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Harnessing beta-cell replication:
advancing molecular insights
to regenerative therapies
in diabetes
Rupangi C. Vasavada* and Sangeeta Dhawan*

Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and
Metabolism Research Institute, City of Hope, Duarte, CA, United States
Diminished functional beta-cell mass is a key pathogenic mechanism underlying

both type 1 and type 2 diabetes (T1D and T2D), precipitated by the progressive

impairment of insulin secretion, loss of cellular identity, and ultimately, beta-cell

death. The replenishment of beta-cell deficit through the transplantation of

pancreatic islets from cadaveric donors or beta-cells derived from human

embryonic stem cells has shown transformative therapeutic potential.

However, the regeneration of functional beta-cell mass in vivo remains an

important therapeutic goal, as a more physiological and scalable approach.

Effective beta-cell replenishment must address the underlying causes of beta-

cell loss, such as cellular stress and autoimmunity, while simultaneously

promoting beta-cell regeneration, function, and survival. Advances in the

mechanistic underpinnings of beta-cell differentiation, growth, and survival,

coupled with cutting-edge high-throughput screening methods have

accelerated the discovery of novel therapeutic targets and small-molecule

interventions. Current strategies for in vivo beta-cell expansion include

modulating the cell-cycle to promote replication, reprogramming non-beta-

cell lineages into beta-cells, and enhancing beta-cell survival. However, the

limited regenerative capacity and inherently high stress sensitivity of beta-cells

pose significant barriers to their in vivo expansion, further complicated by the

fundamental conflict between replication and functional maintenance, and the

high vulnerability of replicating cells in a metabolically stressed environment.

There has been tremendous progress in developing approaches that

simultaneously promote beta-cell expansion and function. In this review, we

discuss the recent advances in beta-cell expansion, along with remaining

challenges and emerging opportunities to address them.
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1 Introduction

Strategies that promote the regeneration of functional beta-cells in

vivo by stimulating their proliferation represent an attractive and

physiological therapeutic approach that can benefit patients with T2D

as well as T1D, given that residual beta-cells persist in established T1D.

Human beta-cell expansion poses a unique therapeutic challenge due to

their limited replicative capacity, heightened vulnerability to stress

during proliferation, and remodeling of beta-cell heterogeneity

throughout diabetes progression. Here, we examine advances in

stimulating beta-cell expansion, focusing on how recent mechanistic

insights into beta-cell biology are informing the development of

therapies that can simultaneously enhance proliferation, function, and

survival in diabetes.
2 Targeting beta-cell proliferation for
regeneration of beta-cell mass

Targeting the pathways involved in beta-cell proliferation has

emerged as a therapeutically promising approach for beta-cell

expansion in vivo, leveraging one of the body’s natural

mechanisms for growth in early life as well as subsequent

adaptive beta-cell expansion in response to increased insulin

demand. Many of the pathways regulating beta-cell proliferation

are amenable to small molecule therapeutics, making this approach

particularly attractive for clinical translation. Consequently,

significant efforts have focused on identifying the molecular

control of beta-cell replication.
2.1 Harnessing physiological control of
beta-cell replication for regeneration

Replication is the primarymechanism of postnatal beta-cell growth

and crucial for adaptation to metabolic challenges (1–3) (Figure 1A).

Understanding the physiological regulators of replication can reveal

potential targets for therapeutic beta-cell expansion in diabetes. Beta-

cells undergo substantial replication during early postnatal stages to

establish beta-cell mass (4–6). Proliferation gradually declines as beta-

cells mature functionally, revealing an inverse relationship between

function and replication (7–9). The mTOR/PI3K/Akt pathway

integrates nutrient cues and growth signals to promote early

postnatal beta-cell expansion, while increased AMPK (AMP-

activated protein kinase) activity subsequently enhances functional

maturation while restraining proliferation through cell-cycle

regulation (10–12). The calcineurin/NFAT pathway is another

critical regulator of beta-cell growth and functional maturation, with

DYRK1A kinase inhibiting the pro-proliferative activity of NFATs and

serving as a cell-cycle brake (13–15).

