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Background: Diabetic nephropathy (DN) is a frequent and serious microvascular

complication of diabetes. PANoptosis is a novel mode of cell death that

encompasses apoptosis, necrosis and pyroptosis. However, effective

PANoptosis-related biomarkers for DN are currently lacking. Therefore, this

study aimed to elucidate the role of PANoptosis-related genes (PRGs) in the

development of DN and their potential as diagnostic markers of DN, as well as

their association with immune cell infiltration.

Materials andmethods:We retrieved the DN-related dataset GSE30122 from the

GEO database. Then differentially expressed genes (DEGs) were identified and

DEGs were analyzed for functional enrichment. In addition, we obtained key

gene modules by WGCNA. Subsequently, we gained the intersecting genes of

DEGs, key gene modules and PRGs. Four algorithms were further used to screen

the key DE-PRGs in DN (DNDE-PRGs). We also investigated the biological

functions of the key DNDE-PRGs by GSEA software. Furthermore, we analyzed

the immune infiltration of DN tissues. The correlation of key genes with

glomerular filtration rate (GFR) and blood urea nitrogen (BUN) was also

examined. Finally, key genes were validated using clinical samples and db/

db mice.

Results: We identified two key DNDE-PRGs (AKT3 and FYN). They showed good

diagnostic value in the DN. And they were associated with immune cell

infiltration. In addition, they have a correlation with GFR and BUN. Finally, they

were validated in clinical samples and animal experiments.

Conclusion: AKT3 and FYN may be good PANoptosis-related biomarkers in DN.

This provides new insights into the pathogenesis of DN.
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1 Introduction

The prevalence of diabetes mellitus (DM) which is characterized by

abnormally high blood glucose levels, is growing every year as the

standard of living improves and global aging increases (1). There are

approximately 537 million people with DM worldwide in 2021,

representing 10.5% of the total global population (2). Diabetic

nephropathy (DN) is one of the common microvascular

complications of DM, as well as one of the leading causes of end-

stage renal disease (3). Renal failure seriously affects the quality of life of

patients and even threatens their lives and brings about psychological

problems such as anxiety and depression. The development of DN is

closely related to a persistent hyperglycemic state. Chronic

hyperglycemia can lead to sclerosis of the vessel walls within the

kidneys and an increased risk of cardiovascular diseases, which puts

enormous economic pressure on individuals, families and society (4).

Current treatment of DN relies heavily on the regulation of blood

glucose, blood pressure, lipids, and the application of angiotensin-

converting enzyme inhibitors, which have been effective in stopping the

disease progression of DN (5). However, not all patients are well treated

due to individual variability, difficulties in early diagnosis of DN and

drug side effects (6). Currently, clinical diagnosis of DN still depends on

the level of proteinuria, but this approach still has some false negatives

(7, 8). Therefore, biomarkers for the early diagnosis of DN must be

sought to facilitate early detection and intervention of DN.

PANoptosis was first proposed in 2019 by American scholars

Malireddi et al. It involves all three modes of programmed cell death

(PCD) simultaneously: pyroptosis, apoptosis, and necrosis (9).

PANoptosis is activated by multiple signaling stimuli (e.g., DNA

damage and oxidative stress), and the formation of PANoptosome

initiates the entire process, leading to cell death (10). In recent years,

many studies have reported the role of PANoptosis in many diseases,

including infectious diseases, tumors, and cardiovascular diseases (10).

In addition, the effect of PANoptosis in a variety of renal diseases is

becoming clearer. High expression of PANoptosis is positively related to

renal injury, and inhibition of the formation of PANoptosome helps to

reduce renal injury (11). In renal tumors, PANoptosis has the potential

to determine their prognosis (11). In hyperglycemic environments,

PANoptosis integrates apoptosis, pyroptosis, and necroptosis through

PANoptosome assembly, triggering synergistic inflammatory cascades,

oxidative stress amplification, and tubulointerstitial fibrosis—key drivers

of DN progression (12, 13). However, the role of PANoptosis-related

genes (PRGs) in DN remains largely unknown. The infiltration of

immune cells is an important factor in the development of DN. The

accumulation of multiplemyeloid cells in the kidney is closely associated

with renal inflammation and injury (14).
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In the present study, we performed bioinformatics analysis

aiming to identify differentially expressed PRGs in DN (DNDE-

PRGs) and screened key DNDE-PRGs using multiple algorithms.

