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Objective: Osteoporosis is a common complication in patients with type 2

diabetes mellitus (T2DM), yet its screening rate remains low. This study aimed

to develop and validate a cost-effective and interpretable machine learning (ML)

model to predict the risk of osteoporosis in patients with T2DM.

Methods: This retrospective study included 1560 inpatients who underwent

dual-energy X-ray absorptiometry (DXA) between January 2022 and

December 2023 at Panyu Hospital of Chinese Medicine. Demographic

information and laboratory test results obtained within 24 hours of hospital

admission were collected. Potential predictive features were identified using

univariate analysis, least absolute shrinkage and selection operator (LASSO)

regression, and the Boruta algorithm. Eight supervised ML algorithms were

applied to construct predictive models. Model performance was evaluated

based on the area under the receiver operating characteristic curve (AUC),

calibration plots, decision curve analysis (DCA), accuracy, sensitivity, specificity,

and F1 score. The SHapley Additive exPlanations (SHAP) method was used to

interpret the model and visualize feature importance.

Results: Ten predictive features were selected based on the intersection of the

three feature selection methods. Among the tested models, logistic regression

achieved the best overall performance, with an AUC of 0.812, an accuracy of

0.762, a sensitivity of 0.809, a specificity of 0.761, and an F1 score of 0.771 in the

validation set. Calibration plots and DCA curves demonstrated good agreement

and the highest net clinical benefit. SHAP analysis identified age, sex, alkaline

phosphatase, uric acid, hemoglobin, and neutrophil count as the six most

influential features. An easy-to-use, web-based risk calculator was developed

based on the logistic model and is available at: https://t2dm.shinyapps.io/t2dm-

osteoporosis/.
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Conclusion:We developed an interpretable and accessible ML-based online tool

that enables preliminary screening of osteoporosis risk in patients with T2DM

using routine blood indicators. This tool may assist clinicians in early risk

identification and reduce the underdiagnosis of osteoporosis.
KEYWORDS

osteoporosis, type 2 diabetes mellitus, explainable machine learning, predictive model,
risk assessment
Introduction

Diabetes mellitus has emerged as a major global public health

concern with significant impacts on morbidity and mortality.

According to recent estimates, approximately 537 million people

are currently living with diabetes worldwide. In China, the

prevalence has reached 12.8%, affecting around 140 million

individuals, with type 2 diabetes mellitus (T2DM) accounting for

90–95% of all cases (1).

Osteoporosis (OP), a chronic skeletal disorder characterized by

trabecular deterioration, disrupted bone microarchitecture,

decreased bone mass per unit volume, and increased bone

fragility and fracture risk, represents one of the most common

complications of diabetes (2). In patients with diabetes, hormonal

imbalances and metabolic disturbances contribute to a range of

complications. Persistent hyperglycemia accelerates calcium loss,

disrupts bone metabolism, and leads to diabetic osteoporosis.

Diabetic osteoporosis substantially increases the risk of falls and

fractures, which in turn results in reduced quality of life and

heightened mortality. In China, the prevalence of osteoporosis

among individuals with T2DM is estimated at 37.8%, highlighting

a critical yet frequently underrecognized public health issue (3).

Accurate assessment of osteoporosis risk in patients with T2DM is

therefore essential. However, a standardized and widely accepted

risk assessment tool is currently lacking.

In recent years, machine learning (ML) has emerged as a

powerful tool in medical diagnostics due to its ability to handle

complex, high-dimensional data and uncover non-linear

relationships between predictors and outcomes (4). In the field of

metabolic bone disease, ML has shown promise in enhancing

osteoporosis risk stratification by integrating diverse clinical

and biochemical variables (5). A systematic review by Sadat-

ali evaluated the performance of AI models in predicting

osteoporotic fractures and illustrated that AI is a promising tool

and that it may outperform conventional detection methods

(6).However, many existing models require imaging inputs or are

limited by interpretability. Therefore, applying interpretable ML

approaches to routine clinical data offers a cost-effective and

scalable solution to identify high-risk individuals, particularly in

populations such as patients with T2DM, who are often

under-screened.
02
In this study, we developed and validated anML-based model to

predict the risk of osteoporosis in patients with T2DM. The most

effective predictive algorithm was identified through model

comparison, and a user-friendly web-based tool was constructed

to facilitate clinical application and personalized risk assessment.
Methods

Study design

This single-center, retrospective study consecutively enrolled

hospitalized patients with type 2 diabetes mellitus (T2DM) who

underwent dual-energy X-ray absorptiometry (DXA) at Panyu

Hospital of Chinese Medicine between January 2022 and

December 2023. Patients who underwent DXA examination

during hospitalization were eligible for inclusion. The inclusion

criteria were as follows: (1) age ≥ 45 years; (2) completed

standardized DXA assessment; and (3) availability of complete

electronic medical records, including demographic information

and routine laboratory test results. Exclusion criteria included: (1)

secondary osteoporosis; (2) hematological disorders; (3) history of

malignancy; (4) severe hepatic or renal insufficiency; (5) acute

infectious disease; and (6) incomplete clinical data.Bone mineral

density (BMD) was measured using a standardized DXA protocol,

assessing the lumbar spine (L1–L4), left femoral neck, and total hip.