The regulation of postnatal beta-cell replication depends on the

balance between mitogen-induced cyclin D2-Cdk4 complex

formation and inhibitory actions of cyclin kinase inhibitors (CKIs)

on the cyclinE-Cdk2 complexes (1, 16–18). As growth progresses,

accumulation of the CKI p27 drives cell-cycle exit and a quiescent
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beta-cell state (19). Beta-cell mass is largely established following the

postnatal proliferative phase, with subsequent maintenance occurring

primarily through limited replication and survival (6, 20, 21).

Multiple mechanisms reinforce beta-cell quiescence: p27

degradation control via SCF ubiquitin ligase and Menin-mediated

epigenetic regulation, which maintains CKI expression and co-

represses transcription of cell-cycle genes driven by TEAD1, an

effector of the Hippo pathway which controls tissue growth (22–

25). p27 degradation is essential for proliferation of mature beta-cells

in response to increased insulin demand, such as in obesity and

pregnancy. The metabolic state of beta-cells is a key determinant of

proliferative capacity (26). The postnatal maturation transforms beta-

cell proliferative response from growth-driven mass expansion to

selective compensatory proliferation upon increased insulin demand

(27). However, this capacity diminishes with age due to replicative

senescence marked by accumulation of CKI p16 (28–32). This age-

related decline involves altered epigenetic control, with young beta-

cells repressing p16 through Polycomb proteins (Ezh2, Bmi1) (33,

34). Aging reduces Ezh2 levels and increases Trithorax complex

(containing Mll1 and JmjD3) activity to induce p16 accumulation

(35). DNA methylation is another epigenetic mechanism that

modulates the transcriptional programs involved in beta-cell

maturation and proliferation (36). Age-dependent shifts in growth

factor signaling drive beta-cell senescence: declining PDGF signaling

reduces Ezh2 expression, while increased TGFb signaling activates

Trithorax-dependent p16 accumulation, promoting replicative

senescence (37, 38).

Our understanding of pathways that modulate physiological beta-

cell expansion has revealed species-, age-, and physiological state-

specific differences in replicative potential and identified several

therapeutic avenues. For instance, PDGF can stimulate b-cell
proliferation only in juvenile human islets, while more downstream

manipulation of the PDGF/Ezh2 pathway using beta-cell specific

overexpression of Ezh2 can overcome the age-related replicative

barrier in mice (35, 37). Similarly, TGFb inhibitors can successfully

drive the expansion of both adult murine and human beta-cells (38).

Along these lines, antibody arrays on serum of young mice identified

Wnt-1 inducible signaling protein 1 (Wisp1) as a circulating factor that

can induce rodent and human beta-cell replication (39). Compensatory

beta-cell expansion during insulin resistance (IR) involves critical

growth factors produced by liver (40). Proteomic analysis of liver

secretome under conditions of IR has identified the hepatocyte-

secreted protease inhibitor SerpinB1 as a key factor promoting beta-

cell replication through elastase inhibition—an effect that can be

mimicked by small molecule elastase inhibitors. In agreement with

this, SerpinB1 deficient mice display poor beta-cell compensation in

response to IR (41). Pregnancy hormones have also been explored as

therapeutic agents for beta-cell expansion. Prolactin (PRL), placental

lactogen (PL), estrogen, and other factors such as serotonin—naturally

upregulated during pregnancy—induce beta-cell replication, providing

another physiology-based approach to beta-cell regeneration (42–45).

PRL-dependent beta-cell replication in vivo requires the protein

osteoprotegerin (OPG), as PRL fails to induce beta-cell expansion in

whole-body OPG knockout mice (46). Notably, while PRL can only

enhance beta-cell replication in rodents but not in human islets due to
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the lack of PRL-receptors (47), OPG can independently induce both

rodent and human beta-cell replication in vitro and in vivo (46).

