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Background: Endometrial cancer (EC) is one of the common malignant tumors

among women, and in recent years, the role of gut microbiota in tumorigenesis

has been increasingly gaining attention.Existing research has shown that the gut

microbiome, establishes axis connections with multiple extra-intestinal organs.

However, whether gut microbes affect the process of endometrial

carcinogenesis through metabolic pathways and the specific mechanisms by

which they promote the development of EC remain unclear. This study aims to

explore the impact of overweight-mediated gut microbiota on the initiation or

progression of EC and to assess its relationship with metabolites, thereby

providing new insights for early diagnosis and treatment.

Methods: In this study, we analyzed gut microbiota differences among normal-

weight, overweight EC patients, and healthy controls using 16S rRNA sequencing.

Liquid chromatography-mass spectrometry (LC-MS) and KEGG analysis

identified group-specific metabolites and pathways, while Spearman

correlation analysis revealed associations between microbiota and metabolites.

Results: This study revealed that in the ECMO group, the genus Megamonas

exhibited the highest abundance and significant intergroup differences (H=13.46,

P<0.05). Additionally, the Bacillota/Bacteroidota ratio (B/B ratio) gradually

increased in the CN, ECMN, ECMO group. LEfSe analysis identified

Megamonas and Amedibacillus as potential biomarkers for the ECMO group.

Serum metabolomics of overweight EC patients highlighted lipid metabolism-

related metabolites with the most specific expression. KEGG enrichment analysis

of differential metabolites highlighted that the Glycerophospholipid metabolism

and Purine metabolism pathways were notably significant in both the ECMN and

ECMO groups.
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Conclusion: The study found significantly elevated abundance ofMegamonas in

the gut microbiota of overweight EC patients, which may promote EC

progression by degrading inositol to enhance lipid absorption. This reveals the

role of gut microbiota in EC pathogenesis through lipid metabolism regulation,

providing a theoretical basis for microbiota-based diagnostic and

therapeutic strategies.
KEYWORDS

overweight, endometrial cancer, gut microbiota, gut microbial ecosystem,
lipid metabolism
1 Introduction

Endometrial Cancer (EC) is one of the top five most common

malignant tumors in women, with approximately 320,000 new

patients diagnosed globally each year (1). The Bokhman

classification (2) categorizes EC into two histological subtypes:

Type I and Type II. Type I is primarily associated with obesity

and other components of metabolic syndrome, which have been

identified as independent risk factors for the development of EC.

Type II tumors exhibit more aggressive behavior and are not

estrogen-driven. However, studies have shown (3) the complexity

of EC risk factors, with obesity playing a significant role in both EC

subtypes. The dramatic rise in obesity prevalence is driven by

sedentary lifestyles, increased caloric intake, and widespread

polygenic susceptibility (genetic predisposition involving multiple

genes). Recent research (4) suggests that sustained weight loss,

which reverses obesity-induced metabolic alterations and gut

dysbiosis, can significantly reduce the risk of developing EC.

Microorganisms,by colonizing diverse niches of the human

body, establish an intimate symbiotic relationship with their host,

collectively forming a holobiont (meta-organism). As an integral

component of human biology, the microbiota may directly or

indirectly modulate cancer susceptibility and tumor progression

(5, 6). The homeostatic state of the gut microbiota has been

demonstrated to critically influence systemic health (7). For

instance, gut microbiota can influence host physiological

functions in multiple ways, such as affecting intestinal wall

permeability, defending against pathogenic microbial invasion,

and releasing anti-inflammatory or pro-inflammatory factors,

thereby increasing the risk of carcinogenesis.Japanese researchers

propose that gut microbiota diversity is significantly higher in obese

populations compared to non-obese individuals, potentially linked

to ethnicity, geographic region, and other factors (8). The

development of EC may be linked to abnormal estrogen levels

and adverse consequences of overweight, potentially driven by

modern lifestyle changes such as improved quality of life and

dietary patterns. Additionally, disrupted nutrient absorption due

to gut dysbiosis may contribute to obesity, which in turn drives

conditions such as hypertension, diabetes, and hormonal
02
imbalances-all recognized risk factors for EC (9). Therefore, this

study, based on 16S rRNA high-throughput sequencing and LC-MS

non-targeted metabolomics, aims to explore the differential gut

microbiota and serum metabolites in overweight individuals with

EC, with the goal of providing effective strategies for the prevention

and treatment of EC.
2 Materials and methods

2.1 Inclusion and exclusion criteria, and
grouping

This study was conducted at the Gansu Provincial Maternity

and Child Health Care Hospital from February 2023 to October

2023. Through rigorous screening based on inclusion and exclusion

criteria, a total of 17 EC patients and 22 healthy controls(all of

normal weigh, CN group) were enrolled in the study. The EC cohort

included an EC normal-weight group (ECMN group, n=8) and an

EC overweight/obese group (ECMO group, n=9). We used body

mass index (BMI) for grouping. According to the World Health

Organization (WHO) criteria, overweight is defined as a BMI

greater than or equal to 25 kg/m2 and a normal weight is defined

as a BMI less than 25 kg/m2.

