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Alzheimer’s disease-a review
of mechanistic studies
Shilei Wang1, Yuqing Shi1, Rui Xin1, Hailan Kang1,
Huazhong Xiong2 and Jixiang Ren1,2*

1College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun,
Jilin, China, 2Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
The association between metabolic syndrome (MetS) and Alzheimer’s disease (AD)

has attracted widespread attention; nevertheless, the precise mechanism of action

between the two is not yet fully elucidated. This review systematically explores the

complex mechanisms of insulin resistance (IR) in MetS and AD. We first detail the

intrinsic mechanisms of insulin resistance and emphasize its central role in the

pathophysiology of MetS. Further, we reveal the underlying mechanisms by which

insulin resistance in turn triggers AD through a multidimensional pathway that

promotes the accumulation of pathological products, induces blood-brain barrier

dysfunction, impairs neuroplasticity, induces neuroinflammatory responses,

aberrantly activates the renin-angiotensin-aldosterone system, and exacerbates

oxidative stress. In addition, we summarize potential strategies for targeting IR in

AD treatment and demonstrate the promising prospects for improving insulin

resistance in promoting cognitive recovery. This study offers a novel theoretical

framework for elucidating the intricate relationship between MetS and AD.

Furthermore, it provides a scientific foundation for the formulation of preventive

and therapeutic strategies for metabolic and neurodegenerative diseases.
KEYWORDS

metabolic syndrome, insulin resistance, cognitive impairment, Alzheimer’s disease,
mechanism research
1 Introduction

Insulin resistance (IR), as a pathological state in which the body’s response to the

physiological effects of insulin is reduced, has become a central issue in the field of modern

metabolic diseases (1, 2). This metabolic disorder not only impairs the core physiological

function of insulin in regulating glucose uptake and utilization but also extensively

interferes with key metabolic pathways such as lipid metabolism and protein

homeostasis, thus providing a common pathophysiological basis for numerous metabolic

diseases (3).
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With the acceleration of urbanization, the prevalence of

sedentary behavior, and the global spread of high-calorie dietary

patterns, the prevalence of MetS has continued to increase, and it

has become a major challenge that threatens the security of global

public health (4). Epidemiological research indicates a prevalence

rate of MetS at 41.8% within the United States, while in China, the

figure stands at 33.9% (5, 6), highlighting its widespread prevalence.

MetS is a clinical syndrome with IR as the core pathogenesis,

characterized by central obesity, elevated blood pressure,

abnormal fasting glucose, and lipid metabolism disorders (7, 8).

These metabolic abnormalities significantly increase the risk of

cardiovascular disease (9–11).

With the acceleration of global population aging, the incidence

of dementia, represented by Alzheimer’s disease (AD), has shown

exponential growth. Epidemiological research reveals that presently,

over 55 million individuals are afflicted with dementia globally, with

projections anticipating that this figure will surpass 130 million by

the year 2050 (https://www.who.int/zh). AD, as a major subtype of

dementia, accounts for about 60-70% of all cases, and its progressive

neurodegenerative lesions not only pose a serious threat to the

quality of life of the elderly population but also become a significant

burden to the public health system (12). However, the overall

efficacy of current clinical therapeutic regimens is still

unsatisfactory (13), making the identification and characterization

of AD-related risk factors a priority for prevention and control

strategies - targeting and modifying interventional risk factors, may

provide a key target for intervention in the disease process. Notably,

prior research have concentrated on the impact of an individual

metabolic factor on AD, ignoring the fact that different metabolic

factors might collectively or synergistically contribute to the

heightened likelihood of developing AD (14). Therefore, studies

targeting the MetS as a group of risk factors may be more helpful in

the prevention and management of AD.

Accumulating epidemiological and clinical research evidence

shows that MetS contributes significantly to the progression of AD

(15–17). Particularly in older age groups, patients with MetS are

more likely to develop AD, and this trend is more pronounced in

women (18). The close relationship between these two diseases is

centered on the fulcrum of IR (19), which is not only a core

pathological mechanism of MetS, but also closely related to the

pathological process of AD (20, 21). Therefore, this review aims to

thoroughly analyze the multidimensional mechanism of IR as a key

pathological hub in the association between MetS and AD. By

integrating multidisciplinary evidence from molecular biology,

neuropathology, and clinical medicine, the cascade response

network between IR-MetS-AD will be systematically elucidated,

and potential preventive and therapeutic strategies will be explored.
2 Methods

2.1 Literature search criteria

Databases: A systematic search was conducted in PubMed, Web

of Science, and Scopus.
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Search Terms:
PubMed: (“Insulin Resistance”[MeSH] OR insulin resistance)

AND (“Metabolic Syndrome”[MeSH] OR metabolic

syndrome) AND (“Alzheimer ’s disease”[MeSH] OR

Alzheimer’s disease) AND (“Cognitive impairment”[MeSH]

OR cognitive impairment) AND (mechanism OR pathogenesis

OR molecular pathway).

Web of Science: TS=(insulin resistance) AND TS=(metabolic

syndrome) AND TS=(Alzheimer’s disease) AND TS=

(mechanism OR pathogenesis).

Scopus: TITLE-ABS-KEY(insulin resistance) AND TITLE-

ABS-KEY(metabolic syndrome) AND TITLE-ABS-KEY

(Alzheimer disease) AND TITLE-ABS-KEY(cognitive

impairment OR mild cognitive impairment OR cognitive

dysfunction) AND TITLE-ABS-KEY(mechanism).

Language/Time: English-language studies published up to

August 2025 were prioritized.
2.2 Inclusion/exclusion criteria

Inclusion criteria:
Original research articles, reviews, or meta-analyses that

explore the role of insulin resistance (IR) as a bridge between

metabolic syndrome (MetS) and Alzheimer’s disease (AD).

Studies involving IR and its relationship with cognitive

funct ion, neurodegenerat ion, or AD pathological

mechanisms (e.g., Ab deposition, Tau phosphorylation,

blood-brain barrier dysfunction, RAAS system activation,

oxidative stress, neuroinflammation, etc.).
Exclusion criteria:
Studies based on non-mammalian models.