According to the diagnostic criteria defined by the World Health

Organization, participants were classified into the osteoporosis

group (T-score ≤ –2.5 SD) and the non-osteoporosis group (T-

score > –2.5 SD) (Figure 1).

The study protocol adhered to the Declaration of Helsinki and

was approved by the Institutional Review Board of Panyu Hospital

of Guangzhou University of Chinese Medicine. Given the

retrospective nature of this study, informed consent was waived.
Data collection and preprocessing

Baseline demographic characteristics (age and sex) and

standardized laboratory parameters were collected. Venous blood

samples were collected from all fasting participants within 24 hours
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of hospital admission. Complete blood counts, including

hemoglobin (HGB), neutrophil count (NEUT), red blood cell

count (RBC), platelet count (PLT), lymphocyte count (LYMPH),

and monocyte count (MONO), were analyzed using the Mindray

BC-6800Plus hematology analyzer. Biochemical analyses included

total cholesterol (TC), triglycerides (TG), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),

alkaline phosphatase (ALP), alanine aminotransferase (ALT),

albumin (ALB), uric acid (UA), fasting blood glucose (FBG),

serum calcium (Ca), serum phosphate (Pi), and creatinine (Cr).

All laboratory evaluations and DXA measurements were performed

during the same hospitalization period.

Before model development, several preprocessing steps were

performed to ensure data quality and consistency. Duplicate records

and entries with apparent input errors were excluded. For variables

with missing values less than 20%, imputation was performed using

the mean for continuous variables and the mode for categorical

variables. Variables with more than 20% missing data were

excluded from model construction.
Calculation of derived biomarkers

To capture complex interactions related to metabolic and

inflammatory status, we derived seven composite indices from the

original laboratory values: Monocyte-to-HDL ratio (MHR),

Neutrophil-to-HDL ratio (NHR), Platelet-to-HDL ratio (PHR),
Frontiers in Endocrinology 03
Lymphocyte-to-HDL ratio (LHR), Triglyceride-Glucose index

(TyG), Cholesterol-Glucose index (CHG), and Non-HDL-to-

Neutrophil ratio (NHHR). These indices have been previously

associated with chronic inflammation, insulin resistance, and

cardiovascular risk—factors that are also implicated in

osteoporosis, particularly among patients with type 2 diabetes

mellitus.Seven novel indices were derived from original laboratory

measurements using the following formulas, as previously described

in the literature (7–13):

Monocyte − to −HDL Ratio (MHR) :  MONO (� 109=L)=

HDL − C (mmol=L)

Neutrophil − to −HDL Ratio (NHR) :  NEUT (� 109=L)=

HDL − C (mmol=L)

Platelet − to −HDL Ratio (PHR) :  PLT (� 109=L)=

HDL − C (mmol=L)

Lymphocyte − to −HDL Ratio (LHR) :  LYMPH (� 109=L)=

HDL − C (mmol=L)

Triglyceride − Glucose Index (TyG) :  ln½TG (mg=dL) 

�  FPG (mg=dL)=2�
FIGURE 1

Study flow chart. LR, logistic regression; SVM, support vector machine; GBM, gradient boosting machine; NN, neural network; XGBoost, extreme
gradient boosting; KNN, k-nearest neighbors; LightGBM, light gradient boosting machine; AdaBoost, adaptive boosting; ROC, receiver operating
characteristic curves; DCA, decision curve analysis; SHAP, Shapley additive explanations.
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Non −HDL − to −Neutrophil Ratio (NHHR) :  ½TC (mg=dL) 

−  HDL − C (mg=dL)�=HDL − C (� 109=L)

Cholesterol − Glucose Index (CHG) :  ln½TC (mg=dL) 

�  FPG (mg=dL)=(2 �  HDL − C (mg=dL))�
Feature selection and model construction

In this study, the caret package in R was used to randomly

partition the dataset into a training set (70%) and a testing set

(30%). The training set was utilized for model development, while

the testing set was reserved for performance evaluation.

To identify potential predictors from baseline variables in the

training set, three independent feature selection methods were

employed: univariate analysis, least absolute shrinkage and

selection operator (LASSO) regression, and the Boruta algorithm

(14). Univariate analysis, a conventional statistical method, selected

variables with a P-value < 0.05. LASSO regression identified

predictors with non-zero coefficients, effectively addressing

multicollinearity and reducing the risk of model overfitting due to

excessive inter-variable correlation (15). In this study, LASSO

regression with 10-fold cross-validation was performed to screen

variables from high-dimensional data.The Boruta algorithm, a

wrapper method based on feature importance, identifies relevant

variables by comparing the Z-scores of actual features to those of

permuted “shadow” features. In each iteration, Z-scores for the real

features were computed using a random forest (RF) classifier, while

those for the shadow features were obtained by randomly shuffling

the original variables (16). Features consistently performing worse

than the shadow features were iteratively removed.To ensure that

there was no multicollinearity among the candidate variables, we

calculated the variance inflation factor (VIF) scores. Variables with

high collinearity (VIF > 10) were excluded to maintain

model stability.