The inclusion criteria were as follows: Experimental Group: (1).

Individuals aged between 20 and 60 years. (2). Histopathological

type confirmed as endometrioid adenocarcinoma. (3). No use of

antibiotics, probiotics, or other medications that may affect

gastrointestinal function within 4 weeks prior to enrollment. (4).

No history of diarrhea or other gastrointestinal diseases within 4

weeks prior to enrollment. All participants included in the study

had signed informed consent forms and agreed to comply with the

study protocol. Exclusion Criteria: (1) A history of estrogen-

dependent diseases. (2) A history of other malignant tumors. (3)

Pregnant or breastfeeding women. (4) Patients who have received

chemotherapy, radiotherapy, or cellular immunotherapy before

surgery. (5) Use of antibiotics, probiotics, or other medications

affecting gastrointestinal function within 3 months before

enrollment. (6) Use of immunosuppressants or hormonal
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treatments within 3 months before enrollment. (7) A history of

diarrhea or other gastrointestinal diseases within 3 months before

enrollment. (8) Vegetarians or individuals with special dietary

habits. (9) Exclude participants with a history of postmenopausal

hormone replacement therapy or use of hormonal contraceptives.
2.2 Sample collection

Before surgery or on the day of the health checkup for the

healthy control group, participants collected stool samples

approximately the size of a soybean (about 1.5 to 3 grams), which

were placed in 7 mL sterile collection tubes and immediately stored

at -80°C in a deep freezer. Each participant also provided 2.5 mL of

venous blood, which was promptly sent to the laboratory. The blood

was centrifuged at 4000 rpm for 5 minutes at room temperature to

separate the serum. The separated 1 mL serum was aliquoted into

two cryovials, labeled, and quickly stored at -80°C for subsequent

serum metabolite analysis.
2.3 Library preparation and sequencing

Genomic DNA was extracted from fecal samples using the

MagPure Stool DNA KF Kit B. The PCR amplification was carried

out using specific primers 338F (ACTCCTACGGGAGGCAGCAG)

and 806R (GGACTACHVGGGTATCTAAT). The reaction

mixture had a total volume of 20 mL, containing 30 ng of quality-

verified genomic DNA and fusion primers. The V3–V4 region of

the 16S rRNA gene was PCR-amplified: initial denaturation at 98°C

for 1 minute, followed by 30 cycles consisting of denaturation at 98°

C for 10 seconds, annealing at 50°C for 30 seconds, and extension at

72°C for 60 seconds; a final extension step was performed at 72°C

for 10 minutes. Amplicons were purified with Agencourt AMPure

XP beads to remove primer dimers, followed by library construction

using the DNA Fragment Size Selection Bead-Based Kit (LB00V60)

for adapter ligation and size selection of target fragments (400–500

bp). Purified products were dissolved in Elution Buffer, and library

fragment distribution/concentration (>4 nM) was verified using an

Agilent 2100 Bioanalyzer. Qualified libraries underwent paired-end

sequencing (2×250 bp) on an Illumina MiSeq platform, with filtered

data used for downstream bioinformatic analysis.
2.4 Data filtering and bioinformatics
analysis

2.4.1 Data filtering and tag linking
The raw sequencing data were initially filtered. A sliding window

strategy with a 25-bp window was applied. If the average quality score

within the window was below 20, both the window and its subsequent

sequences were discarded. If the trimmed read length was <75% of the

original, the read was discarded. Adapter contamination was removed

by setting the overlap region between adapters and reads to 15 bp,

allowing for 3 mismatches. Reads containing N bases and low-

complexity reads (defined as sequences with ≥10 consecutive
Frontiers in Endocrinology 03
identical bases) were also removed. Finally, samples were identified

based on barcode and primer sequences, with no mismatches allowed

between the barcode and sequencing reads.

Sequence assembly was conducted with FLASH (Fast Length

Adjustment of Short Reads, v1.2.11), which utilized overlapping

relationships to assemble paired-end reads into a single sequence,

yielding high-variable region tags. The assembly conditions included:

(1) a minimum matching length of 15 bp; (2) an overlap region

mismatch rate of 0.1 (for detailed data, see the appendix).

2.4.2 OTU clustering analysis
USEARCH software (v7.0.1090) was employed to cluster the

assembled tags into operational taxonomic units (OTUs). Initially,

UPARSE was used to perform clustering at 97% similarity, resulting in

the representative sequences for each OTU. Subsequently, UCHIME

(v4.2.40) was employed to detect and remove chimeras that may have

been generated during the PCR amplification process. For 16S and ITS

sequences, chimera removal was achieved by aligning the sequences

with established chimera databases. The 16S chimera database used

was the gold database (v20110519), while the ITS chimera database

used was UNITE (v20140703). Depending on the sequencing region,

comparisons were performed against the full-length ITS, ITS1, or ITS2

regions. For 18S sequences, a De novo method was used to remove

chimeras. Lastly, the usearch_global method was applied to align all

tags with the OTU representative sequences, generating an OTU

abundance table for each sample.