Case reports, conference abstracts, and studies lacking full-text

availability or complete data.
3 Pathophysiologic mechanisms of
insulin resistance

3.1 Insulin signaling

The binding of insulin to the insulin receptor initiates a sequence

of subsequent reactions, including the recruitment and

phosphorylation of various proteins. The composition of these

proteins is primarily constituted by IRS, PI3K, and AKT subtypes,

which serve as the initiating agents for a series of insulin responses

(22). The activation of AKT manifests diverse characteristics that

result in varied distal signaling responses to insulin in target tissues
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(Figure 1). (a) In the complex metabolic regulatory network, AKT

substrates include glycogen synthase kinase-3(GSK3), and

phosphorylation-inactivation of GSK3 is a pivotal junction in the

glycogen synthesis (23). Additionally, the transcription factor

Forkhead Box O1 (FOXO1) undergoes nucleoplasmic shuttling

facilitated by AKT kinase phosphorylation, leading to inhibition of

its transcriptional activity, which represses the expression of

glycoheterotrophic genes (24, 25). (b) Tuberous Sclerosis Complex

1/2 (TSC1/2) with Proline-Rich Akt Substrate 40 (PRAS40) acts as a

negative regulator of the mTORC1 signaling pathway, modulating

protein translation initiation and lipid biosynthesis pathways by

inhibiting mTORC1 activity (26, 27). (c) Dephosphorylation of

acetyl-CoA carboxylase (ACC) and activation of ATP citrate lyase

(ACLY) phosphorylation lead to a constitutive increase in de novo

lipogenesis (DNL) (28, 29). (d) Phosphodiesterase 3B (PDE3B)

maintains lipid homeostasis and participates in the negative

regulation of adipocyte lipolysis by inhibiting adipose triglyceride

lipase (ATGL) and hormone-sensitive lipase (HSL) activities (30, 31).

In summary, insulin plays a pivotal role in the management of

glucose and lipid balance. Following a meal, insulin secreted by

pancreatic b-cells instigates anabolic programs while impeding

catabolic pathways. In glucose metabolism, insulin stimulates

glucose uptake in skeletal muscle, hepar, fatty tissue and other

tissues, and accelerates glycogen and lipid synthesis. Furthermore,

insulin effectively regulates glucose output from the liver by down-

regulating gluconeogenic gene expression and inhibiting lipolysis,

thereby maintaining energy balance in the body.
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3.2 Mechanisms of insulin resistance

Insulin resistance is a complex pathophysiological process

rooted in genetic susceptibility, initiated by core metabolic

disturbances, and progressively amplified and sustained through

cellular stress and systemic inflammation. Its underlying

mechanisms can be systematically elaborated from the following

three interrelated levels.

3.2.1 Core drivers: genetic susceptibility and
ectopic lipid deposition

The development of insulin resistance (IR) is fundamentally

grounded in genetic susceptibility. Clinical data from 220

Caucasian and 36 African American children and their parents

revealed that children with at least one IR-affected parent exhibited

significantly elevated insulin levels (32). Genetic background

influences insulin sensitivity through multiple pathways, including:

monogenic mutations (e.g., in AKT2 and INSR genes) that lead to

severe insulin resistance phenotypes (33, 34); polygenic inheritance

resulting from the cumulative small effects of multiple genes, such as

PLA2G6 (which enhances sensitivity) and VGLL3 (which reduces

sensitivity), identified through genome-wide association studies (35);

and epigenetic modifications (e.g., DNA methylation) that regulate

gene expression without altering the DNA sequence (36, 37).

Against this backdrop of genetic susceptibility, ectopic lipid

deposition represents the most critical metabolic driver of insulin

resistance. Although obesity is a well-established risk factor for type
FIGURE 1

Diagram of insulin signaling mechanism.
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2 diabetes mellitus (T2DM) (38), the crux of its pathophysiology lies

in the abnormal accumulation of lipids in non-adipose tissues such

as the liver and skeletal muscle (39–41). Studies have demonstrated

a significant positive correlation between intrahepatic lipid content

and the insulin resistance index (HOMA-IR), while weight loss

interventions that reduce hepatic fat can effectively reverse hepatic

insulin resistance and improve hyperglycemia (42). This

lipotoxicity directly interferes with insulin signaling pathways,

thereby constituting the initiating event in the development of

insulin resistance.

3.2.2 Key nexus: cellular stress and dysfunction
Core metabolic disturbances triggered by ectopic lipid

deposition and nutrient excess further activate cellular stress

responses. These responses act as critical pathological hubs,

closely linking upstream metabolic signals to downstream

impairment of insulin signaling.

Mitochondrial Dysfunction and Oxidative Stress: Mitochondria

are the primary source of superoxide and hydrogen peroxide (43).

Excessive mitochondrial ROS production promotes a pro-oxidative

shift in redox homeostasis, leading to disrupted redox signaling and

oxidative damage, collectively termed oxidative stress (44), which

contributes to the pathogenesis of insulin resistance and diabetes

(45). A cross-sectional study involving overweight, obese, and

normal-weight individuals demonstrated that oxidative stress

levels were significantly positively correlated with the degree of

insulin resistance, particularly in overweight and obese subjects.

Specifically, oxidative stress markers such as total oxidant capacity

(TOC) were positively correlated with the insulin resistance index

(HOMA-IR), whereas total antioxidant capacity (TAC) showed a

negative correlation with HOMA-IR (46).

Endoplasmic Reticulum Stress: The native structure of insulin is

formed within the endoplasmic reticulum (ER); thus, proper

maintenance of ER homeostasis is essential for the metabolic

stability and function of pancreatic b-cells (47, 48). Studies using
cell cultures and mouse models have revealed that obesity induces

ER stress, which suppresses insulin receptor signaling through the

overactivation of c-Jun N-terminal kinase (JNK) (49). Clinical

research has further shown that serum ER stress markers are

significantly elevated in patients with type 2 diabetes mellitus

(T2DM) compared to healthy individuals, and their levels are

positively correlated with the insulin resistance index (HOMA-

IR) (50).

3.2.3 Systemic amplification: environmental
factors and metaflammation

Cellular stress and dysfunction are not isolated events; rather,

under the synergistic influence of adverse environmental factors,

they are amplified into systemic metaflammation, ultimately

forming a self-reinforcing vicious cycle.

3.2.3.1 Synergistic effects of environmental factors

Multiple environmental exposures can significantly exacerbate

insulin resistance. For instance, Western dietary patterns—
Frontiers in Endocrinology 04
characterized by high consumption of red meat, sugar, and

saturated fats—directly promote ectopic lipid deposition and

inflammatory responses. In contrast, healthier dietary patterns

such as the Mediterranean diet have demonstrated clear

protective effects (42, 51, 52). Additionally, air pollution,

including long-term exposure to particulate matter (e.g., PM2.5,

PM10), is closely associated with the onset and progression of

insulin resistance, with its adverse effects being partially mitigated

by physical activity (53–55). Concurrently, stressors in the home,

workplace, and community are linked to accelerated aging and

alterations in metabolic and immune function (56). For example, a

cohort study demonstrated an independent association between

occupational stress and insulin resistance (57). Similarly, animal

studies have revealed that stress increases both insulin secretion and

insulin resistance (58).