Further, we validated the expression of key DNDE-PRGs by clinical

samples and in vivo experiments. In addition, we explored the

relationship between key DNDE-PRGs and immune cell

infiltration. In summary, key DNDE-PRGs may be useful for the

early diagnosis and treatment of DN. The specific flow chart of the

study is presented in Supplementary Figure S1.
2 Materials and methods

2.1 Acquisition of datasets and PRGs

The GEO (Gene Exp r e s s i on Omn ibu s , h t t p s : / /

www.ncbi.nlm.nih.gov/geo/) database (15) was searched with the

keywords “Diabetic nephropathy” or “Diabetic kidney disease” to obtain

DN-related datasets. The selection criteria were as follows: 1. the species

was Homo sapiens, 2. all samples were glomerular tissues, and 3. the

samples contained both DN glomerular tissues and normal control

glomerular tissues (NC). After excluding the tubular tissues, we finally

chose three datasets, GSE30122, GSE30528, and GSE96804, as the data

sources for analysis in this study. Their chip platforms were GPL571,

GPL571 andGPL17586, respectively (Table 1). GSE30122 as the training

set and the other two as the validation cohort. There were 930 PRGs

obtained from previous reports (16) (Supplementary Table S1).
2.2 Preprocessing of GSE30122 and
identification of differentially expressed
genes

We carried out residue completion, background correction and

normalization of GSE30122 with the “limma” package (17). And

principal component analysis (PCA) was performed on GSE30122

before and after normalization. Then we filtered out the differentially

expressed genes in DN (DEGs). The criteria for screening were set as

corrected p < 0.05 and ┃log2FoldChange┃ > 1.
2.3 Enrichment analysis of DEGs

GO analysis can characterize genes and their product functions.

While KEGG analysis can link genes to numerous metabolic pathways,

resulting in a more comprehensive understanding of biological system
TABLE 1 Details of the datasets included in this study.

Dataset Platform Species Tissue
Number of cases

and controls
Type

of cohortts

GSE30122 GPL571

Homo sapiens
Glomerular

tissues

9 DN/26NC Training

GSE30528 GPL571 9 DN/13NC Validating

GSE96804 GPL17586 41DN/20 NC Validating
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function. The enrichment analysis described above was realized

through the Metascape website (https://metascape.org/) (18).
2.4 Identification of DN key gene modules

In order to identify the key gene modules of DN, we performed

weighted gene co-expression network analysis using the “WGCNA”

package (19). Based on the scale free topology model fit (R2 > 0.85), the

optimum soft threshold (b) is firstly computed via the “pickThreshold”

function. Then the gene module clustering tree was plotted and gene

modules with block spacing less than 0.3 were merged. Finally,

Pearson’s correlation coefficients (R) were calculated for every module

with the clinical features of DN, thus identifying the key gene modules.
2.5 Identification of DNDE-PRGs

We took the intersection of DEGs, key gene modules and PRGs

to obtain DNDE-PRGs. We then visualized the expression of

DNDE-PRGs in the DN and NC groups using heatmap.
2.6 Identification of key DNDE-PRGs by
multiple algorithms

The DNDE-PRGs were uploaded to the STRING database

(https://cn.string-db.org/) (20), the minimum contribution score

was set to 0.4, and the PPI network was plotted. Then visualize it with

Cytoscape software (version 3.9.1) (21). The top 9 genes in terms of

importance were acquired using both the maximal clique centrality

(MCC) and maximum neighborhood component (MNC) algorithms

of Cytoscape. The least absolute shrinkage and selection operator

(LASSO) regression is a linear regression method for feature

selection by adding an L1 regularization term to the loss function,

which induces sparsification of the model coefficients, and is suitable

for high-dimensional data analysis (22). The support vector machine-

recursive feature elimination (SVM-RFE) is a feature selection method,

based on the support vector machine (SVM) model, that progressively

filters out the most important features by recursively removing the

features that have the least impact on classification performance (23).

The overlapping genes of the above four algorithms are the key DNDE-

PRGs we need.
2.7 Diagnostic efficacy assessment and
validation of key DNDE-PRGs

The diagnostic efficacy of the key DNDE-PRGs for DN was

evaluated by plotting violin plots and receiver operating

characteristic (ROC) curves from the training and validation

cohorts. The ROC curves evaluate diagnostic efficacy by the area

under the curve (AUC). The AUC of 0.7-0.8 is regarded as good;

0.8-0.9 is regarded as excellent; and more than 0.9 is regarded as

outstanding. The two-sample t-test was applied to compare gene

expression levels between the DN and NC groups.
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2.8 Clinical samples validate expression of
key DNDE-PRGs

2.8.1 Samples collection
The renal puncture samples were acquired from 16 DN patients.

The adjacent tissues of 28 renal carcinoma/renal cyst served as a

control group (Control). We also collected gender, age, and relevant

clinical and laboratory indicators for all participants (Table 2).