The intersection of variables selected by all three methods was

used to develop prediction models. Ten supervised machine

learning algorithms were implemented for model construction:

logistic regression (LR), support vector machine (SVM), gradient

boosting machine (GBM), neural network (NN), extreme gradient

boosting (XGBoost), k-nearest neighbors (KNN), AdaBoost,

and LightGBM.
Model evaluation

The optimal model was determined through a comprehensive

evaluation of the discriminative ability, calibration performance,

and clinical applicability of all ten candidate models. The receiver

operating characteristic (ROC) curve was constructed to visually

represent the model’s discriminative power, with the area under the

curve (AUC) serving as the primary quantitative metric. Additional

performance indicators, including accuracy, sensitivity, specificity,
Frontiers in Endocrinology 04
precision, and F1 score, were also calculated to supplement the

evaluation. Calibration and clinical utility were further assessed

using decision curve analysis (DCA) and calibration

plots, respectively.
Model interpretation

To enhance model interpretability, Shapley Additive

Explanations (SHAP) values were analyzed to quantify the

contribution and importance of each feature in determining the

final classification outcome. A higher SHAP value indicates greater

influence on the model’s output prediction. We present a feature

importance analysis based on SHAP values to interpret the results

of the optimal model (17).
Statistical analysis

All statistical analyses were conducted using R software (version

4.4.3). Continuous variables with a normal distribution were

presented as mean ± standard deviation (SD), while non-

normally distributed continuous variables were expressed as

median with interquartile range (IQR). Categorical variables were

summarized as frequencies and percentages. Group differences in

continuous variables were assessed using either the independent

samples t-test or the Kruskal–Wallis test, as appropriate.

Categorical variables were compared using the chi-square test or

Fisher’s exact test. A two-sided p-value < 0.05 was considered

statistically significant.

Lasso regression and Boruta feature selection were performed

using the “glmnet” and “Boruta” R packages, respectively.

Predictive model development and training were conducted with

the “caret” package, with default hyperparameter tuning

implemented via grid search. SHAP value analysis for model

interpretation was carried out using the “shapviz” package.
Results

Comparison of clinical characteristics

A total of 1,560 patients were included in this study and

randomly assigned to the training set (n = 1,093) and the testing

set (n = 467) in a 7:3 ratio. No statistically significant differences

were observed between the two sets across all clinical variables (P >

0.05), as detailed in Table 1.

In the training cohort, patients with and without osteoporosis

showed statistically significant differences in several clinical and

biochemical variables, as detailed in Table 2. These included age,

sex, hemoglobin (HGB), neutrophil count (NEUT), lymphocyte

count (LYMPH), red blood cell count (RBC), triglycerides (TG),

high-density lipoprotein cholesterol (HDL-C), alkaline phosphatase

(ALP), alanine aminotransferase (ALT), albumin (ALB), uric acid

(UA), serum calcium (Ca), as well as derived indices such as
frontiersin.org
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neutrophil-to-HDL ratio (NHR), platelet-to-HDL ratio (PHR),

lymphocyte-to-HDL ratio (LHR), triglyceride-glucose index (TyG),

and non-HDL-to-neutrophil ratio (NHHR) (all P < 0.05). Detailed

comparisons are provided in Table 2. Conversely, no statistically

significant differences were found in platelet count (PLT), monocyte
Frontiers in Endocrinology 05
count (MONO), total cholesterol (TC), low-density lipoprotein

cholesterol (LDL-C), aspartate aminotransferase (AST), creatinine

(Cr), serum phosphate (Pi), fasting blood glucose (FBG), monocyte-

to-HDL ratio (MHR), and cholesterol-glucose index (CHG) between

the two groups (all P > 0.05).
TABLE 1 Baseline characteristics of patients.

Variables
Total

(n = 1560)
Training set
(n = 1093)

Test set
(n = 467)

P

Gender(%) 0.584

Female 1147 (73.53) 808 (73.92) 339 (72.59)

Male 413 (26.47) 285 (26.08) 128 (27.41)