3.2.3.2 Metaflammation

Metaflammation represents the core mechanism through which

insulin resistance evolves from localized cellular damage into a

systemic disease. Nutrient excess and adipocyte hypertrophy recruit

and activate immune cells—such as macrophages and T cells—to

infiltrate adipose tissue, where they secrete large quantities of pro-

inflammatory cytokines (e.g., TNF-a, IL-1b, IL-6) (59, 60). This

chronic, low-grade inflammatory state accelerates the spillover of

lipids from adipose tissue into skeletal muscle and liver, leading to

ectopic lipid deposition and insulin resistance in these tissues (61).

Consequently, metaflammation acts not only as a downstream

consequence of cellular stress but also as a key upstream driver

that perpetuates and amplifies insulin resistance, establishing a

difficult-to-break vicious cycle.
4 Insulin resistance and metabolic
syndrome

The onset and progression of MetS is a multifactorial and

complex process, in which IR plays a central role (3, 62), and

there is a close correlation with other components of MetS.
4.1 Obesity

A vicious cycle has been established between IR and obesity,

which are reciprocally causal. IR and its concomitant

hyperinsulinemia trigger excessive fat storage, imbalanced energy

metabolism, and disrupted neuroendocrine regulation. These

factors act synergistically to promote the development and

progression of obesity (63–65). A clinical study lends empirical

support to this theory, demonstrating that specific, partial

inhibition of insulin production is effective in alleviating high-fat

diet-induced obesity (66). However, obesity itself has been shown to

exacerbate IR (59), in which visceral adipose tissue plays a central

role in the induction of IR (67), thereby consolidating a metabolic

disorder that is difficult to reverse.
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4.2 Hyperglycemia

Insulin acts a crucial regulatory part in the preservation of

glucose homeostasis, including glucose uptake, gluconeogenesis and

other physiological processes (68–70). However, in states of IR, the

capacity of insulin to regulate blood glucose is markedly

compromised (71). Specifically, impairment of the insulin

signaling pathway hinders the translocation of glucose transporter

proteins (e.g., GLUT4) to the cell membrane, which in turn reduces

the efficiency of cellular glucose uptake (72). Furthermore, the

liver’s increased production and secretion of glucose, prompted

by IR, contributes to the exacerbation of blood glucose levels (73).
4.3 Abnormalities of lipid metabolism

In a state of IR, adipose tissue becomes less sensitive to insulin’s

anti-lipolytic action, which consequently results in a heightened

secretion of free fatty acids (FFA) (74). This increased influx of FFA

into the liver and muscle tissue promotes triglyceride synthesis (75).

A study conducted on non-obese men revealed that individuals with

low insulin sensitivity and low lipocalin levels exhibited an elevated

risk of developing fatty liver disease and dyslipidemia (76). A

separate study further corroborates the notion that hepatic IR

alone is sufficient to induce dyslipidemia, thereby accelerating the

onset of atherosclerosis associated with the MetS (77). Conversely,

abnormalities in lipid metabolism, especially the accumulation of

intracellular triglycerides, activate novel protein kinase C, which

impairs insulin signaling and has been implicated as one of the key

mechanisms of IR (78).
4.4 Hypertension

IR impacts glucose and lipid metabolism, as well as the RAAS,

which contributes to elevated vascular tension (79). A cross-

sectional analysis indicated that Participants with prehypertension

tend to have higher insulin levels and more significant IR compared

to healthy individuals (80). In such cases, compensatory

hyperinsulinemia in insulin-resistant individuals has been

observed to intensify salt reabsorption in the renal tubules,

leading to salt excess and increased vascular tension (81).

Furthermore, excessive activat ion of RAAS has been

demonstrated to exert inhibitory effects on insulin signaling,

which may further exacerbate IR, thereby creating a vicious

cycle (82).

In summary, IR occupies a central position in the

pathophysiologic mechanisms of MetS. It exerts a substantial

influence on the development of MetS components by broadly

impacting numerous metabolic pathways and physiological

processes. Moreover, it functions as a pivotal factor in

perpetuating the metabolic disordered state. Consequently, the
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development of intervention strategies targeting IR is of particular

importance, not only for the prevention of MetS but also for the

treatment of MetS and its related diseases.
5 Association of metabolic syndrome
with Alzheimer’s disease

5.1 Impact of metabolic syndrome on
cognitive functioning

Several evidence indicates that metabolic syndrome (MetS)

exerts a significant adverse impact on cognitive function. At the

population level, a systematic review and dose-response meta-

analysis of 30 studies provides robust support: 17 of these studies

explicitly report that the presence of MetS accelerates cognitive

decline, although a minority (2 studies) present opposing findings

(83). A larger neuroimaging study involving over 37,000

participants further elucidates the potential neuropathological

underpinnings, revealing significant associations between MetS

and reduced brain volume, increased cerebrovascular pathology,

and poorer performance across multiple cognitive domains (84). At

the mechanistic level, animal model studies offer direct biological

evidence. Research demonstrates that diet-induced MetS in animals

not only leads to glucolipid metabolic disturbances but also results

in significant impairments in learning and memory, accompanied

by pathological alterations in the hippocampus (85, 86).
5.2 Epidemiologic studies of metabolic
syndrome and Alzheimer’s disease risk

Multiple large-scale population studies have consistently

demonstrated that metabolic syndrome and its individual

components are significantly associated with an increased risk of

dementia. Analyzing in depth a large dataset covering 466,788

individuals, the results of the study revealed a strong association

between the MetS and its components with a markedly higher risk

of dementia. Specifically, individuals with MetS faced a 25%

increased risk of all-cause dementia, with a significant 50%

increased risk of vascular dementia (VD) (87). In addition, a

long-term follow-up study of nearly 200,000 elderly participants

without dementia further confirmed that MetS was linked to a 12%

elevated risk of dementia onset, and this risk association showed a

more pronounced trend with longer follow-up (88). Another

analysis based on large-scale health data from people aged 50 to

69 years in Korea also found that MetS and its early states were

remarkably connected with an enhanced incidence of AD, with a

20% higher risk of developing AD in the early MetS group

compared with the non-MetS group, and a further increase in

risk to 39% in the MetS group (89). Collectively, these findings

underscore the complexity of metabolic syndrome (MetS) as a risk
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factor for dementia. Not only does MetS independently influence

Alzheimer’s disease (AD) and vascular dementia (VaD), but it may

also play a central role in mixed dementia, where these two

pathologies intersect. This critical area warrants further in-depth

investigation in future research.
5.3 Direct and indirect associations
between components of the metabolic
syndrome and Alzheimer’s disease

5.3.1 Obesity and Alzheimer’s disease
Studies have shown that obesity in midlife increases the risk of

developing AD independently of other factors. However, in the later

stages of life, especially those obese individuals who are

metabolically healthy may exhibit some protection against AD

pathology (90). Obesity-induced chronic peripheral inflammation

is not limited to other parts of the body, but may also spread to the

brain, triggering a neuroinflammatory response, which in turn

accelerates the course of cognitive impairment (91–93). In

addition, obesity-induced leptin resistance further exacerbates

Cognitive impairment and the advancement of AD (94).