Glucagon-like peptide 1 (GLP1) is another circulating factor that

promotes beta-cell replication in mice, with GLP1 receptor agonists

(GLP1RAs) emerging as potential therapeutic agents when used in
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combination with other proliferative agents capable of enhancing

human beta-cell replication (48–50). Extracellular-vesicles (EVs) have

emerged as critical modulators of cellular function in both health and

disease, including diabetes (51–53). Recent work suggests that EVs

derived from sources that naturally stimulate beta-cell replication and
FIGURE 1

Beta-cell proliferation: natural history and therapeutic considerations. (A) Physiological control of beta-cell expansion in health and disease. The
beta-cell proliferation landscape changes substantially throughout life. Early in postnatal life, beta-cells rapidly expand to accommodate growth and
establish beta-cell mass. As growth gradually tapers out, beta-cells exit cell-cycle and assume a functionally mature and quiescent state, which
retains the capacity to expand on demand, in response to physiological challenges for increased insulin needs, such as pregnancy, obesity, islet
injury etc. This capacity of adaptive replication, however, declines with aging due to the onset of p16 accumulation dependent replicative
senescence. The replicative response of beta-cells not only depends on age but also varies depending on the nature of the metabolic demand.
Continuously high metabolic demand and/or exposure to inflammation can trigger maladaptation and result in dysfunction and a state of permanent
cell-cycle exit marked by a pro-inflammatory phenotype: stress-induced senescence. If the stress persists, beta-cells can eventually succumb and
undergo cell-death. Ultimately, this can result in diabetes. (B) Factors influencing the efficacy of mitogenic agents on beta-cell expansion in
diabetes. The beta-cell phenotype evolves through the course of the initiation and progression of diabetes, amounting to significant heterogeneity
of disease. To promote beta-cell expansion in these conditions, the therapeutic agents must not only overcome barriers to beta-cell replication that
are especially stringent in human beta-cells, but must also promote resilience to stress and survival, support optimal insulin secretion post-
replication, and ensure a healthy milieu by combating inflammation and/or promoting optimal islet niche. This can be achieved either by using
mitogenic agents that inherently support beta-cell health or by combining them with therapeutic agents that resolve stress and boost function.
Ideally, an optimal therapeutic agent must also selectively target beta-cells to avoid off-target effect. Finally, there is considerable heterogeneity in
beta-cell phenotypes, which is further remodeled in disease. Identifying which beta-cell subset maybe most responsive for expansion remains an
ongoing line of enquiry that will benefit approaches that involve replication to boost beta-cell mass in diabetes.
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regeneration—such as stem and progenitor cells, and serum from

young or pregnant individuals— may hold promise for beta-cell

expansion (54).
2.2 Barriers to human beta-cell
proliferation: lessons from islet pathologies