Age 70.00 (63.00, 77.00) 69.00 (63.00, 77.00) 70.00 (63.00, 77.00) 0.477

NEUT(×109/L) 4.72 (3.57, 6.32) 4.68 (3.60, 6.39) 4.78 (3.42, 6.21) 0.564

HGB(×109/L) 126.00 (115.00, 137.00) 127.00 (115.00, 137.00) 125.00 (115.00, 137.00) 0.546

LYMPH(×109/L) 1.72 (1.28, 2.21) 1.72 (1.28, 2.21) 1.73 (1.29, 2.21) 0.575

PLT,(×109/L) 232.00 (191.00, 276.00) 233.00 (188.00, 276.00) 229.00 (195.50, 276.00) 0.869

MONO(×109/L) 0.47 (0.37, 0.58) 0.46 (0.37, 0.58) 0.47 (0.38, 0.58) 0.746

RBC(×109/L) 4.32 (3.93, 4.70) 4.32 (3.94, 4.72) 4.29 (3.90, 4.69) 0.431

TC(mmol/L) 4.49 (3.76, 5.36) 4.49 (3.76, 5.35) 4.47 (3.75, 5.42) 0.921

TG(mmol/L) 1.46 (1.03, 2.07) 1.43 (1.02, 2.03) 1.55 (1.05, 2.09) 0.215

HDL_C(mmol/L) 1.17 (0.99, 1.41) 1.17 (0.99, 1.41) 1.17 (0.99, 1.40) 0.798

LDL_C(mmol/L) 2.74 (2.08, 3.47) 2.74 (2.10, 3.47) 2.74 (2.04, 3.50) 0.869

ALP(U/L) 74.00 (61.00, 90.00) 73.00 (61.00, 90.00) 75.00 (61.00, 91.90) 0.540

ALT(U/L) 16.60 (12.00, 24.00) 16.30 (12.00, 24.00) 17.00 (12.00, 23.15) 0.701

AST(U/L) 18.00 (15.00, 22.00) 18.00 (15.00, 22.00) 18.00 (14.10, 22.00) 0.909

ALB(g/L) 39.40 (36.60, 41.90) 39.30 (36.50, 42.00) 39.60 (36.90, 41.80) 0.549

Cr(mmol/L) 66.00 (54.00, 84.00) 66.00 (54.00, 85.00) 67.00 (55.00, 82.00) 0.736

UA(mmol/L) 324.50 (266.00, 408.00) 323.00 (265.00, 406.00) 327.00 (267.50, 409.50) 0.356

Ca(mmol/L) 2.28 (2.21, 2.35) 2.28 (2.20, 2.35) 2.28 (2.21, 2.35) 0.404

Pi(mmol/L) 1.15 (1.03, 1.28) 1.15 (1.03, 1.27) 1.16 (1.03, 1.29) 0.624

FBG(mmol/L) 7.19 (5.80, 9.45) 7.26 (5.83, 9.54) 6.99 (5.71, 9.36) 0.251

MHR 0.40 (0.30, 0.53) 0.40 (0.30, 0.53) 0.40 (0.31, 0.53) 0.665

NHR 4.07 (2.92, 5.71) 4.08 (2.91, 5.79) 4.06 (2.94, 5.50) 0.646

PHR 195.88 (151.61, 249.09) 196.30 (150.76, 249.55) 195.19 (154.92, 248.78) 0.602

LHR 1.46 (1.03, 1.99) 1.46 (1.01, 1.98) 1.46 (1.06, 2.02) 0.451

TYG 9.05 (8.63, 9.54) 9.05 (8.64, 9.54) 9.06 (8.61, 9.54) 0.894

NHHR 2.78 (2.03, 3.68) 2.78 (2.03, 3.68) 2.80 (2.00, 3.69) 0.881

CHG 5.52 (5.19, 5.90) 5.53 (5.20, 5.90) 5.51 (5.17, 5.90) 0.561
Data are shown as median with interquartile range (IQR) for continuous variables and number with percentage for categorical variables
HGB, hemoglobin; NEUT, neutrophil count; RBC, red blood cell count; PLT, platelet count; LYMPH, lymphocyte count; MONO, monocyte count; TC, total cholesterol; TG, triglycerides; HDL-
C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ALB, albumin; UA, uric acid; FBG, fasting plasma
glucose; Ca, calcium; Pi, phosphorus; Cr, creatinine; MHR, Monocyte-to-HDL Ratio; NHR, Neutrophil-to-HDL Ratio; PHR, Platelet-to-HDL Ratio; LHR, Lymphocyte-to-HDL Ratio; TyG,
Triglyceride-Glucose Index; NHHR, Non-HDL-to-Neutrophil Ratio; CHG, Cholesterol-Glucose Index.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1611499
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wei et al. 10.3389/fendo.2025.1611499
Model development

Eighteen variables identified through univariate analysis were

subjected to further feature selection using LASSO regression and

the Boruta algorithm. In the LASSO regression, the optimal lambda

value was determined to be 0.024, which yielded 10 key predictive

features. These included two demographic variables (age and sex)
Frontiers in Endocrinology 06
and eight laboratory indicators (ALP, UA, HGB, NEUT, ALT, LHR,

Ca, and TG). Notably, the results of the Boruta algorithm fully

corroborated those of LASSO regression, confirming the same 10

features (Figure 2). The candidate variables also showed VIF values

below the accepted threshold of 10, indicating no significant

Multicollinearity.These variables were ultimately selected as the

core predictors for model construction.
TABLE 2 Results of univariate analysis.

