literature, the area

under the receiver operating characteristic curve (AUC) between

0.7 and 0.8 is typically regarded as indicative of acceptable to good
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discriminatory ability, whereas values exceeding 0.8 denote

excellent performance. Consequently, our model’s AUC of 0.749

suggests a moderate, yet clinically meaningful, level of

discrimination. This is particularly relevant within the context of

post-COVID-19 cardiovascular risk stratification in patients with

type 2 diabetes. While not definitive for diagnostic purposes, this

level of performance supports the model’s potential value as a

supplementary tool in early screening and risk-based

intervention planning.
5 Limitations

This research is not without its shortcomings. For starters, the

modest participant pool could compromise the reliability of our

statistical findings, and with the relatively small sample size of the

progression group, the observed heterogeneity between groups may

affect the robustness of the regression model. Additionally, since all

data was collected from a single institution, the results may be

skewed by selection bias and lack broader applicability. Third,

retrospective study designs have inherent limitations in causal

inference, with the inability to infer causality and the possibility

of selection bias and unmeasured confounders, such as statin use,

the severity of COVID-19 and COVID-19 vaccination status.

Statins are widely prescribed in patients with diabetes and are

known to significantly reduce cardiovascular events (73). The
FIGURE 3

ROC curve of different risk factor combination models. (Model1: Alcohol consumption + eGFR; Model2: Alcohol consumption + hs-CRP; Model3:
eGFR + hs-CRP; Model4: Alcohol consumption + eGFR + hs-CRP).
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absence of statin use data may have led to underestimation of CVD

risk in some individuals. COVID-19 severity may affect long-term

cardiovascular outcomes by increasing inflammation, endothelial

dysfunction, and myocardial injury (19). The lack of COVID-19

severity grading may have obscured the association between

inflammation and CVD risk progression. Vaccinated individuals

have been shown to exhibit 10–27% lower rates of cardiovascular

events following infection, compared to unvaccinated counterparts

(74). This omission may result in residual confounding by

vaccination. These variables should be included in future

prospective studies to further improve the accuracy of CVD risk

assessment in T2DM patients following COVID-19 infection.

Fourth, the lack of data on long-term post-infection follow-up

does not allow assessment of the long-term impact of 10-year

CVD risk progression in T2DM patients, and dynamic changes in

risk need to be tracked through multicenter prospective cohorts.

Fifth, alcohol consumption was assessed by frequency in this study,

without accounting for volume or drinking patterns, which may

reduce the interpretability of the findings, future research should

consider employing validated tools such as Alcohol Use Disorders

Identification Test–Consumption (AUDIT-C) for more

comprehensive alcohol behavior assessment.
6 Conclusion

In this study, we investigated the predictors associated with a

progression in the SCORE2-Diabetes score in individuals with type 2

diabetes infected with COVID-19. The results showed that alcohol

consumption and elevated hs-CRP levels were significantly associated

with progression of 10-year CVD risk, while higher eGFR levels were

inversely associated with risk progression. These findings highlight

potential associations that may inform future research on

inflammation control, alcohol-related behaviors, and renal function

in cardiovascular risk management. Despite the limitations of the

retrospective study, the results also contribute to the clinical

application of CKM syndrome management. Elevated hs-CRP

reflects residual inflammatory risk; reduced eGFR indicates early

renal vulnerability; and alcohol use represents a modifiable behavioral

driver of metabolic dysregulation. Together, these markers enable

integrated risk stratification across cardiovascular, renal, and

metabolic axes. Incorporating them into routine assessment allows

early identification of high-risk CKM phenotypes and supports the

implementation of targeted, dimension-specific interventions,

thereby advancing the goal of point-to-point CKM management.
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