Nonetheless, existing studies present some complexity: some

evidence suggests that obesity in midlife may play a role as a

protective factor for AD, whereas midlife underweight status

might contribute to an increased risk of dementia (95).

5.3.2 Hyperglycemia and Alzheimer’s disease
Cognitive dysfunction is increasingly being recognized by the

academic community as an important comorbidity of diabetes (96).

A long-term cohort analysis, upon correction for potential

confounders like age, sex, and educational attainment, disclosed

that diabetic patients had a 65% higher risk of developing AD

compared to the non-diabetic group (97). Another cohort study

further confirmed that the risk ratio (HR) for AD was significantly

higher in diabetic patients, especially in the group of older diabetic

women (98). In addition, the drugs traditionally used to treat type 2

diabetes showed activity in improving the cognitive health of

patients with AD, which also confirmed the similarity of the

pathogenesis of these two diseases (99). In recent years, with the

advancing depth of research, there is more and more evidence that

AD may be a brain-specific type of diabetes mellitus, the so-called

“type 3 diabetes mellitus” (100, 101).

5.3.3 Dyslipidemia and Alzheimer’s disease
The connection between triglycerides and AD risk may be

modulated by age, showing a complex nonlinear pattern.

Specifically, higher triglyceride levels were markedly associated

with an added risk of dementia in people under 60 years of age

(102). However, in older populations, this relationship is reversed,

and a reduced likelihood of AD has been associated with high

triglyceride levels (102, 103). Furthermore, HDL can reduce the risk

of AD due to its vasculoprotective function, which is mediated by
Frontiers in Endocrinology 06
mechanisms including increased Ab clearance and induction of

endothelial nitric oxide production (104). On the other hand,

elevated cholesterol levels are regarded as a possible risk factor for

the onset of AD (105). Cholesterol levels are generally higher in

patients with AD compared to healthy individuals and are strongly

associated with the accumulation of phosphorylated tau in the brain

(106). Notably, an 8-year cohort study revealed an association

between sustained statin use and a significantly lower risk of

incident AD (107). However, there is also strong evidence that

statin use is not effective in preventing memory disorders in the

elderly at risk for vascular disease (108).

5.3.4 Hypertension and Alzheimer’s disease
Hyper t ens ion shows a pos i t i ve corr e l a t ion wi th

neuropathological changes in Alzheimer’s disease, which is closely

associated with an increase in plaques and neurofibrillary tangles in

the brain, and has emerged as a significant contributing factor for

the disease (109). Notably, hypertensive patients in the middle age

period face a higher risk of cognitive impairment compared to the

elderly population (110). Specifically, midlife stage 1 and stage 2

systolic hypertension are associated with an increased risk of AD of

18% and 25%, respectively (111). In response to this situation, the

use of antihypertensive drugs is particularly important. Pertinent

research has indicated that antihypertensive medications are

efficacious in lowering the risk of AD among hypertensive

individuals. To illustrate, a meta-analysis in a prospective cohort

study revealed that compared with hypertensive people who did not

use antihypertensive medication, those who regularly used

antihypertensive medication had a 12% lower risk of dementia

and a 16% lower risk of AD (112).

Overall, there is a clear link between components of the MetS

and AD, with hyperglycemia having a particularly strong effect on

AD. However, when assessing the impact of the MetS on AD risk, It

is vital to take full account of the impact of age. In particular, when

exploring the relationship between obesity dyslipidemia and AD,

the influence of the age factor is particularly important and should

not be ignored.
6 Insulin resistance and Alzheimer’s
disease

6.1 Sources of insulin in the brain

Insulin levels in cerebrospinal fluid (CSF) are significantly lower

than those in plasma, yet a strong correlation exists between the

two, suggesting that brain insulin primarily originates from

circulating pancreatic insulin (113). Insulin enters the central

nervous system (CNS) via selective, saturable transport

mechanisms across the blood-brain barrier (BBB) capillary

endothelial cells (114, 115). Additionally, the choroid plexus—a

key structure in CSF production—has been identified as another
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important source of insulin within the CNS (116). Recent studies

have further detected insulin expression in the dorsal vagal complex

(DVC) of the hindbrain (117), lending additional support to the

possibility of local insulin synthesis in the brain.
6.2 Definition of brain insulin resistance

Brain insulin resistance is characterized by a diminished response

to insulin signaling within the central nervous system (CNS),

primarily involving neurons and/or glial cells. The underlying

mechanisms include downregulation of insulin receptors, impaired

insulin-receptor binding, or defective activation of insulin signaling

cascades. At the cellular level, this dysfunction may manifest as

impaired neuroplasticity, altered receptor modulation, or disrupted

neurotransmitter release in neurons. Alternatively, it may directly

impair insulin-dependent metabolic processes, such as glucose uptake

or glycogen synthesis. Functionally, brain insulin resistance can

present as dysregulation of central brain energy metabolism and

peripheral glucolipid metabolism, or deficits in cognitive and

emotional functions (118, 119).
6.3 Role of insulin signaling pathways in
brain function

I n t h e c omp l e x n e two r k o f i n s u l i n s i g n a l i n g ,

phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt)

play indispensable roles as key kinases. They not only regulate

neuronal plasticity and survival but also participate in

neurotransmitter transport, which is essential for maintaining

normal neural function (120, 121). In particular, brain areas

closely connected with cognitive functions, such as the

hippocampus, highly express insulin receptors, underscoring the

importance of insulin in these regions (122, 123). The PI3K/Akt

sequential response further influences various subsequent

pathways, among them mTORC1, GSK3b, and the FoxO group

of transcription factors, which are pivotal in in basic brain function

(124). For instance, protein synthesis orchestrated by mTORC1 is

pivotal for neural adaptability and the regulation of autophagic

processes; however, misregulation of this process can precipitate

neuronal apoptosis and the inception of neurodegenerative

disorders (125–127). Furthermore, GSK3b is instrumental in

governing various facets of neuronal activity, including

neurogenesis and synaptic function (128, 129), and its ability to

phosphorylate tau proteins and increase the amount of b-amyloid

has been closely linked to the pathogenesis of AD (130, 131).