Variables
Total

(n = 1093)
Osteoporosis
(n = 595)

Non-Osteoporosis
(n = 498)

P

Gender(%) <.001

Female 808 (73.92) 508 (85.38) 300 (60.24)

Male 285 (26.08) 87 (14.62) 198 (39.76)

Age 69.00 (63.00, 77.00) 73.00 (66.00, 79.00) 66.00 (60.00, 72.00) <.001

NEUT(×109/L) 4.68 (3.60, 6.39) 5.09 (3.73, 7.16) 4.34 (3.51, 5.80) <.001

HGB(×109/L) 127.00 (115.00, 137.00) 123.00 (110.00, 132.50) 131.00 (120.25, 141.00) <.001

LYMPH(×109/L) 1.72 (1.28, 2.21) 1.64 (1.17, 2.11) 1.82 (1.36, 2.33) <.001

PLT,(×109/L) 233.00 (188.00, 276.00) 233.00 (188.00, 279.00) 233.00 (189.25, 272.75) 0.785

MONO(×109/L) 0.46 (0.37, 0.58) 0.47 (0.37, 0.59) 0.46 (0.37, 0.57) 0.470

RBC(×109/L) 4.32 (3.94, 4.72) 4.27 (3.85, 4.59) 4.44 (4.06, 4.81) <.001

TC(mmol/L) 4.49 (3.76, 5.35) 4.48 (3.83, 5.29) 4.50 (3.69, 5.44) 0.983

TG(mmol/L) 1.43 (1.02, 2.03) 1.32 (0.98, 1.81) 1.59 (1.12, 2.28) <.001

HDL_C(mmol/L) 1.17 (0.99, 1.41) 1.20 (1.02, 1.42) 1.12 (0.96, 1.39) <.001

LDL_C(mmol/L) 2.74 (2.10, 3.47) 2.75 (2.17, 3.42) 2.72 (2.06, 3.51) 0.648

ALP(U/L) 73.00 (61.00, 90.00) 76.00 (64.00, 95.05) 69.05 (57.00, 83.22) <.001

ALT(U/L) 16.30 (12.00, 24.00) 15.00 (11.00, 22.00) 18.00 (13.00, 25.00) <.001

AST(U/L) 18.00 (15.00, 22.00) 18.00 (14.85, 21.95) 18.00 (15.00, 22.48) 0.263

ALB(g/L) 39.30 (36.50, 42.00) 38.90 (35.70, 41.60) 40.00 (37.40, 42.30) <.001

Cr(mmol/L) 66.00 (54.00, 85.00) 64.00 (53.00, 84.00) 68.00 (55.00, 85.75) 0.089

UA(mmol/L) 323.00 (265.00, 406.00) 311.00 (253.50, 386.00) 338.50 (286.00, 420.00) <.001

Ca(mmol/L) 2.28 (2.20, 2.35) 2.27 (2.19, 2.34) 2.29 (2.22, 2.36) <.001

Pi(mmol/L) 1.15 (1.03, 1.27) 1.14 (1.02, 1.27) 1.16 (1.04, 1.29) 0.089

FBG(mmol/L) 7.26 (5.83, 9.54) 7.40 (5.96, 9.64) 7.12 (5.69, 9.26) 0.057

MHR 0.40 (0.30, 0.53) 0.39 (0.29, 0.53) 0.40 (0.31, 0.53) 0.157

NHR 4.08 (2.91, 5.79) 4.26 (2.98, 6.12) 3.92 (2.84, 5.44) 0.010

PHR 196.30 (150.76, 249.55) 190.77 (143.56, 241.98) 201.03 (157.50, 255.48) 0.016

LHR 1.46 (1.01, 1.98) 1.35 (0.92, 1.85) 1.57 (1.19, 2.15) <.001

TYG 9.05 (8.64, 9.54) 8.99 (8.59, 9.49) 9.12 (8.70, 9.60) 0.002

NHHR 2.78 (2.03, 3.68) 2.69 (2.00, 3.47) 2.88 (2.07, 3.85) 0.003

CHG 5.53 (5.20, 5.90) 5.52 (5.20, 5.87) 5.55 (5.20, 5.93) 0.609
Data are shown as median with interquartile range (IQR) for continuous variables and number with percentage for categorical variables.
HGB, hemoglobin; NEUT, neutrophil count; RBC, red blood cell count; PLT, platelet count; LYMPH, lymphocyte count; MONO, monocyte count; TC, total cholesterol; TG, triglycerides; HDL-
C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; ALP, alkaline phosphatase; ALT, alanine aminotransferase; ALB, albumin; UA, uric acid; FBG, fasting plasma
glucose; Ca, calcium; Pi, phosphorus; Cr, creatinine; MHR, Monocyte-to-HDL Ratio; NHR, Neutrophil-to-HDL Ratio; PHR, Platelet-to-HDL Ratio; LHR, Lymphocyte-to-HDL Ratio; TyG,
Triglyceride-Glucose Index; NHHR, Non-HDL-to-Neutrophil Ratio; CHG, Cholesterol-Glucose Index.
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Model evaluation

Eight machine learning algorithms were employed to develop

models for predicting osteoporosis in patients with T2DM: logistic

regression (LR), support vector machine (SVM), gradient boosting

machine (GBM), neural network (NN), extreme gradient boosting

(XGBoost), k-nearest neighbors (KNN), AdaBoost, and LightGBM.