2.4.3 Microbial community diversity analysis
Microbial community diversity in the gut was analyzed using

QIIME2 (v2023.2) to compute the Shannon index, Chao index, and

observed OTUs, which were used to assess alpha diversity. Beta

diversity analysis was conducted using the Bray-Curtis distance

matrix and weighted UniFrac distance. Principal coordinates analysis

(PCoA) was utilized to visualize the differences in community structure

among groups. All analyses were performed in R (v4.4.1) with the

vegan package (v2.6-4), and a significance threshold was set at P < 0.05.

2.4.4 Microbial community differences and linear
discriminant analysis

DESeq2 (v1.12.4) was employed to analyze themicrobiota’s relative

abundance data at the phylum, family, and genus levels. A negative

binomial distribution model was used to detect differentially abundant

taxa between groups, using the criteria of FDR-corrected P < 0.05 and |

log2FoldChange| > 2. Additionally, LEfSe analysis (LDA score > 3.0)

was conducted to identify microbial biomarkers that significantly

contribute to the differences between groups.
2.5 Metabolomics analysis

2.5.1 Serum sample extraction
Metabolites in serum samples were analyzed using a high-

resolution mass spectrometer in both positive and negative ion

modes. Peaks were detected using XCMS software, and preliminary

identification was performed based on the mass-to-charge ratio (m/z)
frontiersin.org

https://doi.org/10.3389/fendo.2025.1610534
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2025.1610534
and retention time. Subsequently, metaX software was employed to

match the detected metabolites against the HMDB and KEGG

databases, providing primary identification results. To improve

accuracy, a secondary mass spectrometry library was used to

compare the sample data, yielding high-confidence metabolite

identification results. For data processing, quality control was applied

to remove low-quality peaks (with QC sample missing more than 50%

or actual samples missing more than 80%). Missing values were

imputed using the K-Nearest Neighbors (KNN) method, and

normalization was performed using the Probabilistic Quotient

Normalization (PQN) method. Finally, metabolite identification and

relative quantification results were obtained.

2.5.2 Serum metabolite detection
The samples were sequentially arranged in the ultra-high

pressure liquid chromatography system, and pre-separation was

carried out using an ACQUITY UPLC BEH T3 column. The

chromatographic conditions were set as follows: column

temperature at 50°C, flow rate at 0.3 mL/min, with mobile phase

A being a 0.1% formic acid aqueous solution, and mobile phase B

being a 0.1% formic acid-acetonitrile solution. The gradient elution

program is detailed in the appendix.

Mass spectrometry data were collected using a Q-Exactive high-

resolution mass spectrometer, operating alternately in positive and

negative ion modes. The ion source parameters were as follows:

sheath gas pressure at 10 psi, auxiliary gas pressure at 40 psi, ion

transfer tube temperature at 350°C, and spray voltage at +3800 V

(positive ion mode)/-3100 V (negative ion mode). Data-dependent

acquisition (DDA) mode was applied, with a full scan range of 70–

1050 Da (resolution 70,000 @ m/z 200), automatically selecting the

top 3 precursor ions with signal intensity >1 × 105 for fragmentation

(resolution 17,500 @ m/z 200). QC samples were introduced after

every 10 samples to monitor system stability, and systematic errors

were corrected by normalizing the inter-sample variation using the

QC samples.

2.5.3 Metabolomics data processing and analysis
The data processing workflow is as follows: First, metabolites

with missing values exceeding 50% in QC samples or 80% in actual

samples are excluded during quality control. Subsequently, missing

values are imputed using the K-Nearest Neighbors (KNN) method.

Data normalization is performed using Probabilistic Quotient

Normalization (PQN), referencing the median peak area ratio

from the QC samples. The identified metabolites were annotated

using the KEGG database, and significant differential metabolites

were selected using a PLS-DA model. The selection criteria were:

fold change > 1.5 or < 1/1.5, P < 0.05, and VIP > 1. Finally, KEGG

pathway enrichment analysis was conducted on the differential

metabolites, with P < 0.05 considered significant.
2.6 Statistical analysis

Clinical data were analyzed using SPSS 26.0 software. Normally

distributed continuous variables were expressed as Mean ± SD, and
Frontiers in Endocrinology 04
between-group comparisons were performed using Tukey-Kramer

one-way ANOVA. Non-normally distributed data were expressed

as median (interquartile range), and comparisons between groups

were performed using the Kruskal-Wallis rank sum test. Categorical

data were analyzed using the Chi-square test. Spearman correlation

analysis was used to assess the correlation between specific bacterial

taxa and specific metabolites. A P value < 0.05 was considered

statistically significant.
3 Results

3.1 Baseline data analysis

This study selected 17 patients diagnosed with endometrioid

adenocarcinoma (EC group) based on postoperative pathological

diagnosis, and 22 healthy women undergoing physical examination

at the same time as the control group, according to the inclusion and

exclusion criteria. The EC group was further divided into overweight

patients with endometrioid adenocarcinoma (ECMO group) and

normal-weight patients with endometrioid adenocarcinoma

(ECMN group). Clinical characteristics such as age, weight, BMI,

waist circumference, blood pressure, and menopause status were

compared among the three groups (Table 1).