Much of our mechanistic understanding of beta-cell replication

comes from rodent models, which exhibit higher baseline proliferation

and mitogen responsiveness, limiting translational relevance. Mature

human beta-cells display remarkable resistance to proliferation,

presenting a significant challenge for regenerative approaches (55–

57). The cell-cycle machinery differs substantially between species—

humans have abundant CDK6 but minimal Cyclin D2, while mice

show the reverse pattern (58). While replication is the primary

mechanism of postnatal beta-cell growth in both mice and humans,

its role in human beta-cell adaptive expansion has been debated (1–3,

59). Pathological conditions exhibiting abnormal beta-cell expansion

have provided valuable insights into the molecular barriers that

normally restrict human beta-cell replication. Comprehensive

genomic, epigenomic, and transcriptional profiling of human

insulinomas—rare beta-cell tumors characterized by insulin

overproduction—has provided crucial insight into human beta-cell

proliferation. Most insulinomas exhibit concurrent mutations in

multiple chromatin regulators, particularly in the Polycomb and

Trithorax Group genes (such as EZH2, YY1, RING1, BMI1, MEN1,

KMT2C and KDM6A). EZH2 overexpression appears in most

insulinomas, likely driving hyperproliferation and altered gene

expression (60). All insulinomas share an aberrant DNA methylation

signature within the 11p15.5-p15.4 sub-region containing critical

imprinting control regions for the IGF2/H19 and KCNQ1/CDKN1C

loci that regulate body growth (61). Mutations in this region cause

Beckwith-Wiedemann syndrome, another condition with beta-cell

hyperproliferation (62). Comparison of normal beta-cell and

insulinoma transcriptomic profiles has revealed the DREAM

(dimerization partner, retinoblastoma-like, E2F and MuvB) repressor

complex as a key transcriptional modulator of human beta-cell

proliferation. DREAM complex assembly occurs in response to

DYRK1A activation to establish and maintain quiescence. Loss of

DYRK1A results in the reorganization of DREAM components into a

pro-proliferative complex called MMB (MuvB complex with MYBL2)

which promotes entry to the S phase (63). Indeed, DYRK1A inhibition

has emerged as a major target for inducing human beta-

cell proliferation.
2.3 Unbiased approaches for beta-cell
expansion

Increasing efforts are focused on unbiased identification of

molecules that promote beta-cell expansion with higher efficacy and

cell specificity, mitigating off-target effects. These efforts include high-

throughput screens (HTS) utilizing human islet cells to screen chemical

and RNAi libraries (64–68). Among the most notable advances from

these efforts is the identification of the dual-specificity tyrosine-
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regulated kinase-1a (DYRK1A) as a central negative regulator of

beta-cell proliferation. DYRK1A intersects with multiple arms of

beta-cell replication machinery, including NFATs and DREAM

complex (13, 63). Multiple independent screens converged on

DYRK1A, leading to the discovery of Harmine and INDY, small

molecules that induce beta-cell replication through DYRK1A

inhibition (69). Parallel screens identified aminopyrazine analogs and

the adenosine kinase inhibitor 5-iodotubercidin (5-IT) as additional

compounds that enhance human beta-cell replication through

DYRK1A/NFAT-dependent and -independent mechanisms (70, 71).

Another screen leveraged a VGF promoter-reporter to screen for

NKX6.1 pathway activators, based on findings that NKX6.1

enhances beta- but not alpha-cell replication and induces VGF

expression, discovering a compound that selectively promotes

human beta-cell proliferation via a mechanism distinct from

DYRK1A inhibition (72).

Complementing these in vitro approaches, zebrafish has emerged

as a scalable in vivo screening model system, offering real-time

assessment of islet expansion and function. A luminescence-based

ubiquitination reporter screen in zebrafish identified an inhibitor of

salt-inducible kinases (SIKs) as a potent cross-species stimulator of

beta-cell proliferation via unfolded protein response (UPR) activation

(73). The relevance of SIKs was independently validated in an RNAi

screen of the human G protein-coupled receptor (GPCR) family on

human islets, which uncovered GPR3 as a negative regulator of

human beta-cell proliferation via modulation of SIK2 activity (74).

Similarly, a small molecule screening in zebrafish identified the non-

canonical IkB kinase TANK-binding kinase 1 (TBK1) as a negative

regulator of beta-cell replication and shown to directly modulate

rodent and human beta-cell regeneration (75).