FOXO3, a crucial component of the FOXO gene family, is

extensively present in various organs and tissues of the human

body. Changes in its protein expression level and post-translational

modification status is crucial for upholding the stability of the

body’s internal milieu and mitigating aging-related pathologies

(132). In addition, insulin activates the MAPK cascade response,

which regulates cell proliferation, differentiation, and apoptosis, and
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contributes to the maintenance of normal neuronal cell function

and synaptic plasticity (133, 134). Collectively, these investigations

indicate a profound and intricate association between the insulin

signaling mechanism and the functionality of neurons and

synapses. In summary, as described in the literature, insulin

signaling is widely distributed throughout the brain and

participates in multiple neurophysiological processes. It is closely

associated with the functions of neurons, synapses, and

neurotransmitters (135).
6.4 Insulin resistance in Alzheimer’s disease
animal models

In the 3xTg-AD mouse model, Alzheimer ’s disease

neuropathology has been shown to impair insulin signaling

pathways at the blood-brain barrier (BBB), specifically manifested

as diminished activation of vascular insulin receptors (136). Further

studies indicate that in this model, central nervous system insulin

resistance emerges earlier and progresses more rapidly than

peripheral insulin resistance (137). Notably, dietary restriction

interventions can improve recognition deficits in 3xTg-AD mice.

The underlying mechanism may involve reduced insulin secretion,

which subsequently activates GSK-3b, thereby promoting

hippocampal neuronal differentiation and maturation, ultimately

contributing to the recovery of learning and memory functions

(138). To more directly investigate the causal relationship between

insulin resistance and AD, researchers developed the APP/IR-dKI

double knockout mouse model through hybridization techniques.

This model exhibits systemic insulin resistance without persistent

hyperglycemia. Studies found that APP/IR-dKI mice display

premature onset of cognitive dysfunction, providing compelling

evidence for the hypothesis that “insulin resistance promotes

cognitive impairment” (139). Additionally, in APP/PS1 transgenic

mice, high-fat diets significantly accelerate cognitive deficits and

AD-related pathology progression by inducing obesity and insulin

resistance (140). Similarly, an insulin-resistant state has been

observed in the brains of 5xFAD transgenic mice, with

hippocampal levels of phosphorylated PI3K and phosphorylated

AKT significantly lower than in wild-type controls (141). In

chemically induced models, AD models established by

intracerebroventricular injection of low-dose streptozotocin show

significantly reduced expression of phosphorylated insulin

receptors and phosphorylated Akt in the brain. Intranasal insulin

therapy effectively ameliorates this insulin signaling impairment

and associated cognitive deficits (142).

In summary, extensive animal model studies consistently

demonstrate that Alzheimer’s disease neuropathology is

frequently accompanied by brain insulin resistance, with

substantial evidence supporting this association (143). However,

despite this compelling evidence, establishing a definitive causal

relationship between brain insulin resistance and AD

neuropathology in animal models remains a formidable

scientific challenge.
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6.5 Regulation of insulin metabolism

The half-life of insulin in the human body is extremely short,

only about 4–6 minutes, and its metabolic homeostasis is mainly

regulated by the insulin-degrading enzyme (IDE) (144). Notably,

amyloid-beta (Ab) and insulin are both substrates of IDE, and when

IDE dysfunction occurs, it not only leads to hyperinsulinemia and

glucose intolerance but also triggers an abnormal accumulation of

endogenous Ab in the brain (145), which in turn affects normal

neurological function.
6.6 Cell-type-specific effects of insulin
resistance in the brain

6.6.1 Neurons
Insulin resistance leads to a significantly reduced responsiveness

of neurons to insulin, manifested as mitochondrial dysfunction,

decreased glucose metabolism, and elevated lactate levels. This

metabolic abnormality prompts neurons to shift toward glycolysis

for energy production, resulting in compensatory metabolic

reprogramming. In the pathological progression of Alzheimer’s

disease (AD), insulin resistance not only impairs neuronal insulin

signaling but also exacerbates metabolic disturbances, thereby

accelerating disease advancement (146). In vitro experiments

further demonstrate that insulin resistance markedly

compromises neuronal metabolic efficiency, leading to increased

oxidative stress, reduced neuronal activity, and a decline in

dopaminergic neuron count (147). Additionally, insulin resistance

induces synaptic insulin resistance through a ubiquitination-

dependent mechanism of synaptic protein degradation, which in

turn impairs synaptic plasticity and cognitive function (148).

6.6.2 Microglia
Insulin resistance impairs the metabolic homeostasis and

immunoregulatory functions of microglia. Studies have

demonstrated that insulin signaling in microglia is essential for

maintaining metabolic balance and immune regulation, whereas

insulin resistance disrupts these critical functions, leading to

reduced Ab clearance and enhanced neuroinflammation.

Additionally, insulin resistance induces metabolic reprogramming

in microglia, characterized by increased glycolysis (149). In high-fat

diet (HFD)-induced models of insulin resistance, microglial

autophagy is significantly suppressed, indicating that insulin

resistance exacerbates neurodegenerative pathology by interfering

with cellular clearance mechanisms (150). Collectively, these

findings reveal that insulin resistance affects microglial function

through multiple pathways, thereby playing a pivotal role in the

pathogenesis of Alzheimer’s disease.

6.6.3 Astrocytes
Astrocytes are essential for brain energy metabolism and exhibit

a loss of homeostatic functions in Alzheimer’s disease (AD), which

may contribute to neurodegeneration. Insulin resistance leads to

impaired glucose uptake and reduced glycogen synthesis in
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astrocytes, thereby disrupting brain energy homeostasis (119).

Furthermore, insulin resistance interferes with mitochondrial

metabolism in astrocytes, manifested as abnormal mitochondrial

responses to glucose. This dysfunction may result in neurovascular

coupling impairment, further compromising the coordination

between cerebral blood flow and glucose metabolism (151).

6.6.4 Endothelial cells
Endothelial cells in the brain are critical components of the

blood-brain barrier (BBB), playing a central role in maintaining

brain microenvironmental homeostasis, regulating substance

transport, and controlling cerebral blood flow (152, 153). Damage

to endothelial cells results in the loss of tight junctions and

increased barrier permeability, leading to insufficient cerebral

blood perfusion, microhemorrhages, and infiltration of neurotoxic

substances (154). Such damage can manifest as early as the initial

stages of Alzheimer’s disease (AD) (155). Insulin resistance affects

the unique properties of brain endothelial cells, rendering them

more susceptible to oxidative stress. While moderate oxidative

stress is necessary for insulin signaling, excessive oxidative stress

exerts detrimental effects (156).