In terms of BMI, the ECMO group had significantly higher BMI

than both the ECMN group and the control group (P < 0.05), with 9

patients (52.9%) in the ECMO group. Regarding hypertension, the

number of patients in the ECMO group was significantly higher than

in the other two groups (P < 0.05). There were no significant

differences between the two groups regarding menopause, but 10

patients (58.8%) in the EC group were in a postmenopausal state.

There were no significant differences in the tumor markers CA125

and HE4 between the ECMO group and the ECMN group (P > 0.05).
3.2 Gut microbiota diversity analysis across
different groups

As shown in Figure 1, the Venn diagram displays a total of 1294

OTUs, with 152 unique OTUsin the CN group and 112 unique

OTUsin the EC group. To thoroughly investigate the gut microbiota

characteristic profiles of overweight/obese populations with EC, we

conducted pairwise comparative analyses between three groups: CN

vs. ECMN and ECMN vs. ECMO.

Alpha diversity analysis revealed no statistically significant

differences between the CN and ECMN groupsin Chao1 (P = 0.23),

Shannon (P = 0.67), or Simpson indices (P = 0.96) (Figure 2A). For

the ECMN vs. ECMO comparison, the Shannon (P = 0.56) and

Simpson indices (P = 0.94) showed no significance, while the Chao1

index was statistically significant (P = 0.03) (Figure 2B).

To further visualize gut microbiota differences among all study

groups, unweighted PCoA analysisrevealed significant separation

between the CN and ECMN groups (P < 0.0001) and between the

ECMN and ECMO groups (P < 0.0001) (Figure 3A). In contrast,

weighted PCoA analysisshowed no significant separation between
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any groups (P > 0.05) (Figure 3B). Unweighted analyses primarily

account for the presence or absence of species, whereas weighted

analyses incorporate relative abundance of species. This

discrepancy may indicate that, despite structural differences in

community composition (captured by unweighted methods),

there are similarities in species abundance distributions

across groups.
3.3 Gut microbiota composition analysis

At the phylum level (Figure 4), Bacillota was the most abundant

phylum in the CN (47.91%), ECMN (44.43%), and ECMO (47.25%)

groups. In contrast, the relative abundances of Bacteroidota and
Frontiers in Endocrinology 05
Actinomycetota gradually decreased from the CN to ECMN and

ECMO groups, whereas Pseudomonadota progressively increased in

the CN (4.50%), ECMN (13.13%), and ECMO (18.69%) groups.In EC

patients, the Pseudomonadota abundance was significantly higher in

the ECMO group compared to the ECMN group. Furthermore, the

Bacillota/Bacteroidota (B/B)ratio, a critical marker of microbial

dysbiosis, increased from 1.32 in the ECMN group to 1.56 in the

ECMO group. Elevated B/B ratios have been linked to dysregulation of

inflammatory responses and metabolic pathways (e.g., tryptophan and

lipid metabolism), potentiallycontributing to EC progression (10, 11).

In the ECMN group, four bacterial phylashowed statistically

significant differences. The dominant phylumwas Pseudomonadota

(H = 8.63, P < 0.05), while Mycoplasmatota, Campylo bacterota, and

Candidatus Sacchari bacteria also exhibited significant differences in
FIGURE 1

The distribution of OTUs between the two groups.
TABLE 1 Baseline characteristics of study groups.

Variable ECMO group (n=9) ECMN group (n=8) Control group (n=22) P-value

Age (years) 48.78 ± 9.02 52.5 ± 4.38 33.87 ± 7.28 0.29

Height (m) 1.6 ± 0.05 1.59 ± 0.03 1.61 ± 0.04 0.99

Weight (kg) 83.11 ± 12.4 57.88 ± 5.91 55.13 ± 6.53 <0.001*

BMI (kg/m²) 32.24 ± 3.37 22.79 ± 1.89 21.31 ± 2.81 0*

Waist circumference (cm) 96.28 ± 21.12 94.25 ± 29.09 74.27 ± 6.51 0.23

Hip circumference (cm) 101.06 ± 23.14 90.44 ± 10.82 92.72 ± 5.87 0.56

Diabetes mellitus (n, %) 3 1 0 0.07

Hypertension (n, %) 5 3 0 0.02*

After menopause (n, %) 5 5 1 0.11

CA125 (u/ml) 35.09 ± 48.31 25.45 ± 12.81 – 0.98

CA199 (u/ml) 27.51 ± 31.11 24.46 ± 21.0 – 0.99

CA153 (u/ml) 14.66 ± 9.87 10.09 ± 4.38 – 0.28

HE4 (pmol/L) 98.61 ± 59.14 79.16 ± 43.06 – 0.09
EC, Endometrial cancer.
*Statistically significant (P < 0.05).
frontiersin.org

https://doi.org/10.3389/fendo.2025.1610534
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2025.1610534
abundance. In contrast, only Mycoplasmatota demonstrated a

statistically significant difference in the ECMO group.