An unbiased search using microarrays identified OPG as a

downstream effector of lactogens in the beta-cell. OPG induces

both rodent and human beta-cell replication by inhibiting the

Receptor Activator of NF-kB (RANK)/RANK ligand (RANKL)

pathway (46, 76). This discovery led us to investigate Denosumab,

a monoclonal antibody against human RANKL and an FDA-

approved osteoporosis drug. Like OPG, Denosumab enhances

human beta-cell replication in vitro and in vivo in human islets

transplanted into immunodeficient mice (46, 76). Notably,

Denosumab is currently in a phase1/2 multi-center clinical trial

(NCT06524960) to assess safety and efficacy in improving beta-

cell function in early T1D. More recently, we identified Leucine-

rich repeat-containing G-protein coupled receptor 4 (LGR4) as a

novel physiological inhibitor of the RANK pathway (77). The

soluble extracellular domain of LGR4 (LGR4-ECD) has emerged

as a potential new therapeutic for osteoporosis, revealing another

promising target for enhancing beta-cell mass in diabetes (78).
3 Considerations for therapeutic
expansion of beta-cell mass in
diabetes

Beta-cell dysfunction and loss characterize both T1D and T2D,

making beta-cell expansion an attractive therapeutic goal. However,
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effective translation of such candidates to clinical application

requires careful consideration of other disease relevant aspects.

First, the ideal therapeutic must not only enhance beta-cell

replication but also improve beta-cell function and resilience. The

heterogeneous nature of diabetes pathogenesis coupled with

intrinsic beta-cell heterogeneity poses additional challenges, as

therapeutic response could vary based on disease stage and

corresponding changes in beta-cell phenotype. Additionally,

specific targeting to beta-cells is essential to prevent off-target

effects and minimize risks of cellular transformation. Successful

beta-cell regenerative therapies must overcome these gaps.
3.1 Non-replicative mechanisms in beta-
cell expansion: clues for combination
therapy

Replication inherently creates cellular vulnerability, especially

under diabetic stress conditions (79–81). Replication is also

mutually incompatible with glucose-stimulated insulin secretion,

as these processes compete for cellular resources and involve

different metabolic states (7). Effective beta-cell expansion

strategies in diabetes must therefore concurrently promote stress

resilience and survival, while ensuring that cells can regain their

mature phenotype and functional capacity following replication.

Emerging evidence from pre-clinical studies shows that many

therapeutic agents can simultaneously enhance human beta-cell

replication while improving survival, function and/or maturity.

Examples include inhibitors of DYRK1A and the RANK pathway

that simultaneously promote beta-cell survival alongside expansion

(49, 76, 82). These agents offer a distinct advantage for clinical

applications, as they confer multiple beneficial effects on beta-cell

health under disease-relevant stressors. Modulation of these

pathways likely exerts temporally distinct effects on beta-cells,

initially boosting survival and resilience, followed by successful

expansion and restoration of function. Recent work on the

TMEM219-IGFBP3 axis illustrates this perfectly; the ligand

IGFBP3, markedly elevated in sera from both T1D and T2D

patients, triggers beta-cell apoptosis by activating its cognate

death receptor TMEM219. Pharmacological disruption of this

axis using the extracellular domain of TMEM219 (ecto-

TMEM219) provides temporally distinct benefits in preclinical

diabetes models by initially enhancing beta-cell survival and

preventing diabetes onset and promoting beta-cell expansion in

the long-term (83).

Recent studies point to an even more complex mechanistic

landscape, suggesting that some beta-cell proliferative agents may

also induce trans-differentiation of non-beta-cells to beta-cells

alongside replication. Single-cell transcriptomic analysis of human

islets reveals that treatment with DYRK1A inhibitors targets cycling

alpha cells which may transdifferentiate into beta-cells (84). This

process could be particularly relevant in T1D, which is

characterized by severe beta-cell depletion and widespread

senescence among residual beta-cells, thus significantly limiting

the pool of replication-competent beta-cells. The islet
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microenvironment also impacts beta-cell response to proliferative

agents, with some molecules showing anti-inflammatory and

immunomodulatory effects that create a more permissive niche

for regeneration (76, 82).