Among these, the LR model demonstrated the most robust and

consistent performance in the testing set (Table 3).

As illustrated in Figure 3, the LR model achieved the highest

discriminative performance, with an AUC of 0.812 (95% CI: 0.750–

0.832). It also outperformed other models in terms of accuracy

(0.762), sensitivity (0.809), and F1 score (0.771), while maintaining

favorable specificity (0.761) and precision (0.778). In comparison,

KNN (AUC = 0.734, 95% CI: 0.689–0.779), AdaBoost (AUC =

0.717, 95% CI: 0.674–0.761), and LightGBM (AUC = 0.723, 95% CI:
Frontiers in Endocrinology 07
0.676–0.770) demonstrated inferior classification performance.

Although the SVM model achieved slightly higher specificity

(0.808) and precision (0.801), its lower sensitivity (0.650), F1

score (0.717), and AUC (0.773, 95% CI: 0.731–0.815) indicated

limited generalizability. Moreover, the GBM, NN, and XGBoost

models exhibited noticeably lower AUCs, accuracy, sensitivity, and

F1 scores compared to the LR model, further supporting the

superior generalization ability of the latter.
Model interpretability and web application

To elucidate the decision-making process of the LR model, we

applied the SHapley Additive exPlanations (SHAP) framework for

both global and local interpretation. The bar chart in Figure 4A

displays the mean absolute SHAP values for each predictor,
FIGURE 2

Features selected by univariate analysis, Lasso and Boruta. (A) The Lasso regression coefficient profiles of characteristics. (B) The optimal lambda
selection in the Lasso regression with 10-fold cross-validation. (C) Variables selected by Boruta algorithm.
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reflecting their overall contribution to the model.The SHAP

summary plot (Figure 4B) ranked the importance of predictive

features, with age, sex, ALP, UA, HGB, NEUT, ALT, LHR, Ca, and

TG identified as the most influential variables in descending order.

Figures 4C, D provide further insights into how individual SHAP

values influence predictions. Age emerged as the most dominant

predictor, and interaction plots (Figures 5A–F) illustrated the

complex interrelationships between age and other variables.

To enhance the model’s clinical utility and streamline its

application in practice, we optimized the input requirements by

limiting them to the 10 key features, many of which are routinely

obtained in standard blood tests. Furthermore, we developed a user-

friendly, web-based calculator (available at:https://t2dm.shinyapps.

io/t2dm-osteoporosis/) to facilitate real-time risk assessment of

osteoporosis in patients with T2DM. This platform enables

clinicians to enter patient data and receive immediate,

individualized risk estimations, thereby supporting early

intervention and personalized care strategies.
Discussion

In this study, we developed and validated a machine learning

model for predicting osteoporosis in patients with type 2 diabetes
Frontiers in Endocrinology 08
mellitus (T2DM), using demographic characteristics and routine

blood test indicators. According to the latest IDF Diabetes Atlas, the

global prevalence of diabetes has reached approximately 643 million

people, meaning that one in nine adults is affected (18). In China

alone, between 50% and 66% of adults with T2DM exhibit

decreased bone mineral density (BMD), and nearly one-third can

be diagnosed with osteoporosis (19, 20). Therefore, there is an

urgent need to establish a reliable screening tool specifically

targeting osteoporosis in T2DM patients.

The logistic regression model constructed in this study

demonstrated strong and consistent predictive performance in

both the training and testing cohorts, with area under the curve

(AUC) values ranging from 0.812 to 0.835. The high AUC values

highlight the model’s accuracy and robustness in predicting

osteoporosis among T2DM patients. Moreover, calibration curves

and decision curve analysis (DCA) further confirmed the model’s

good calibration and substantial clinical net benefit.

To enhance the model’s interpretability and clinical

applicability, we employed a multistep feature selection process.

Initially, univariate analysis was used to identify potential

predictors. LASSO regression was then applied to address

multicollinearity and eliminate irrelevant variables. Finally, the

Boruta algorithm, based on random forest importance scores, was

used to confirm the stability of selected features (15, 21, 22). This
frontiersin.or
TABLE 3 The prediction performance of each model.