In summary, insulin resistance comprehensively impairs brain

cell function through the synergistic actions of multiple cell types

and pathways—including metabolic reprogramming, immune

dysregulation, barrier disruption, and proteostasis imbalance—

thereby establishing a core pathological foundation for AD

pathogenesis. Targeting cell-specific insulin signaling pathways

may represent a key strategy for intervening in AD progression.
6.7 Possible mechanisms by which insulin
resistance affects Alzheimer’s disease

6.7.1 Increase in pathologic products
Abnormal aggregation of Ab and Tau proteins has become a

typical pathological hallmark of AD (157–159). Insulin plays a key

role in regulating amyloid precursor protein (APP) metabolism by

promoting its degradation by the non-amyloid pathway, a process

that involves both Gsk-3b-dependent and non-dependent

mechanisms (160). However, IR is closely associated with

amyloidosis and aberrant phosphorylation of Tau proteins in

rodent and human brains (161). Research suggests a substantial

association between heightened insulin resistance levels and

augmented Pittsburgh compound B (PiB)uptake in the frontal

and temporal regions, reflecting an increase in amyloid deposition

(162). Further evidence suggests that IR may precede the onset of

Ab lesions, and a 15-year-long follow-up study revealed a

significant association between midlife IR and increased cerebral

amyloid load in later life (20). Furthermore, IR is not only

associated with cognitive decline but also positively correlated

with the accumulation of Tau biomarkers in cerebrospinal fluid

(CSF) (163). Mechanistically, insulin affects Tau protein

metabolism by regulating GSK3b activity, which in turn affects

Tau protein levels (164). Notably, in IR states, peripheral

hyperinsulinemia significantly inhibits insulin-degrading enzyme
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(IDE) activity, leading to an abnormal accumulation of Ab
oligomers in the brain, which further exacerbates the pathological

process of AD (165).

6.7.2 Blood-brain barrier dysfunction
Blood-brain barrier (BBB) dysfunction is increasingly

recognized as a critical factor in the pathophysiology of

Alzheimer’s disease (AD), particularly during the early stages of

the disease (166, 167). Insulin resistance, which is prevalent in AD

patients, is closely associated with impaired BBB integrity. Studies

have demonstrated a synergistic interaction between insulin

resistance and APOE genotype, jointly influencing BBB

permeability, which may represent a key component in AD

pathogenesis (168). Conversely, functional deficits in insulin

receptors (INSR) at the BBB are correlated with amyloid-b
pathology, significantly contributing to cerebral insulin resistance

in AD (136). These findings suggest that BBB dysfunction not only

serves as an early biomarker of AD but may also play a pivotal role

in disease progression by disrupting cerebral insulin signaling and

amyloid-b metabolism.

6.7.3 Synaptic plasticity impairment
IR causes significant damage to synaptic plasticity and integrity.

Obust evidence supporting this notion is furnished by the research

conducted by Claudia A Grillo and colleagues, who adeptly

constructed a model of hippocampus-specific insulin resistance.

Their model efficiently attenuated insulin receptor expression

within the rat hippocampus, leading to a notable decline in

hippocampal neuroplasticity (169). In addition, it has been shown

that insulin receptor signaling plays a key role in maintaining

synaptic density, and once this signaling is impaired, it leads to

the loss of synapses, a phenomenon that fully illustrates the crucial

role of insulin in synapse development and maintenance (170).

6.7.4 Neuroinflammation
The persistence of neuroinflammation, one of the key

pathological mechanisms of AD, has been shown to lead to

neuronal damage, and synaptic dysfunction, and further

exacerbate pathological changes in the brain (171, 172). In-depth

studies revealed a substantial direct association between microglial

activation and AD-related pathological products, a finding that

clarifies the strong link between neuroinflammation and the

severity of AD (173). By simulating the state of hyperinsulinemia

through in vitro experiments, researchers treated primary cultured

microglia and BV2 cell lines with insulin and found that

hyperinsulinemia not only stimulated microglia proliferation and

drove them to M1-type polarization by promoting the production

of pro-inflammatory factors, but also caused significant impairment

of the membrane translocation function of GLUT4 (174). In

addition, aberrant activation of neuroinflammation in the context

of IR has been shown to further accelerate the progression of

AD (175).
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6.7.5 Renin-angiotensin-aldosterone activation
IR activates RAAS, and excessive activity of this system in the

brain is closely linked to the initiation and advancement of AD

(176, 177). Studies have shown that angiotensin-converting enzyme

(ACE) levels in cerebrospinal fluid are elevated among individuals

affected by AD, a finding that further supports the important role of

RAAS in AD pathology (178). In addition, patients taking

angiotensin receptor blockers (ARBs) showed age-related

reductions in cerebrospinal fluid Ab levels, suggesting a potential

role for ARBs in modulating markers of AD-related pathology

(179). Strikingly, however, an independent study drew conclusions

that differed significantly from the previous findings, demonstrating

that cerebrospinal fluid and serum protein levels and activity of

ACE tended to be reduced in patients with AD compared to

controls (180). This paradoxical result not only reveals the

complexity and diversity of the RAAS in the pathomechanism of

AD but also implies the necessity of in-depth investigation of the

mechanism of action of RAAS in AD and its potential

therapeutic targets.
6.7.6 Oxidative stress
In the pathological context of IR, the levels of oxidative damage

markers within the cerebral cortex are significantly elevated, a change

that reveals an enhanced oxidative stress response (181). Of particular

interest is the fact that the brain exhibits an extremely high sensitivity

to free radical attacks compared to other body organs (182).

Accordingly, the lesions presented in the brains of individuals with

AD, such as DNA damage, protein oxidation, lipid peroxidation, and

accumulation of advanced glycosylation end products, are closely

related to free radical attack (183). In addition, antioxidants exhibit

potential value in the treatment of AD by effectively reducing the

generation of reactive oxygen species (184, 185).

Although significant progress has been made in elucidating

individual pathological mechanisms in Alzheimer’s disease (AD),

these studies often fail to fully account for the complexity and

heterogeneity of its clinical manifestations, highlighting the

limitations of a single-target approach.

For example, the correlation between amyloid-b (Ab) pathology
and cognitive decline is not always direct; some Ab-positive
individuals remain cognitively normal for extended periods,

suggesting that Ab deposition alone is insufficient to explain

clinical heterogeneity (186). Moreover, therapeutic strategies

targeting Ab or tau protein in isolation have not yielded ideal

outcomes in clinical trials (187, 188). Neuroinflammation is widely

recognized as a key pathological feature of AD, yet its precise role

remains incompletely understood. In particular, whether

neuroinflammation acts as a primary driver or a secondary

phenomenon in AD pathogenesis continues to be debated (189).