At the genus level (Figure 5), Phocaeicola exhibited the highest

abundance in the CN group (14.87%), ECMN group (18.12%), and

ECMO group (16.49%), but no significant differences were observed

in its abundance among the groups. Comparative analysis at the

genus level identified 48 bacterial genera with statistically significant

differencesamong the three groups. The dominant genera in the

ECMO group includedMegamonas (H=13.46, P<0.05), Clostridium

sensu stricto (H=0.32, P=0.01), and Acinetobacter (H=0.1, P<0.01).

In the ECMN group, the dominant genera included Megasphaera

(H=1.84, P=0.001), Streptococcus (H=0.54, P<0.005), Kineothrix

(H=3.10, P<0.05), and Vescimonas (H=3.40, P<0.05). Among

these differential genera, Megasphaera showed higher abundance

in the ECMN group, with significant differences among the three

groups. In the ECMO group, Megamonas exhibited the highest

abundance, with significant differences among the three groups

(H=13.46, P<0.05).
3.4 LEfSe analysis of gut microbiota

LEfSe (Linear Discriminant Analysis Effect Size) identifies

biologically relevant biomarkers by integrating statistical

significanceand biological consistencyacross groups. Building on the

LEfSe analysis and taxonomic visualization results, we further validated

the differentially abundant taxa in the gut microbiota composition

between the ECMN and ECMO groups.Given the high discriminative

power at the genus level, the identified genera were selected as

candidate biomarkers for further investigation. The results revealed

distinct:the ECMO group, the genera with the greatest impact on the
Frontiers in Endocrinology 06
gut microbiota structure,ranked by linear discriminant analysis(LDA)

scores, were: Megamonas, Amedibacillus, Clostridium sensu stricto,

Mesosutterella, Acinetobacter, Leyella, and Flavonifractor. In the

ECMN group, the genera with higher LDA scores included:

Klebsiella, Vescimonas, Megasphaera, Kineothrix, Succinivibrio,

Guopingia, and Elizabethkingia(Figure 6). These results confirm the

enrichment of the above-discussed characteristic generain their

respective groups, solidifying Megamonas and Amedibacillus as

potential biomarkersfor the ECMO group, and Klebsiella and

Vescimonas for the ECMN group.
3.5 Analysis of differential metabolites and
metabolic pathway enrichment in
overweight EC patients

To investigate the serummetabolic characteristics of overweight

EC patients, we analyzed differential metabolites and associated

metabolic pathways between the ECMN and ECMO groups. The

results demonstrated significant differences in metabolic

profilesbetween both EC groups and the CN group, highlighting

obesity-driven metabolic dysregulation in EC pathogenesis.Using

the criteria of VIP > 1, P < 0.05, FC > 2, or FC < 0.5, hierarchical

clustering was performed based on the expression levels of

significantly differential metabolites. The analysis identified 4198

differential ions in the ECMN group (1352 upregulated and 2796

downregulated metabolites) and 406 differential ions in the ECMO

group (216 upregulated and 190 downregulated metabolites). All

differential metabolites were validated through rigorous

quantitative quality control (QC) procedures. Statistical results for

secondary differential metabolites are shown in Figure 7.
FIGURE 2

The comparison of alpha diversity between the three groups. (A) (CN vs ECMN) and (B) (ECMN vs ECMO).
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This study found that the secondary differential metabolites of

EC primarily originate from lipids and lipid-like molecules. Further

screening of highly expressed metabolites in the ECMN and ECMO

groups, followed by ranking based on Variable Importance in

Projection (VIP) scores, demonstrated the following key findings:

In the ECMO group, O-Acetyl-L-carnitine, Chenodeoxycholic acid

24-acyl-b-D-glucuronide, and 3-Hydroxymandelic acid were the

most significantly expressed metabolites. In the ECMN group,

Pentachlorophenol, 2,4-Dihydroxyacetophenone 5-sulfate, and

Benzoylcholine were the most significantly expressed metabolites.