Given this complexity, approaches that strategically combine

agents that target complementary pathways could offer superior

outcomes. Combining agents that enhance survival, mitigate ER-

stress, or reduce inflammation with mitogenic stimuli can create

synergistic effects for sustainable beta-cell expansion. This approach

has been demonstrated using DYRK1A inhibitors with GLP-1RAs

and TGF-b inhibitors, and combinations of sitagliptin with

melatonin (49, 82, 85, 86). GLP-1RAs, widely used in T2D, offer

multiple benefits including beta-cell regeneration (87, 88). Selective

elimination of senescent beta-cells prevents immune-mediated

destruction in T1D models and protects against T2D, with

potential to transform a stress-prone environment into one

conducive to both replication and trans-differentiation (89, 90).

Similarly, pharmaceutical agents targeting the integrated stress

response (ISR) have shown promise for enhancing beta-cell

survival and function (91–94). Combining agents that target

senescence or ISR with those directed at beta-cell proliferation

may therefore be an effective way to removing barriers to

regeneration in the setting of diabetes while preserving the

regenerative potential of remaining healthy cells. Notably,

IGFBP3 is a component of beta-cell senescence associated

secretory phenotype (SASP) in T1D (89). Thus, targeting of

IGFBP3/TMEM219 axis might offer additional protective effects

against senescence (83).

Beyond these considerations, achieving cellular specificity

remains a critical hurdle for clinical translation. Several innovative

approaches are being developed to address this challenge, including

leveraging beta-cell-enriched receptors such as GLP1R for drug

targeting, engineering sophisticated nanoparticle and recombinant

adeno-associated virus (rAAV) delivery systems, and repurposing

existing FDA-approved medications with established safety profiles

(46, 76, 82, 95–97). For instance, Denosumab has now advanced to

early clinical trials (NCT06524960) following promising pre-clinical

evidence of beta-cell regeneration. Similarly, a recent phase-1 safety

study demonstrated that orally administered Harmine at doses below

2.7 mg/kg produced minimal to no adverse events in healthy

volunteers, representing an encouraging step toward clinical

application (98). Therapeutic targeting of pathways that are largely

beta-cell specific, e.g. the IGFBP3/TMEM219 axis (83), would be

crucial to improve specificity. These advances in targeting specificity,

combined with approaches addressing overall beta-cell health,

provide a comprehensive framework for developing therapeutically

viable beta-cell regeneration strategies with acceptable safety profiles.
3.2 The proliferative beta-cell: what, when,
where?

A fundamental question in developing therapeutic beta-cell

expansion strategies concerns how regeneration may proceed

across the heterogeneous pancreatic landscape in diabetes (99–104).
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For instance, would regeneration in T1D primarily occur in regions

with residual beta-cells, in areas completely devoid of beta-cells, or

both? Immune infiltration adds additional complexity—regions with

active autoimmunity may not be permissive for regeneration despite

having residual beta cells, while areas where inflammation has

resolved might permit replication even with fewer remaining cells.

There is growing recognition of beta-cell heterogeneity, with distinct

subpopulations emerging throughout development, aging, and across

islet regions, exhibiting variations in molecular characteristics,

functional properties, and replicative potential (105–116). For

instance, in mice, cells expressing Flattop (Fltp) display a

functionally mature, post-mitotic phenotype, while Fltp- cells

represent the proliferative beta-cell subset (117). Similarly, CyTOF

mass cytometry revealed a small subpopulation of Ki67+ beta-cells in

human pancreas (118), suggesting that replicative heterogeneity

marks both rodent and human beta-cells. This is particularly

relevant for diabetes therapies, where identifying target beta-cell

subpopulations with high functionality and replicative potential

is crucial.