Neuroinflammation exhibits a “double-edged sword” characteristic

in AD: while moderate inflammatory responses may be protective,

excessive suppression could be detrimental. For instance, microglial

activation not only aids in Ab clearance but may also exacerbate
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neuronal damage (190). The association between the renin-

angiotensin-aldosterone system (RAAS) and AD pathology has

been frequently proposed, but its underlying molecular

mechanisms are not yet fully clarified. Some studies suggest that

RAAS-targeting drugs (e.g., ARBs) may reduce AD risk (191, 192),

while others report inconsistent findings. For example, although a

clinical trial of losartan demonstrated reduced brain volume loss, it

did not conclusively prove cognitive benefits (193). Furthermore,

while oxidative damage is closely associated with Alzheimer’s

disease (AD), antioxidant therapies have failed to achieve

significant clinical efficacy, reflecting the complexity of oxidative

stress in AD pathogenesis (194). Moreover, the causal relationships

between oxidative stress and other pathological features—such as

amyloid-b (Ab) deposition and tau hyperphosphorylation—remain

controversial. It remains challenging to determine whether

oxidative stress acts as a primary event or a secondary

phenomenon in the disease process.

Consequently, as noted by other researchers, AD remains a

poorly understood disease with a complex, multifactorial

pathogenesis (195). In this context, insulin resistance offers a

theoretical bridge that closely links multiple mechanisms,

including neuroinflammation, oxidative stress, and RAAS

activation. Adopting this integrative perspective may deepen our

understanding of AD pathophysiology, provide a more

comprehensive view of the disease, and ultimately inform the

development of more effective prevention and treatment strategies.
7 Potential therapeutic strategies

7.1 Pharmacologic interventions for insulin
resistance

7.1.1 GLP-1 receptor agonists
Glucagon-like peptide-1 (GLP-1) receptor agonists are standard

therapies for type 2 diabetes and obesity, lowering blood glucose and

body weight by promoting insulin secretion, inhibiting glucagon

release, and inducing satiety via central nervous system actions

(196). In neuroprotection, liraglutide (a GLP-1 receptor agonist)

shows therapeutic potential. Six months of treatment significantly

enhances blood-brain barrier glucose transport, improves cerebral

glucose metabolism, and reverses AD-related brain glucose transport

abnormalities, supporting its role in brain energy metabolism and AD

therapy (197). Additionally, 12 weeks of treatment improves brain

connectivity in high-risk AD individuals (198). However, a systematic

review notes that while GLP-1 receptor agonists offer metabolic and

neuroprotective benefits, they do not significantly alter amyloid-b or

tau biomarkers or improve cognitive function (199). Overall,

l iraglutide holds promise for cognit ive function and

neuroprotection, but its definitive efficacy and mechanisms require

further validation through high-quality studies.
7.1.2 Intranasal insulin
Intranasal insulin administration is a non-invasive delivery

method that directly transports insulin to the brain via the nasal
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mucosa, effectively bypassing the blood-brain barrier. This

approach has shown potential value in treating neurological

disorders such as Alzheimer’s disease (AD). One study reported

that, compared to the placebo group, patients receiving

conventional insulin therapy exhibited significant memory

improvements at 2 and 4 months, with statistically significant

differences (p < 0.03) (200). However, not all studies have

observed similar cognitive benefits. For instance, a 12-month

randomized controlled trial (RCT) demonstrated that intranasal

insulin treatment did not lead to significant cognitive

improvements in patients with mild cognitive impairment (MCI)

or Alzheimer’s disease (201). Furthermore, a systematic review of

seven RCTs involving patients with AD or MCI indicated that

intranasal insulin therapy only modestly improved story recall

performance in APOE4-negative (APOE4[-]) individuals, while

its effects on other cognitive domains remained limited (202).

7.1.3 Metformin
Metformin, a drug widely used in the antidiabetic field, has

received much attention in recent years for its potential role in the

therapy of AD. A meta-analysis showed that long-term and high-

dose use of metformin was significantly associated with a reduced

risk of developing AD in elderly diabetic patients (203). It should be

noted, however, that the results of several studies have shown that

metformin treatment did not result in the expected significant

improvement in patients’ cognitive performance, and some

studies have suggested that it may increase the risk of developing

AD (204–206). In particular, a meta-analysis of 10 studies found

that metformin treatment may adversely affect the risk of

developing AD in Asian populations (206). These conflicting

findings suggest that the administration of metformin for AD

should be evaluated more cautiously, taking into account the

potential differences in different populations and the

heterogeneity of their responses to the drug.

7.1.4 PPAR-g agonists
Activation of PPAR-g receptors plays multiple roles in

regulating a wide range of biological processes, including lipid

metabolism, inflammatory responses, and neuroprotection (207).

Studies have shown that PPAR-g agonists significantly improve

spatial learning and memory in animal models, demonstrating their

great potential in the therapeutic field of AD (208, 209). In

particular, pioglitazone, a widely used PPAR-g agonist, has shown
potential benefits for AD patients in systematic evaluations,

although these preliminary findings require further validation to

establish their value for clinical application (210).
7.2 Lifestyle interventions

Studies have shown that limiting net carbohydrate intake to 130

grams per day may be effective in slowing the rate of cortical

atrophy and contribute to lower insulin levels (211). Furthermore,

in overweight and obese populations, regular exercise has shown

significant effects in restoring insulin sensitivity in the brain (212).
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More importantly, comprehensive lifestyle Interventions markedly

improve cognitive function in individuals with MCI or early AD,

and may slow disease progression by improving IR and lowering

insulin levels (213).
8 Conclusion

This review focuses on the central mechanism of IR in the

association between MetS and AD. By systematically combing and

analyzing the research findings of recent years, we demonstrate

that IR plays a key bridging role between MetS and AD (Figure 2).

On the one hand, there is a close association between IR and the

components of the MetS; on the other hand, IR is a key factor in the

pathogenesis of AD. However, current research exhibits significant

limitations in elucidating this complex association. For instance,

most studies overlook the impact of sex differences on the

pathogenesis of metabolic syndrome (MetS) and Alzheimer’s

disease (AD). As documented in the literature, women with

MetS are more susceptible to AD than men (18), a disparity

potentially amplified by insulin resistance-related MetS, as

supported by previous findings (214, 215). Additionally, existing

studies often treat mechanisms such as neuroinflammation,
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oxidative stress, overactivation of the renin-angiotensin-

aldosterone system (RAAS), and mitochondrial dysfunction as

independent factors, lacking in-depth critical analysis and cross-

mechanistic integration. This “mechanism-listing” approach fails

to adequately elucidate how these pathways dynamically interact,

mutually amplify, and collectively drive neurodegeneration. For

example, insulin resistance can directly induce central

neuroinflammation, while inflammatory cytokines (e.g., TNF-a,
IL-1b) released by activated glial cells further exacerbate peripheral

and central insulin signaling impairment, creating a vicious cycle.