2.8.2 Immunofluorescence (IF) staining
Tissue samples were first fixed and sectioned, then the fixative

was removed and the non-specific binding sites were closed by a

blocking solution. Next, a primary antibody (AKT3: ab152157,

abcam; FYN: ab184276, abcam) was added to bind to the target

antigen, incubated and washed to remove unbound primary

antibody. Subsequently, fluorescently labeled secondary antibody

(IgG, SA00001-15, proteintech) were added and incubation was

continued and washed to remove unbound secondary antibodies.

Finally, staining was performed and fluorescence signals were

observed using a fluorescence microscope to achieve detection

and localization of the target antigen.
2.8.3 Real-time quantitative reverse transcription
polymerase chain reaction (RT-qPCR)

First, total RNA was extracted from tissue samples using an RNA

extraction kit. Then, RNA was reverse transcribed to cDNA with

reverse transcriptase. Next, specific primers and fluorescent probes

were used for real-time quantitative PCR reactions. During PCR
TABLE 2 Clinical traits of control and DN patients.

Clinical traits* Control (n = 28) DN (n = 16)

Sex, male/female 18/10 10/6

Age (year) 54.6 ± 12.5 52.6 ± 11.0

Duration (year) NA 10.63 ± 7.29

Body weight (kg) 60.9 ± 11.2 61.2 ± 10.1

Height (cm) 161.7 ± 10.5 160.9 ± 9.8

BMI (kg/m2) 23.8 ± 3.56 22.9 ± 4.57

FBG (mmol/L) 5.4 ± 0.6 6.7 ± 2.2##

Hemoglobin (g/L) 132 ± 19 128 ± 18

Albumin (g/L) 46 ± 2 39 ± 3#

HbA1c (%) NA 8.5 ± 3.0

HbA1c (mmol/mol) NA 69 ± 9

CKD-EPI (ml/min/1.73m2) 93.1 ± 20.9 80.3 ± 27.5

Serum creatinine (mmol/L) 70 ± 22 100 ± 48

UAE (mg/day) 10.6 ± 7.0 1025 ± 543###

BUN (mmol/L) 5.4 ± 1.7 6.0 ± 1.9
*DN, diabetic nephropathy; BMI, body mass index; FBG, fasting blood glucose; CKD-EPI,
chronic kidney disease epidemiology collaboration equations estimate glomerular filtration
rate; UAE, urinary albumin excretion; BUN, blood urea nitrogen; NA, not available; #P<0.05
vs. control group; ##P<0.01 vs. control group; ###P<0.001 vs. control group.
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amplification, fluorescent signals were monitored in real time to reflect

the amount of target gene amplification by changes in fluorescence

intensity. The accumulation of fluorescent signal during each cycle was

proportional to the initial expression of the target gene. Finally, by

analyzing the cycling threshold (Ct value) of the fluorescence signal, the

relative expression level of the target gene in the tissue can be

quantified. The housekeeping gene GAPDH was applied to

normalize target genes’ CT value. The primer sequences for this

section are presented in Table 3.
2.9 Correlation analysis of key DNDE-PRGs
with clinical traits of DN

The Nephroseq v5 database (http://v5.nephroseq.org/) (24)

contains clinical and gene expression data for a wide range of

renal diseases. We analyzed Pearson correlations between key

DNDE-PRGs and clinical traits of DN.
2.10 Immune infiltration analysis

Cibersort (https://cibersortx.stanford.edu/) (25) is a method for

analyzing immune cell infiltration using an inverse convolution

algorithm. It uses gene expression signatures of specific immune cell

types to infer the relative abundance of different immune cells in a

sample. It compares the overall gene expression data of the sample with

known gene expression profiles of immune cells to quantitatively infer

the proportion of each type of immune cell (e.g., T cells, B cells,

macrophages, etc.) in the sample. In addition, we analyzed the Pearson

correlation of key DNDE-PRGs with immune-infiltrating cells, with

┃R┃ ≥ 0.6 and p < 0.05 representing statistical significance.
2.11 Gene set enrichment analysis (GSEA)
of key DNDE-PRGs

SEA is a method for evaluating significant enrichment in gene

expression data by gene sets. The principle is to rank all genes in terms

of their expression differences, and then evaluate the enrichment of a

predefined set of genes in the ranked list to determine whether the set is

significantly different between the experimental group and the control

group. The benefit of GSEA is the ability to identify signals that may

not be significant at the level of individual genes but are biologically

important at the level of sets of genes, thus helping to reveal underlying

biological processes and mechanisms, and is particularly suited to the

analysis of complex biological systems (26).
2.12 Construction of an interaction
network of key DNDE-PRGs with
PANoptosis marker genes

We subsequently constructed an interaction network between

key DNDE-PRGs and some previously reported PANoptosis

marker proteins in the STRING database (https://cn.string-
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db.org/) (20). This manipulation was utilized to enhance the link

between key DNDE-PRGs and PANoptosis. PANoptosis marker

genes sourced from references (27–34).
2.13 Animal experiments validate key
DNDE-PRGs

2.13.1 Animal selection & grouping
Six-week-aged db/m and db/db mice were purchased from

Shanghai SLAC Co. The db/db mouse is the commonly used model

of spontaneous DN, while the db/m mouse is commonly used as its

control. Divide them into db/m group (n=6) and db/db group (n=6).