KEGG enrichment analysis of the differential metabolites indicated

that the Glycerophospholipid metabolism and Purine metabolism

pathways were notably significant in both the ECMN and ECMO

groups. Additionally, the primary metabolic pathways of EC were

predominantly concentrated in Lipid metabolism.
3.6 Correlation between gut microbiota
and metabolites in overweight EC patients

This study analyzed the correlation between five specific gut

microbial genera in the ECMO group and the top 10 specific

metabolites ranked by VIP values. The results showed the following
Frontiers in Endocrinology 07
in the Spearman correlation analysis between gut microbial genera and

metabolites:Megamonas exhibited significant positive correlations with

O-Acetyl-L-carnitine and 1-Stearoyl-2-docosahexaenoyl-sn-glycero-3-

phosphocholin (r = 0.57, 0.67, respectively). Clostridium sensu stricto

showed a significant positive correlation with O-Acetyl-L-carnitine (r =

0.679). Mesosutterella demonstrated significant negative correlations

with multiple metabolites, including PC(20:4(5Z,8Z,11Z,14Z)/20:5

(5Z,8Z,11Z,14Z,17Z)), Acetyl-L-carnitine, PC(18:2(9Z,12Z)/15:0), and

3-Hydroxymandelic acid(r = -0.89, -0.85, -0.82, -0.67, respectively)

(Figure 8). The analysis of metabolite categories revealed that lipids and

lipid-like molecules constituted the predominant class of differential

metabolites, with organic acids and derivatives also playing a significant

role in the correlation network. These findings highlight the potential

mechanisms by which specific gut bacterial genera regulate key

metabolites and underscore the intricate interplay between gut

microbiota and host metabolism in health and disease.
4 Discussion

With the advancement of gut microbiota research, the

mechanisms linking it to tumorigenesis have become increasingly

clear. Current studies indicate that gut dysbiosis may contribute to
FIGURE 3

The clustering of gut microbial communities among the three groups. (A) (CN vs ECMN) and (B) (ECMN vs ECMO).
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carcinogenesis through multiple pathways, including disruption of

intestinal mucosal barrier integrity and induction of metabolic

disturbances(e.g., estrogen imbalance and reduced short-chain

fatty acids [SCFAs]) (12). Specifically, the core mechanisms by

which microbial dysbiosis drives tumor initiation and progression

include:(1) activation of chronic inflammatory signaling via

microbial-associated molecular patterns (MAMPs) binding to

pattern recognition receptors (e.g., TLRs); (2) direct damage to

host genomic stability or epigenetic regulation by microbial

metabolites (e.g., secondary bile acids and polyamines); and (3)

immune tolerance triggered by molecular mimicry between

microbial antigens and tumor antigens (13–16). Notably,

microbiota-mediated carcinogenic mechanisms exhibit significant

heterogeneity across different tumor types, reflected both in

dynamic shifts in specific bacterial taxa (e.g., pathogenic

overgrowth or depletion of commensals) and tissue-specific

activation of microbiota-host interaction pathways. For example,

in colorectal cancer, specific pathogens such as colibactin-

producing bacteria directly induce DNA double-strand breaks,
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while adhesin-receptor interactions activate pro-proliferative

signaling pathways (e.g., Wnt/b-catenin), synergistically driving

epithelial cell malignant transformation (17). Metagenomic

studies have further revealed that tumor progression is frequently

accompanied by a reduction in gut microbiota alpha diversity and

the enrichment of signature bacterial genera. For instance, the

aberrant proliferation of taxa such as Bacteroidesand Parvimonas

—observed in colorectal cancer—suggests that these microbes may

serve as biomarkers implicated in the multistage transition from

precancerous lesions to invasive malignancies (18).

Recent research has confirmed that dysbiosis of the gut

microbiota is closely linked to the onset and progression of EC,

with its mechanisms interacting synergistically with metabolic

abnormalities such as obesity, hypertension, and diabetes. Studies

have highlighted the critical role of obesity in promoting EC. Excess

adipose tissue, particularly in obese individuals, increases aromatase

activity, which converts androgens into estrogens, thereby raising

estrogen levels (19). One study (20) underscores how metabolic

disruptions, including insulin resistance, play a significant role in
FIGURE 4

The relative abundance (%) of gut microbiota at the phylum level across the three groups.
FIGURE 5

The relative abundance (%) of gut microbiota at the genus level across the three groups.
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EC progression, reinforcing the notion that obesity is a major risk

factor for EC. Obesity-induced visceral fat accumulation also leads

to the secretion of pro-inflammatory cytokines, such as IL-6, which

activate chronic systemic inflammation (21). This inflammatory

response not only contributes to the increased risk of EC but also

promotes immune evasion and cellular proliferation through

various signaling pathways. Research (22) has shown that this

inflammation affects the tumor microenvironment, thereby

facilitating cancer cell growth and enhancing tumor progression.

Moreover, obesity causes disruptions in lipid metabolism.

Excessive fat accumulation leads to energy surplus and fat

deposition, which can directly promote the growth and survival of

EC cells (23). Alterations in insulin and adipokine signaling, in

particular, are crucial pathways through which obesity accelerates

EC progression (24). These findings suggest that targeting lipid

metabolism could be a promising therapeutic approach for

managing EC, particularly in obese patients.Clinical studies have

further elucidated the strong association between obesity and

increased EC risk. One such study revealed that women with a
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BMI > 35 kg/m² have a 4.7-fold higher risk of developing EC

compared to women with a normal weight (OR=4.7, 95%CI 3.2-

6.9). In these individuals, the gut microbiota is notably altered, with a

significant increase in the Firmicutes to Bacteroidetes (B/B) ratio.