The existence of such “crosstalk” and “positive feedback loops”

among mechanisms implies that therapeutic strategies targeting a

single pathway may yield limited efficacy or even be counteracted

by compensatory activation of other pathways. Nevertheless, it is

undeniable that the importance of IR in the pathogenesis of AD

should not be underestimated, and considering it as a promising

candidate for the intervention and management of AD holds great

and far-reaching significance. Therefore, future studies should

focus on the development of multidimensional intervention

strategies that focus on the optimization of IR, to deeply analyze

the complex pathological process of AD and further promote its

app l i c a t i on and deve l opmen t in the t r e a tmen t o f

neurodegenerative diseases.
FIGURE 2

The central role of insulin resistance in the Mets-AD connection.
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Hernando-Quintana N, Suárez Diéguez T, et al. Microbiota dysbiosis caused by
dietetic patterns as a promoter of Alzheimer’s disease through metabolic syndrome
mechanisms. Food Funct. (2023) 14:7317–34. doi: 10.1039/d3fo01257c

17. Więckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western
diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic
inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev. (2021)
70:101397. doi: 10.1016/j.arr.2021.101397

18. Vanhanen M, Koivisto K, Moilanen L, Helkala EL, Hänninen T, Soininen H,
et al. Association of metabolic syndrome with Alzheimer disease: a population-based
study. Neurology. (2006) 67:843–7. doi: 10.1212/01.wnl.0000234037.91185.99

19. Amin AM, Mostafa H, Khojah HMJ. Insulin resistance in Alzheimer’s disease:
The genetics and metabolomics links. Clin Chim Acta. (2023) 539:215–36. doi: 10.1016/
j.cca.2022.12.016

20. Ekblad LL, Johansson J, Helin S, Viitanen M, Laine H, Puukka P, et al. Midlife
insulin resistance, APOE genotype, and late-life brain amyloid accumulation.
Neurology. (2018) 90:e1150–7. doi: 10.1212/WNL.0000000000005214

21. Pietilä E, Snellman A, Tuisku J, Helin S, Viitanen M, Jula A, et al. Midlife insulin
resistance, APOE genotype, and change in late-life brain beta-amyloid accumulation -
A 5-year follow-up [11C]PIB-PET study. Neurobiol Dis. (2024) 190:106385.
doi: 10.1016/j.nbd.2023.106385

22. Haeusler RA,McGraw TE, Accili D. Biochemical and cellular properties of insulin
receptor signalling. Nat Rev Mol Cell Biol. (2018) 19:31–44. doi: 10.1038/nrm.2017.89

23. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation,
actions, and diseases. Pharmacol Ther. (2015) 148:114–31. doi: 10.1016/
j.pharmthera.2014.11.016

24. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, et al. Insulin-
regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature.
(2003) 423:550–5. doi: 10.1038/nature01667
frontiersin.org

https://doi.org/10.1152/physrev.00063.2017
https://doi.org/10.1016/j.tcb.2016.01.002
https://doi.org/10.3389/fendo.2023.1149239
https://doi.org/10.1038/s41572-024-00563-5
https://doi.org/10.1093/postmj/qgad008
https://doi.org/10.1210/jc2016-2477
https://doi.org/10.1007/s11906-018-0812-z
https://doi.org/10.1016/j.tcm.2015.10.004
https://doi.org/10.1212/WNL.0000000000012415
https://doi.org/10.1186/s12933-017-0647-y
https://doi.org/10.1161/STROKEAHA.120.028944
https://doi.org/10.1016/j.arr.2024.102481
https://doi.org/10.1038/s41582-023-00883-2
https://doi.org/10.3390/ijms24054354
https://doi.org/10.1016/j.arr.2023.102084
https://doi.org/10.1039/d3fo01257c
https://doi.org/10.1016/j.arr.2021.101397
https://doi.org/10.1212/01.wnl.0000234037.91185.99
https://doi.org/10.1016/j.cca.2022.12.016
https://doi.org/10.1016/j.cca.2022.12.016
https://doi.org/10.1212/WNL.0000000000005214
https://doi.org/10.1016/j.nbd.2023.106385
https://doi.org/10.1038/nrm.2017.89
https://doi.org/10.1016/j.pharmthera.2014.11.016
https://doi.org/10.1016/j.pharmthera.2014.11.016
https://doi.org/10.1038/nature01667
https://doi.org/10.3389/fendo.2025.1614006
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1614006
25. Wu F, Lu F, Dong H, Hu M, Xu L, Wang D. Oxyberberine inhibits hepatic
gluconeogenesis via AMPK-mediated suppression of FoxO1 and CRTC2 signaling
axes. Phytother Res. (2024) 83:153487. doi: 10.1002/ptr.8381

26. Buel GR, Dang HQ, Asara JM, Blenis J, Mutvei AP. Prolonged deprivation of
arginine or leucine induces PI3K/Akt-dependent reactivation of mTORC1. J Biol Chem.
(2022) 298:102030. doi: 10.1016/j.jbc.2022.102030

27. Garami A, Zwartkruis FJT, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al.
Insulin activation of rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by
TSC1 and 2. Mol Cell 11(6):1457-66. doi: 10.1016/s1097-2765(03)00220-x

28. Han Y, Hu Z, Cui A, Liu Z, Ma F, Xue Y, et al. Post-translational regulation of
lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene. Nat
Commun. (2019) 10:623. doi: 10.1038/s41467-019-08585-4

29. Martinez Calejman C, Trefely S, Entwisle SW, Luciano A, Jung SM, Hsiao W,
et al. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de
novo lipogenesis. Nat Commun. (2020) 11:575. doi: 10.1038/s41467-020-14430-w

30. Zhao W, Li A, Feng X, Hou T, Liu K, Liu B, et al. Metformin and resveratrol
ameliorate muscle insulin resistance through preventing lipolysis and inflammation in
hypoxic adipose tissue. Cell Signal . (2016) 28:1401–11. doi: 10.1016/
j.cellsig.2016.06.018

31. Seo DH, Shin E, Lee Y-H, Park S-E, Nam KT, Kim J-W, et al. Effects of a
phosphodiesterase inhibitor on the browning of adipose tissue in mice. Biomedicines.
(2022) 10:1852. doi: 10.3390/biomedicines10081852

32. Pankow JS, Jacobs DR, Steinberger J, Moran A, Sinaiko AR. Insulin resistance
and cardiovascular disease risk factors in children of parents with the insulin resistance
(Metabolic) syndrome. Diabetes Care. (2004) 27:775–80. doi: 10.2337/diacare.27.3.775

33. George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, et al. A
family with severe insulin resistance and diabetes due to a mutation in AKT2. Science.
(2004) 304:1325–8. doi: 10.1126/science.1096706
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153. Estudillo E, López-Ornelas A, Rodrıǵuez-Oviedo A, Gutiérrez de la Cruz N,
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