Mice were housed in individual metabolic cages for 24h urine collection

every two weeks. Urine was stored at -80°C for further analysis. Mice

were sacrificed at 12th week. Kidney and blood samples were collected

under anesthesia, and stored at -80°C for further analysis.
2.13.2 Measurement of relevant biochemical
indicators

The Glucose Assay Kit (S0201M, Beyotime) was utilized to

measure fasting blood glucose (FBG) concentration in each mouse.

Urinary albumin levels were quantified using a mouse albumin-

specific ELISA kit (ab108792, Abcam). Urinary albumin excretion

(UAE) was calculated as urinary albuminuria (mg/mL) ✖ urine

volume (mL)/24h. Urea Assay Kit (C013-2-1, Nanjing Jiancheng

Bioengineering Institut) was designed to detect blood urea nitrogen

(BUN) levels.
2.13.3 Periodic acid-Schiff staining
Tissue sections were first deparaffinized and hydrated, followed

by oxidation of the carbohydrate in the sections with periodic acid.

Subsequently, the sections were stained with Schiff’s reagent, with

the reaction of the carbohydrates with Schiff’s reagent producing a

purplish or dark red complex. This is followed by contrast staining

using hematoxylin, which gives a blue color to the nuclei, and finally

by gradient alcohol dehydration, xylene clearing and sealing the

sections with neutral resin.
2.13.4 Masson staining
The tissue sections were first deparaffinized and hydrated, then

stained with Regaud’s hematoxylin stain. Next, they are stained with

acidic magenta and then treated with phosphomolybdic acid

solution to remove excess magenta. Finally, the collagen fibers

were stained blue with gentian violet stain. After dehydration,

clearing and sealing, Masson staining was completed.

IF staining and RT-qPCR steps were as in 2.8. The primers

sequences used in this section are presented in Table 3.
2.14 Statistical analysis

All the above analyses were performed in R software (version

4.4.3). Differences between the two samples were processed using
frontiersin.org
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GraphPad Prism 10 software and compared using the student’s

t test. The data with p < 0.05 were deemed significant.
3 Results

3.1 Identification of DEGs

The PCA results showed that the normalized GSE30122 intra-

group gap was significantly reduced, which facilitated the

subsequent analysis (Supplementary Figure S2). A total of 505

DEGs were screened according to the previously described

screening criteria, of which 112 were up-regulated genes and 393

were down-regulated genes. The DEGs were visualized utilizing a

volcano plot. (Figure 1A). The heatmap showed the 10 up-regulated

genes and 10 down-regulated genes with the most significant

differences (Figure 1B).
3.2 Functional enrichment analysis of DEGs

To probe the DEGs-related biological functions, GO and KEGG

enrichment analyses were conducted for up-regulated DEGs and

down-regulated DEGs. GO analysis indicated that up-regulated

DEGs were participated in multiple immune and inflammatory

responses, including humoral immune response, leukocyte

activation, and inflammatory response (Figure 1C). While KEGG

analysis revealed that up-regulated DEGs were most significantly

enriched in phagosome (Figure 1D). GO terms for down-regulated

DEGs include vascular development, kidney development, and

enzyme-linked receptor protein signaling pathways (Figure 1E).

In addition, they also engage in the PI3K-Akt signaling pathway

(Figure 1F). In general, DEGs have abundant biological functions.
Frontiers in Endocrinology 05
3.3 Acquisition of key gene modules

We found that b = 24 when R2 = 0.85 (Supplementary Figure S3A).