Model AUC (95% CI) Accuracy Sensitivity Specificity Precision F1

Training set

Logistic 0.835 (0.780~0.840) 0.791 0.812 0.791 0.804 0.795

SVM 0.767 (0.740~0.795) 0.709 0.746 0.665 0.727 0.736

GBM 0.873 (0.852~0.893) 0.804 0.805 0.803 0.83 0.817

NeuralNetwork 0.797 (0.771~0.823) 0.724 0.736 0.709 0.751 0.744

Xgboost 0.809 (0.784~0.835) 0.739 0.746 0.731 0.768 0.757

KNN 0.932 (0.918~0.945) 0.847 0.845 0.849 0.87 0.858

Adaboost 0.711 (0.683~0.739) 0.637 0.461 0.847 0.783 0.58

LightGBM 0.912 (0.895~0.929) 0.844 0.866 0.819 0.851 0.858

Test set

Logistic 0.812 (0.750~0.832) 0.762 0.809 0.761 0.778 0.771

SVM 0.773 (0.731~0.815) 0.722 0.65 0.808 0.801 0.717

GBM 0.780 (0.739~0.822) 0.713 0.677 0.756 0.768 0.72

NeuralNetwork 0.777 (0.735~0.819) 0.715 0.697 0.737 0.76 0.727

Xgboost 0.771 (0.728~0.814) 0.728 0.685 0.779 0.787 0.733

KNN 0.734 (0.689~0.779) 0.685 0.717 0.648 0.708 0.712

Adaboost 0.717 (0.674~0.761) 0.704 0.78 0.615 0.707 0.606

LightGBM 0.723 (0.676~0.770) 0.742
g

https://t2dm.shinyapps.io/t2dm-osteoporosis/
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process identified 10 core predictors: age, sex, ALP, UA, HGB,

NEUT, ALT, LHR, Ca, and TG. By reducing the number of

variables, the logistic regression model became more interpretable

and user-friendly, facilitating easier data collection in

clinical settings.

Although more complex algorithms such as KNN and

LightGBM demonstrated high discriminative ability in the

training set (AUCs of 0.932 and 0.912, respectively), their

substantial performance decline in the test set (AUCs of 0.734

and 0.723) indicated overfitting and limited generalizability.

Overfitting, a common concern in machine learning models with

small or moderate-sized datasets, compromises the reliability of

predictions when applied to new data (23). In contrast, logistic

regression maintained more stable performance across both sets

(AUC from 0.835 to 0.812) and achieved a strong F1 score,

indicating a balanced trade-off between precision and recall.

Considering the goal of developing an interpretable and clinically

applicable tool, we prioritized robustness and interpretability over

algorithmic complexity. Logistic regression provides transparency

in feature contributions and aligns better with clinical decision-

making workflows, supporting its adoption as the final model.
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The pathogenesis of osteoporosis in T2DM is multifactorial,

involving aging, sex, metabolic dysregulation, chronic

inflammation, and impaired bone remodeling (2, 24–27). Aging

disrupts bone homeostasis by impairing osteoblast function, and

the abrupt decline in estrogen levels after menopause accelerates

osteoclast activation (28, 29). Hyperglycemia-induced oxidative

stress increases skeletal fragility (30). Elevated ALP levels reflect

increased bone turnover, potentially related to compensatory bone

formation following bone microarchitecture disruption by

advanced glycation end products (AGEs) (31). Reduced serum

calcium may be attributed to insulin resistance and vitamin D

deficiency, both of which disturb calcium-phosphorus metabolism

and promote bone resorption (32, 33).

Inflammation also plays a critical role—elevated NEUT

indicates systemic inflammation, which promotes osteoclast

differentiation via pro-inflammatory cytokines such as IL-6 and

TNF-a (34). Reduced HGB levels, indicative of anemia, may

contribute to hypoxia and nutritional deficiencies, impairing bone

repair capacity (35). UA plays a complex role in bone metabolism,

particularly in patients with T2DM.While uric acid may exert

antioxidant effects at physiological levels, elevated levels in
frontiersin.o
FIGURE 3

Machine learning based prediction model for osteoporosis. (A) ROC curve of the training set of the machine learning-based model. (B) Training set
DCA of the machine learning-based model. (C) Training set calibration curve of the machine learning based model. (D) Testing set ROC curve of
machine learning based model. (E) Testing set DCA based on machine learning model. (F) Testing set calibration curve based on machine learning
model. ROC, receiver operating characteristic; DCA, decision curve analysis.
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patients with T2DM often indicate an adverse metabolic state that

contributes to bone loss and increased fracture risk (36). From a

metabolic perspective, while UA has antioxidant properties, its pro-

inflammatory effects may counteract its protective role (37).

Elevated ALT levels may impair vitamin D activation, thereby

affecting calcium absorption (38). Both TG and LHR contribute

to lipotoxicity, inhibiting osteoblast differentiation and promoting

adipogenesis, ultimately accelerating bone loss (39).These

mechanisms—driven by insulin resistance, oxidative stress, and

AGEs accumulation—interact to form a complex “metabolism-

inflammation-bone loss” network, leading to reduced bone

density and increased fracture risk. SHAP-based interpretability

analysis further validated the biological plausibility of our

model’s predictions.