This suggests that the gut microbiota plays a crucial role in the

development of obesity-related EC (25). These findings support the

hypothesis that the gut microbiota-metabolism axis may act as a key

regulatory network for obesity-related EC, where changes in

microbial composition influence systemic metabolism and drive the

progression of endometrial cancer (26, 27).

Through integrated 16S rRNA high-throughput sequencing and

metabolomic profiling, this study reveals a significant association

between gut microbiota dysbiosis and lipid metabolic disturbances in

overweight/obese populations with EC. In overweight EC patients

(ECMO Group), the abundance of the Megamonas genus was

abnormally elevated, andthe B/B ratio increased progressively with

obesity severity—a pattern highly consistent with obesity-associated

microbial dysbiosis (10, 28). These findings suggest that gut microbiota

dysregulationmay serve as a critical biological link between obesity and
FIGURE 6

The bacterial taxa with significant differences in abundance across groups.
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EC development (12). In particular, the abundance of Megamonas

exhibits a dose-dependent positive correlation with obesity severity (29,

30). Furthermore, a large-scale metagenomic study of Chinese obese

individuals (n=1,005) by Wu et al. (31) confirmed that Megamonas

enrichment is independently associated with obesity risk (OR=1.78,

95% CI 1.32–2.41). Our study identified its specific enrichment in the

EC overweight/obese cohort, and the covariation betweenMegamonas

abundance, lipid metabolism dysregulation, and estrogen level

abnormalities further supports the potential role of this genus in

obesity-associated EC.

The gut microbiota plays a critical regulatory role in the

pathogenesis of EC through the interaction of its metabolites with

host lipid homeostasis. SCFAs, such as acetate and propionate, inhibit

lipolysis by activating the GPR43 receptor. However, excessively high

concentrations of SCFAs may paradoxically exacerbate obesity by

promoting adipocyte proliferation—via PPARg-mediated lipid

accumulation and AMPK signaling suppression (32, 33).

Metabolomic analysis in this study revealed significant activation of

lipid metabolism pathways (e.g., glycerophospholipid metabolism) in

EC overweight/obese patients, with strong correlations between gut

microbial taxa and host lipid metabolites. Clinical data further

demonstrated that women with a BMI >35 kg/m² had a markedly

elevated EC risk (OR=4.7) (27), and their gut microbiota exhibited an

abnormal B/B ratio, suggesting that microbiota-metabolism axis

dysregulation may foster a pro-carcinogenic microenvironment via
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enhanced lipid absorption, estrogen recirculation, and chronic

inflammation (34). For instance, Megamonas may promote intestinal

lipid absorption through the myo-inositol degradation pathway (PWY-

7237) (29, 30), while depletion of Bacteroidota likely exacerbates

intestinal barrier dysfunction, collectively driving EC progression.

Through LEfSe analysis, this study identified characteristic

bacterial genera in EC overweight/obese patients (Megamonas,

Amedibacillus) and normal-weight EC patients (Klebsiella,

Vescimonas). The Megamonas genus promotes intestinal lipid

absorption and visceral fat accumulation by upregulating iolG

enzyme expression via the myo-inositol degradation pathway (PWY-

7237), thereby inhibiting the function of host fatty acid transport

protein 4 (FATP4). Furthermore, as a b-glucuronidase-positive
bacterium, Megamonas may enhance estrogen enterohepatic

recirculation, synergizing with adipose tissue-derived aromatase

activity to induce hyperestrogenemia. It is worth noting that,the

enrichment of Megamonas showed significant correlations with

serum lipid molecules (e.g., palmitoleic acid, eicosadienoic acid),

suggesting its direct involvement in host lipid homeostasis regulation

through metabolic products (25). Additionally, the positive correlation

between elevated B/B ratio and serum triglyceride levels (r=0.62,

P<0.001) further supports the synergistic effect of microbiota

imbalance and lipid metabolism dysregulation as a hallmark feature

in EC overweight/obese populations (35), providing novel directions

for microbiota-based early diagnostic strategies.
FIGURE 7

(A) illustrates the quantity and classification of secondary differential metabolites detected in the three groups, (B, C) depict the divergent metabolic
profilesbetween groups, (D) presents the KEGG pathway enrichment analysis, confirming the central role of lipid metabolism.
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Zhao et al. (36) further demonstrated that Ruminococcus N15 and

MGS-17—members of the Firmicutes phylum—are significantly

enriched in the gut microbiota of EC patients. Their abundance

showed strong correlations with elevated serum levels of unsaturated

fatty acids, including palmitoleic acid (C16:1) and arachidonic acid

(C20:2). This finding posits that specific bacterial taxa may directly

contribute to EC progression through lipid metabolic reprogramming.