A total of 9 modules were obtained after merging the gene modules

(Supplementary Figure S3B). The blue module showed the strongest

positive correlation with the DN clinical phenotype (R = 0.73); while

the turquoise module exhibited the strongest negative correlation with

the DN clinical phenotype (R = -0.92) (Figures 1G, H). Therefore, the

blue and turquoise modules were regarded as key gene modules.
3.4 Identification of key DNDE-PRGs

The 24 overlapping genes of DEGs, key gene modules and PRGs

are the DNDE-PRGs (Figure 2A). These include 6 up-regulated genes

and 18 down-regulated genes (Figure 2B). Figure 2C displayed their

PPI networks, with red representing up-regulated genes and cyan

representing down-regulated genes. Figure 2D and Figure 2E illustrate

the top 9 genes in terms of importance obtained by theMCC algorithm

and the MNC algorithm. To improve the accuracy of screening key

DNDE-PRGs, we further applied LASSO regression (Figures 2F, G)

and SVM-RFE (Figure 2H) machine learning algorithms. After

combining the four algorithms, we get two key DNDE-PRGs,

namely AKT3 and FYN (Figure 2I). The DNDE-PRGs identified by

the four algorithms are illustrated in Table 4.
3.5 ROC analysis and validation of key
DNDE-PRGs

In order to test the accuracy of the above algorithms and the

diagnostic efficacy of key DNDE-PRGs for DN, we carried out ROC

and key gene expression analyses. We found that the key DNDE-

PRGs were down-regulated in both the validation and training sets

(Figures 3A-C). In addition, ROC analysis indicated that the key

DNDE-PRGs had a good diagnostic value for DN, as demonstrated

by the AUC > 0.5 (Figures 3D-F). Both IF staining and RT-qPCR

results of kidney samples indicated decreased expression of AKT3

and FYN in DN (Figures 3G-J). This strongly supports the accuracy

of our bioinformatics analysis results. These results suggest that

AKT3 and FYN may be potentially good biomarkers for DN.
3.6 Correlation analysis between key
DNDE-PRGs and clinical traits

In the Nephroseq v5 database, we detected that the expression of

AKT3 and FYN in DN group was significantly lower than that in NC

group (Figures 4A, B). Interestingly, key DNDE-PRGs were positively

correlated with glomerular filtration rate (GFR) (AKT3, r = 0.31; FYN,

r = 0.51); and negatively correlated with blood urea nitrogen (BUN)

(AKT3, r = -0.22; FYN, r = -0.28) (Figures 4C-F). This may suggest that

decreased expression of key DNDE-PRGs favors DN progression.
TABLE 3 The primers sequences used in this study.

Gene names Primers sequences (5’→3’)

GAPDH-F (human) GCACCGTCAAGGCTGAGAAC

GAPDH-R (human) TGGTGAAGACGCCAGTGGA

AKT3-F (human) TGTGGATTTACCTTATCCCCTCA

AKT3-R (human) GTTTGGCTTTGGTCGTTCTGT

FYN-F (human) ATGGGCTGTGTGCAATGTAAG

FYN-R (human) GAAGCTGGGGTAGTGCTGAG

GAPDH-F (mouse) AGGTCGGTGTGAACGGATTTG

GAPDH-R (mouse) TGTAGACCATGTAGTTGAGGTCA

AKT3-F (mouse) TGGGTTCAGAAGAGGGGAGAA

AKT3-R (mouse) AGGGGATAAGGTAAGTCCACATC

FYN-F (mouse) ACCTCCATCCCGAACTACAAC

FYN-R (mouse) CGCCACAAACAGTGTCACTC
frontiersin.org

https://doi.org/10.3389/fendo.2025.1610882
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2025.1610882
FIGURE 1

Identification and enrichment analysis of DEGs, and WGCNA analysis. (A) Volcano plot displayed 505 DEGs in DN, including 112 up-regulated genes
and 393 down-regulated genes. (B) The heatmap showed the 10 up-regulated genes and 10 down-regulated genes with the most significant
differences. (C, D) GO (left) and KEGG (right) enrichment analysis of up-regulated DEGs. (E, F) GO (left) and KEGG (right) enrichment analysis of
down-regulated DEGs. (G) Correlation heatmap of each module with clinical phenotypes of DN. (H) Scatterplot of correlation between key gene
module membership and gene significance.
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FIGURE 2

Identification of key DNDE-PRGs. (A) Venn diagram showed overlapping genes in DEGs, key gene modules and PRGs. (B) Heatmap revealed the
distribution of the 24 DNDE-PRGs in the DN and NC groups. (C) Protein-protein interaction network of DNDE-PRGs, with red representing up-
regulated genes and cyan representing down-regulated genes. (D, E) The top 9 genes in terms of importance obtained by the MCC algorithm (left)
and the MNC algorithm (right). (F, G) LASSO regression analysis. (H) SVM-RFE machine learning algorithm. (I) Key DNDE-PRGs (AKT3 and FYN)
derived from the four algorithms.
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3.7 Analysis of immune cell infiltration

The Cibersort algorithm calculated the relative abundance of

22 immune cells in each sample (Figures 5A, C). Positive

correlations were observed between resting CD4+ T memory cells

and M1 macrophages (r = 0.64), resting and activated dendritic

cells (r = 0.62), as well as naive B cells and resting CD4+ T memory
Frontiers in Endocrinology 08
cells (r = 0.61) (Figure 5B). Notably, five immune cells were

significantly different in the DN and NC groups (p < 0.05).