By integrating demographic and routine biochemical data, our

logistic regression model achieved an AUC of 0.812 in the testing set—

superior to previous models—and elucidated the intricate interplay

among metabolic disturbances, chronic inflammation, and bone loss
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(40). Compared to the Osteoporosis Self-assessment Tool for Asians

(OSTA), a widely used screening tool in Asian populations, our model

demonstrated superior predictive performance. OSTA relies solely on

age and body weight, and previous studies have reported an AUC of

0.736, with a sensitivity of 73.1% and specificity of 69.8% for identifying

osteoporosis (T-score ≤ –2.5). However, OSTA does not incorporate

metabolic or biochemical indicators, which are particularly relevant in

patients with T2DM who often present with complex metabolic

profiles. In contrast, our logistic regression model achieved an AUC

of 0.812 and a sensitivity of 80.9%, outperforming OSTA by leveraging

routinely available laboratory parameters (41).This model offers a

practical approach for the early identification of osteoporosis in

T2DM patients, enabling clinicians to initiate personalized

management strategies. Although dual-energy X-ray absorptiometry

(DXA) remains the gold standard for diagnosing osteoporosis, its

availability is limited, especially in primary care settings (42). Our

model can serve as an intelligent prescreening tool before DXA testing,

facilitating early diagnosis and intervention.
FIGURE 4

SHAP plots. (A) Bar chart of the mean absolute SHAP value for each predictor of the Logistic model in descending order. (B) SHAP summary plot shows
feature importance for each predictor of the Logistic model in descending order. The upper predictors are more important to the model’s predictive
outcome. A dot is created for each feature attribution value for the Logistic model of each patient. The further away a dot is from the baseline SHAP
value of zero, the stronger it effects the model output. Dots are colored according to the values of features. Yellow represents higher feature values and
red represents lower feature values. (C, D) The force plots provide personalized feature attributions using representative examples. SHAP, Shapley
additive explanations.
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To enhance clinical usability, we developed an online calculator

based on the final logistic regression model. The tool requires input

of only ten routine clinical variables,which are commonly available

in patients with T2DM. This design allows for rapid, cost-effective

screening without the need for imaging or additional lab tests. The

model has been applied to the screening of osteoporosis in

orthopedic inpatients in our hospital who may benefit from

further DXA evaluation.
Limitations

This study has several limitations. First, it was a single-center

retrospective study, which may introduce selection bias and limit the

generalizability of the findings. Differences in clinical practices,

population characteristics, and laboratory standards across

institutions may affect model performance. Therefore, external

validation using multi-center and prospective cohorts is essential to

assess the robustness and applicability of the model in broader clinical

settings. Additionally, due to the retrospective design, some
Frontiers in Endocrinology 11
potentially relevant variables—such as height and weight—were not

available and could not be included in the analysis, which may have

influenced model accuracy.In the future, we intend to conduct a

multicenter prospective study and seamlessly integrate the model into

the hospital information system to achieve real-time risk stratification

of osteoporosis in patients with type 2 diabetes. This will support

early identification and timely referral for DXA assessment.
Conclusion

In summary, we developed and validated an interpretable

machine learning model based on routinely collected clinical and

laboratory data to predict osteoporosis risk in patients with type 2

diabetes mellitus. The logistic regression model demonstrated

favorable predictive performance, outperforming traditional

screening tools, and provides a practical approach for early

identification of patients at high risk for osteoporosis. By

integrating commonly available biomarkers, the model facilitates

cost-effective and accessible screening, especially in settings where
frontiersin.o
FIGURE 5

Panels (A–F) display the SHAP dependency plots for features in the Logistic model, illustrating their relationships with Age.The Y-axis represents
SHAP values, while the X-axis represents actual clinical parameters. Significantly, when a feature's SHAP value is greater than 0, it suggests an
increased risk of osteoporosis, whereas a negative SHAP value suggests a reduced risk.
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DXA is unavailable or limited. Furthermore, the development of an

online calculator enhances the model’s clinical utility by enabling

easy risk assessment in real time.
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Glossary

ML Machine Learning
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T2DM Type 2 Diabetes Mellitus
OP Osteoporosis
DXA Dual-energy X-ray Absorptiometry
BMD Bone mineral density
DCA Decision Curve Analysis
AUC Area under the receiver operating characteristic curve
VIF Variance inflation factor
SHAP SHapley Additive exPlanations
HGB Hemoglobin
NEUT Neutrophil count
RBC Red blood cell count
PLT Platelet count
LYMPH Lymphocyte count
MONO Monocyte count
TC Total cholesterol
TG Triglycerides
HDL-C High-density lipoprotein cholesterol
LDL-C Low-density lipoprotein cholesterol
ALP Alkaline phosphatase
ALT Alanine aminotransferase
logy 14
ALB Albumin
UA Uric acid
FBG Fasting blood glucose
Ca Serum calcium
Cr Creatinine
Pi Serum phosphate
MHR Monocyte-to-HDL ratio
NHR Neutrophil-to-HDL ratio
PHR Platelet-to-HDL ratio
LHR Lymphocyte-to-HDL ratio
TyG Triglyceride-Glucose index
CHG Cholesterol-Glucose index
NHHR Non-HDL-to-Neutrophil ratio
RF Random Forest
LR Logistic regression
SVM Support vector machine
GBM Gradient boosting machine
NN Neural network
XGBoost Extreme gradient boosting
KNN K-nearest neighbors
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