Beta-cell heterogeneity undergoes significant temporal

remodeling in response to metabolic stress during diabetes

progression. Transition to a replication-permissive state

represents one of the earliest responses to acute beta-cell stress,

along with functional compensation and activation of stress-

response and pro-survival pathways (119–122). Select beta-cell

subpopulations in diabetes recapitulate molecular features of the

more proliferative and immature neonatal beta-cells (116, 123–

126), suggesting these subsets could be optimal targets for

expansion. Emerging evidence shows that modest endoplasmic

reticulum stress (ER stress) drives beta-cell replication in response

to increased insulin demand, with beta-cells exhibiting an active

unfolded protein response (UPR) showing more proliferative

capacity (127). However, unresolved stress can eventually prevent

cell-cycle progression, instead inducing a pro-inflammatory

senescent state (99, 128).

Multiple studies have demonstrated the accumulation of

senescent beta-cell subpopulations in both T1D and T2D,

highlighting heterogeneous beta-cell proliferative capacity in

diabetes (89, 90, 99, 105, 129, 130). Unrelenting stress in diabetes

can cause irreversible cellular damage and cause cell-death. Agents

that successfully promote beta-cell replication in diabetes must

therefore simultaneously be able to mitigate stress, creating

optimal milieu for expansion. Emerging data suggests that T2D

islets exhibit enhanced responsiveness to proliferative agents.

Interestingly, Wang et al. demonstrated that the rare Ki67+ beta-

cells detectable in non-diabetic human pancreas were absent in T2D

(118), supporting the hypothesis that diabetic conditions impair the

ability of beta-cells to progress through cell-cycle. This apparent

contradiction may reflect different phases of the disease, with early

stress responses enhancing proliferative potential while chronic

stress ultimately blocks cell-cycle progression.

Heterogeneity of beta-cell replicative potential and the subtype

shifts observed in diabetes raise several questions (Figure 1B). First,

which beta-cell subpopulations represent optimal targets for

therapeutic expansion? Second, as most therapeutic candidates are
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tested in human islets from non-diabetic donors, question remains

whether these interventions would be effective in diabetic patients.

Finally, what impact does ongoing beta-cell expansion have on islet

function? Addressing these questions requires understanding how

beta-cell states and their replicative potential are dynamically

modulated in response to stress. Defining temporal evolution of

these populations can determine the optimal disease stage for

therapeutic intervention. Advances in whole-pancreas visualization

permit comprehensive temporal assessment of beta-cell expansion

following drug treatment in pre-clinical models (82, 131). Using

single-cell and spatial transcriptomic and proteomic approaches to

map molecular trajectories of beta-cell functional and proliferative

states at different disease stages will help decipher the optimal

therapeutic window and target beta-cell population(s) to boost

beta-cell expansion (106, 118, 132–136).
4 Next-Generation approaches for
beta-cell regeneration

The future of beta-cell expansion approaches is rapidly

evolving toward combinatorial strategies and precision

therapies, warranting platforms that enhance target discovery

and therapeutic specificity. Gene-editing platforms such as

CRISPR have emerged as transformative tools enabling targeted

modulation of gene expression, high-throughput screens, and

disease modeling (137, 138). Recent proof-of-principle work has

leveraged gene-editing tools to induce human beta-cell expansion

by altering the epigenetic state and expression of specific cell-cycle

modulators (139, 140). Recent work has also demonstrated the

feasibility of using CRISPR to target regulatory genomic regions in

primary human islets to modulate gene expression and islet

function, an important advancement considering the challenges

of delivering CRISPR components into quiescent, post-mitotic

cells like human beta-cells (141, 142). Genome-wide CRISPR

screens have also been used to identify critical regulators of

beta-cell function and immune vulnerability (143, 144).

Translating these findings to clinical applications requires

careful validation in human beta-cells. Advances in long-term

culturing of live pancreatic tissue slices now allow study of human

beta-cells within their native microenvironment (145). This

platform enables in situ lineage tracing to monitor beta-cell

formation in real-time, assess therapeutic candidates in disease

context, and evaluate off-target effects alongside islet function

(132, 146). These technologies offer unprecedented opportunities

to develop personalized regenerative approaches for diabetes,

potentially transforming treatment paradigms.
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