Expanding on this is that naive CD4+ T cells, gdT cells, M2

macrophages, and resting mast cells were more abundantly

expressed in DN. In contrast, naive B cells were less expressed in

DN (Figure 5D). Pearson correlation was further applied to detect

the correlation between key DNDE-PRGs and immune cells. The

AKT3 was negatively correlated with naive CD4+ T cells (r = -0.66)

as well as resting mast cells (r = -0.68). And FYN was negatively

correlated with M2 macrophages (r = -0.60) (Figures 5E, F).
3.8 Signaling pathways of key DNDE-PRGs

The DN patients were categorized into high and low expression

groups based on the median expression values of key genes. Then

GSEA analysis was performed. To our surprise, glycosaminoglycan

biosynthesis keratan sulfate, adherens junction and TGF-b
signaling pathways were common signaling pathways enriched in

the AKT3 and FYN high-expression groups (Figures 6A, B). All of

these pathways are inextricably linked to the development of

diabetes and its associated complications (35–37).
TABLE 4 Key DNDE-PRGs obtained by the four algorithms.

Algorithm
names

Gene symbol
Overlapping
genes

MCC
DCN, WT1, SNCA, GADD45A, FYN,
AKT3, CDKN1B, ANXA1, PDGFRB

AKT3
FYN

MNC
SFN, PDGFRB, WT1, AKT3, FYN,
DCN, GADD45A, CDKN1B, VEGFA

LASSO
GZMA, F2R, BMP2, AKT3, FYN,
ANXA1, RASGRP1

SVM-RFE

FYN, DCN, CDKN1B, VIM, BMP2,
SNCA, PDGFRB, VEGFA, BCL2L2,
PEA15, WT1, F2R, ETS2, GADD45B,
AKT3, PYCARD,
FIGURE 3

External datasets and clinical sample validation for key DNDE-PRGs. (A–C) Violin plots illustrated the expression of key DNDE-PRGs in the training
and validation sets. (D–F) ROC analysis of key DNDE-PRGs in training and validation sets. (G–H) IF staining results (up) and relative fluorescence
intensity (down) of key genes in clinical kidney tissue samples. (I) The relative mRNA expression levels of key DNDE-PRGs in clinical renal tissue
samples. (J) The ROC curve was plotted based on RT-qPCR results. *** represents p < 0.001; **** represents p < 0.0001. Scale: 50 mm.
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3.9 Association of key DNDE-PRGs with
PANoptosis

Our constructed interaction network displayed that both AKT3

and FYN were connected to CASP3, which implied that the key

DNDE-PRGs might be involved in PANoptosis by regulating the

expression of CASP3 (Supplementary Figure S4). At the same time,

this also provides a direction for our follow-up study.
3.10 Verification of the expression of key
DNDE-PRGs by animal experiments

We observed that FBG, UAE, and BUN levels were significantly

higher in the db/db group than in the db/m group (Figures 7A-C).

PAS and Masson staining suggested glomerular atrophy, obvious

inflammatory cell infiltration and fibrous tissue proliferation

(Figure 7D). These strongly support the successful construction of

the DN mouse model. IF staining suggested that AKT3 and FYN

were predominantly expressed in glomeruli in the db/m group and

were significantly higher than in the db/db group (Figures 7E, F).

RT-qPCR results were consistent with IF staining (Figure 7G).
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4 Discussion

DM is a globally prevalent metabolic disease that is usually

associated with multiple complications. DN, as one of its typical

microvascular complications, is an important part of renal failure. It

is vital to explore the pathogenesis of DN and develop new

treatments. There is growing evidence of the importance of

multiple cell death patterns in the pathogenesis of DN (38–40).

Whereas PANoptosis is an emerging PCD, its role in DN is

still unknown.

PANoptosis is a novel PCD that has now been demonstrated to

be engaged in the onset and progression of neurological disorders,

inflammatory diseases and other diseases (41, 42). PANoptosis

includes apoptosis, necrosis, and pyroptosis (9). Apoptosis is

hyperactivated in the context of DN. Excessive apoptosis and

pyroptosis of podocytes leading to low numbers has been

established as an important mechanism in the development of

DN (43). Inhibition of podocyte apoptosis and pyroptosis

significantly ameliorates renal injury and reduces urinary albumin

levels in a mouse model of DN (44, 45). In addition, hyperglycemia

may trigger tubular necrosis to promote the development of DN

(46). In the context of diabetes, cellular oxidative stress,
FIGURE 4

Correlation analysis of key DNDE-PRGs with clinical traits of DN. (A, B) Expression levels of key DNDE-PRGs in the DN and NC groups in the
Nephroseq v5 database. (C, D) Pearson correlation of key DNDE-PRGs with glomerular filtration rate. (E, F) Pearson correlation of key DNDE-PRGs
with blood urea nitrogen.
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inflammatory responses, and abnormal signaling pathway

activation may disrupt the normal regulation of PANoptosis (47).