The synergistic interaction between Ruminococcus and serum

metabolites (triglycerides, TG; low-density lipoprotein, LDL)

demonstrates significant iagnosticvalue (37). Mechanistically,

Ruminococcus activates pro-carcinogenic signaling pathways by

modulating host unsaturated fatty acid metabolism (e.g.,

eicosapentaenoic acid, EPA). Clinically, its abundance is positively

correlated with serum TG levels (Pearson’s r = 0.58, P < 0.001) and

negatively correlated with high-density lipoprotein (HDL), suggesting

its dual role in lipid dysregulation and oncogenic microenvironment

formation. Furthermore, the local accumulation of fatty acids such as

C16:1 (palmitoleic acid) and C18:1 (oleic acid) in EC tumor tissues,

coupled with high TG-driven elevation of estrogen levels, further

corroborates the mechanistic link by which gut dysbiosis exacerbates

EC risk through a “lipid metabolism-estrogen” cascade.

This study reveals the critical role of gut microbiota dysbiosis in the

development of overweight/obesity-associated EC. The findings

demonstrate that gut microbiota imbalance—characterized by

abnormal enrichment of the Megamonas genus and an elevated B/B
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ratio—synergistically promotes EC progression by mediating lipid

metabolism disorders (e.g., dysregulated glycerophospholipid

metabolism, elevated serum triglyceride levels) and fostering a

chronic inflammatory microenvironment. Notably, the strong

correlation between microbial biomarkers (e.g., Megamonas) and host

metabolic phenotypes (obesity severity, estrogen levels) highlights their

potential as early diagnostic targets. For therapeutic interventions,

probiotic supplementation may restore metabolic homeostasis and

suppress inflammation by remodeling gut microbiota composition,

while microbial metabolites such as SCFAs could indirectly reduce EC

risk by enhancing intestinal barrier integrity and modulating immune

microenvironments. Future research should integrate multi-omics data

to explore precision strategies targeting the microbiota-metabolism axis

(e.g., Megamonas-specific modulation or SCFA supplementation) and

validate their long-term efficacy in reducing obesity-related EC

incidence through multi-center clinical cohorts.
5 Limitations of the study

Although this study provides valuable insights into the impact of

gut microbiota and lipid metabolism on the progression of EC in

overweight individuals, there are still some shortcomings in both the

interpretation of the results and the study design. First, the sample size

of this study is relatively small, which somewhat limits the statistical
FIGURE 8

The Spearman correlations between bacterial genera and metabolites in the ECMO group.
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power of the results. This limitation may hinder the study’s ability to

fully demonstrate the true clinical effects when exploring the complex

relationship between gut microbiota, lipid metabolism, and EC.

Therefore, to improve the reliability and generalizability of the

findings, future research should consider increasing the sample size

and adopting a multi-center study design to enhance the external

validity of the results, minimizing potential biases related to regional

differences or population characteristics. Additionally, while this study

investigates the impact of gut microbiota and lipid metabolism on the

progression of endometrial cancer, the analysis of the underlying

mechanisms remains somewhat superficial. The article mentions that

gut dysbiosis might contribute to tumor progression by affecting

intestinal permeability, immune response, and other pathways.

However, it does not provide a detailed explanation of how these

mechanisms might influence the occurrence and development of EC at

the molecular level through specific signaling pathways, such as MAPK,

PI3K/Akt, and others. A deeper understanding of these mechanisms

could help elucidate the causal relationship between gut microbiota,

lipid metabolism, and EC. Moreover, the study did not fully address the

potential limitations related to diet, which is a crucial factor in

influencing gut microbiota composition and metabolism. The diet of

participants was not adequately controlled, and this may have

introduced variability in the results. As dietary habits can significantly

affect gut microbiota diversity and metabolic pathways, it is important

for future studies to consider the impact of diet more thoroughly.

Integrating dietary influences into the research framework could help

mitigate bias and provide a more accurate understanding of the

relationship between gut microbiota, lipid metabolism, and EC.

Future research could incorporate multi-dimensional data analysis,

combining specific microbiota changes with host metabolism and

immune responses, and taking diet into account, to explore the

mechanisms in a more comprehensive and multi-layered manner.

This approach would provide a more robust and detailed explanation

of the mechanisms involved in EC progression.
6 Conclusion

This study reveals the critical interplay between gut microbiota

dysbiosis (e.g., Megamonas enrichment) and lipid dysregulation in

driving EC progression in overweight individuals. Specifically, the

enrichment of Megamonas—a key microbial biomarker—exhibits

strong correlations with tumor advancement and host metabolic

disturbances. Mechanistically, Megamonas promotes lipid metabolic

reprogramming (e.g., disrupted glycerophospholipid metabolism and

elevated triglycerides) and fosters a chronic inflammatory

microenvironment through TLR4/NF-kB signaling, thereby

accelerating EC pathogenesis. Clinically, Megamonas-associated

metabolites (e.g., palmitoleic acid) correlate with obesity severity and

hyperestrogenemia, highlighting their dual diagnostic and therapeutic

potential. Future research should prioritize multi-omics approaches to

develop precision therapies targeting the microbiota-metabolism axis

and validate their efficacy in large-scale clinical trials.
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