The aberrant activation of PANoptosis in turn further promotes the

persistence of inflammation, thus creating a vicious cycle and

exacerbating the development of diabetes and its complications

(13). Given the above evidence, we conjecture that PANoptosis is

also closely related to the development of DN.

In this study, we identified DEGs in DN using GSE30122 and

analyzed them for functional enrichment. WGCNA produced two

key gene modules for DN. The overlap of DEGs, key gene modules

and PRGs then generated 24 DE-PRGs. Subsequently, we identified

two key DNDE-PRGs (AKT3 and FYN) by MCC algorithm, MNC

algorithm, LASSO regression and SVM-RFE machine learning

methods. GSEA enrichment analysis revealed that the common

enr i chmen t pa thway s f o r AKT3 and FYN inc lude

glycosaminoglycan biosynthesis keratan sulfate, adherens junction

and TGF-b signaling pathways. Immune infiltration analysis

showed that DN has a dysregulated immune microenvironment

and that key DNDE-PRGs correlate with immune cell infiltration.

ROC analysis suggested that key genes are of high value for the

diagnosis of DN. Moreover, the key genes are correlated with the

clinical traits of DN. Finally, the expression of key DNDE-PEGs was

validated by clinical samples and animal experiments. To our
Frontiers in Endocrinology 10
knowledge, this is the first study on screening and validating key

PRGs in DN.

AKT3 (AKT Serine/Threonine Kinase 3) is a member of the

AKT family. It is widely involved in cell growth, proliferation,

survival and metabolism, as well as being an important mediator in

the regulation of inflammatory and immune responses (48, 49). The

AKT signaling pathway and its associated molecules have been

considered to exert a critical function in the progression of DN (50–

52). For example, AKT3 regulated by the circ_0037128/miR-17-3p

axis promotes glomerular cell proliferation, fibrosis, inflammation,

and oxidative stress, which in turn favors DN (53). Knockdown of

AKT3 effectively attenuated high glucose-induced mesangial cell

injury and blood glucose and UAE levels in DN mice (54). Notably,

as a core component of the PI3K-AKT pathway, AKT3 interacts

with key regulators including stimulator of interferon genes

(STING) and phosphatase and tensin homolog (PTEN). STING-

mediated inflammation has been implicated in renal tubular injury

and fibrosis, while PTEN deficiency exacerbates DN progression

through AKT hyperactivation (55, 56). These interactions may

constitute additional molecular mechanisms through which AKT3

dysregulation contributes to DN pathogenesis. In addition, Zhang

et al. found that Esculentoside H could alleviate PANoptosis and

protect the blood-brain barrier through activation of the TLE1/
FIGURE 5

Analysis of immune infiltration in DN renal tissue. (A) Relative abundance of 22 immune cells in each sample of GSE30122. (B) Correlation analysis of
immune cells. (C) Heatmap showed the relative expression levels of 22 immune cells in the DN and NC groups. (D) Violin plots displayed the
difference in expression of 22 immune cells between the DN and NC groups. p<0.05 represents statistically significant. (E) Correlation analysis of key
DNDE-PRGs with immune cell infiltration. (F) Scatterplots of correlation between key DNDE-PRGs and immune cell infiltration.
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PI3K/AKT signaling pathway in the context of cerebral ischemia/

reperfusion (57). Meanwhile, Yang et al. observed that Dachaihu

decoction inhibited PANoptosis through inhibiting the PI3K/AKT/

NF-kB pathway, thereby attenuating sepsis-induced acute lung

injury (58). However, direct evidence of the relationship between

AKT3 and PANoptosis in the context of DN is still lacking.

FYN is a member of src family tyrosine kinase. The role of FYN

in tumorigenesis has been extensively studied and has been

demonstrated to promote tumor cell growth and migration (59,

60). DN mice with deficient FYN expression display reduced levels

of renal oxidative stress and reduced matrix deposition (61).

Nuclear receptor coactivator 3 (NCOA3) deficiency has been

reported to drive podocyte damage in DN mice. While inhibition
Frontiers in Endocrinology 11
of FYN rescued this driving effect (62). FYN can activate NLRP3

inflammatory vesicles and amplify inflammation in Parkinson’s

disease (63). In addition, the low expression of FYN favors the

occurrence of autophagy in renal cells, which plays a protective role

against DN (64, 65). However, there is a lack of reports on FYN and

PANoptosis in the course of DN. Interestingly, while TEA domain

transcription factor 1(TEAD1, a transcriptional regulator in the

Hippo pathway) was not identified in our DNDE-PRGs screening,

recent work demonstrates its critical role in driving necroptosis and

inflammation in kidney injury via RIPK3-dependent signaling (66).

Though mechanistically distinct from PANoptosis, TEAD1-

mediated necroptosis may synergize with pyroptosis/apoptosis

pathways in DN progression. Future studies should explore
FIGURE 6

Identification of relevant pathways for key DNDE-PRGs. (A) GSEA enrichment analysis of AKT3. (B) GSEA enrichment analysis of FYN.
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crosstalk between TEAD1 and PANoptosis regulators (e.g., ZBP1,

NLRP3) in DN.

The pathogenesis of DN is intricately related to immune cell

infiltration, with macrophage polarization playing a critical role in

driving renal inflammation and fibrosis (67). Our data and recent

studies indicate that: M1 macrophages predominate in the early stages
Frontiers in Endocrinology 12
of DN and exacerbate podocyte injury through the production of pro-

inflammatory cytokines (TNF-a, IL-1b) (68, 69). M2 macrophages are

commonly attributed with anti-inflammatory effects (70). M2

macrophage polarization effectively attenuates DN kidney injury (70,

71). This action is linked to a reduction in the secretion of several pro-

inflammatory cytokines and pro-fibrotic proteins (72, 73). Macrophage
FIGURE 7

The expression of key DNDE-PRGs was verified by in vivo experiments. (A–C) Fasting blood glucose, urinary albumin excretion (UAE) and blood urea
nitrogen (BUN) levels in db/m and db/db group mice. (D) PAS staining and Masson staining in db/m and db/db group mice. (E, F) IF staining and
relative fluorescence intensity of key DNDE-PRGs in db/db group mice. (G) The relative mRNA expression levels of key DNDE-PRGs. **** represents
p < 0.0001. Scale: 50 mm.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1610882
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2025.1610882
plasticity allows for phenotypic switching according to the renal

microenvironment. The hyperglycemic environment may maintain

M1 polarization through overproduction of reactive oxygen species

(74). As DN progresses it may drive M2 phenotypic switching, which

may be a compensatory mechanism for the tissue (67). Therapeutically,

promotion of M1 to M2 transition attenuates the progression of DN

(67). The enrichment of M2 macrophages observed in our immune

infiltration analysis of DN tissues is consistent with this injurious

transition. We also observed that including naive CD4+ T cells and

resting mast cells were more highly expressed in DN tissues. CD4+ T

cell-mediated islet destruction is an important basis for the

development of autoimmune diabetes (75). In addition, multiple

CD4+ T cell subsets have a critical function in the progression of DN

(76). And naive CD4+ T cells activate and differentiate into different

effector T cells upon appropriate stimulation (77). Previous research

has revealed that mast cells were significantly elevated in number and

activity in DNmice andmay be an essential driver of renal fibrosis (78).

And mast cells were also thought to be closely related to kidney

inflammation (79). Immune infiltration analysis suggests that the low

expression of AKT3 and FYN favors the infiltration of the above

immune cells in the kidney thereby exacerbating renal injury in DN.

Nevertheless, more studies are needed to investigate the role of these

immune cells in DN.

It is worth noting that this study also has some limitations.

Concretely, it is that the sample size included in the study was too

small and included only a clinical sample from one center. Secondly,

this study was a secondary mining in a public dataset, which may be

biased. Thirdly, while our CIBERSORT-based analysis revealed

significant correlations between AKT3/FYN expression and

specific immune cell subsets (e.g., M2 macrophages, naïve CD4+

T cells), this proportional approach provides only a preliminary

view of immune dysregulation in DN. We acknowledge that deeper

characterization of the immune microenvironment is needed to

fully elucidate how PANoptosis-related biomarkers shape

immunological landscapes. Notably, while our study identified

AKT3 and FYN as downregulated PANoptosis-associated genes

in DN, we did not experimentally validate their mechanistic roles in

coordinating apoptosis, pyroptosis, and necroptosis. Future studies

should interrogate whether AKT3/FYN deletion or overexpression

directly modulates PANoptosome assembly in diabetic renal cells.
5 Conclusion

In brief, this study integrated bioinformatics and machine learning

to systematically analyze the biological meaning of PANoptosis-related

genes in DN and its connection with immune cells. AKT3 and FYN

were characterized as DN PANoptosis-related biomarkers. This

provides a deeper insight into the pathogenesis of DN.
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