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Background: Diabetic peripheral neuropathy (DPN) is a common and debilitating

complication of type 2 diabetes mellitus (T2DM), significantly impacting patients’

quality of life and increasing healthcare burdens. Early prediction and

intervention are critical to mitigating its impact.

Methods: This study analyzed 1,544 diabetic patients from the First Affiliated

Hospital of Shandong First Medical University, who were randomly divided into a

training cohort (n = 1,082) and a testing cohort (n = 462) using a 7:3 split ratio.

Feature selection was performed using both Boruta and LASSO algorithms, and

the intersection of the selected variables was used as the final predictor set. Eight

key predictors were identified from 23 variables, including diabetes duration, uric

acid, HbA1c, NLR, smoking status, SCR, LDH, and hypertension. Nine machine

learning models were developed and compared for DPN risk prediction.

Results: Stochastic Gradient Boosting (SGBT) demonstrated the best

performance (training AUC: 0.933, 95% CI: 0.921–0.946; testing AUC: 0.811,

95% CI: 0.776–0.843). Shapley Additive Explanations (SHAP) analysis provided

interpretability, highlighting the clinical importance of diabetes duration and

HbA1c among other predictors.

Conclusion: This study establishes a robust predictive tool for early DPN

detect ion , lay ing the foundat ion for improved prevent ion and

management strategies.
KEYWORDS

diabetic peripheral neuropathy, machine learning, interpretable, clinical data, risk
prediction model
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1 Introduction

The global prevalence of diabetes is rising at an unprecedented

rate. In 2021, approximately 537 million adults (20–79 years)

worldwide were living with diabetes, and this number is expected

to increase to 783 million by 2045 (1). Diabetic peripheral

neuropathy (DPN) is a common microvascular complication of

type 2 diabetes (2–4), which significantly increases the risk of

diabetic foot ulcers, non-traumatic lower limb amputations, and

other related complications such as falls (5, 6). Furthermore,

diabetic patients with peripheral neuropathy (PN) and foot

ulcers have a more than two-fold increased relative risk of

mortality compared to those without these two conditions (7).

PN has been recognized as an independent risk factor for

mortality in adults with diabetes (8). Therefore, there is an

urgent need to develop novel strategies for the prevention and

early diagnosis of DPN, which could help reduce associated

disability and mortality rates, ultimately improving patient

quality of life.

Machine learning (ML) technology has gained significant

traction in the healthcare sector, demonstrating its potential in

addressing complex medical challenges, including disease

prediction and management (9–11). By leveraging large

datasets, ML algorithms can uncover subtle patterns and

relationships that are difficult to discern through traditional

statistical methods.

In recent years, several studies have developed ML-based

models to predict DPN, providing valuable insights into the

feasibility of applying ML to this condition (12, 13). However,

these studies often have limited clinical utility, as they typically

rely on a single ML algorithm, lack model interpretability tools

such as SHAP to explain feature contributions, and are rarely

deployed in user-friendly formats like Shiny applications for real-

world use. To overcome these limitations, we propose a

comprehensive modeling strategy that incorporates robust

feature selection (using Boruta and LASSO), systematic

comparison of multiple machine learning algorithms to identify

the best performer, and model interpretation through SHAP

(Shapley Additive Explanations) to enhance transparency and

clinical interpretability. We further proposed the development

of a web-based risk calculator to enhance clinical implementation

and support decision-making at the point of care. Given the

substantial burden of DPN on affected individuals, the

development of interpretable and accessible prediction tools has

the potential to enable earlier diagnosis, guide preventive

strategies, and improve patient outcomes.

This study aims to develop and validate an ML-based risk

prediction model for DPN, using a combination of demographic,

clinical, and biochemical parameters. By integrating robust ML

algorithms and real-world clinical data, this research seeks to

provide a valuable tool for clinicians to identify high-risk patients,

enabling timely interventions and personalized treatment strategies

to mitigate the impact of DPN.
Frontiers in Endocrinology 02
2 Material and methods

2.1 Study population

We collected data from 1,544 patients with type 2 diabetes

mellitus (T2DM) who received treatment at the First Affiliated

Hospital of Shandong First Medical University between January

2023 and December 2024. The inclusion criteria were: (1) age ≥18

years and (2) a diagnosis of T2DM. Exclusion criteria included

other causes of peripheral neuropathy, malignant tumors, acute

infectious diseases, severe hepatic or renal dysfunction, cardiac

failure, metabolic disorders (such as thyroid disorders or vitamin

B12 deficiency), and other severe life-threatening conditions. All

patients underwent neurological assessments and nerve conduction

studies (NCSs). DPN was diagnosed based on the presence of

neuropathy-related clinical signs or symptoms and abnormal

electromyography results, following the Toronto Expert

Consensus (14). These participants were then randomly divided

into training and testing groups in a 7:3 ratio. For participants with

missing data, multiple imputations were performed using the

“mice” package (n = 5). All variables had less than 30%

missingness. Predictive mean matching was used for continuous

variables, and logistic regression was applied for binary variables.

Further details are provided in Figure 1. The study followed the

principles of the Declaration of Helsinki and was approved by the

Ethics Committee of the First Affiliated Hospital of Shandong First

Medical University (Hospital Ethics Review No. S654). All the

above data have been ethically reviewed.
2.2 Research variables

Based on clinical expertise and previous research evidence,

including demographic characteristics (age, sex, smoking, and

drinking status), physical measurements (BMI), medical history

(hypertension and diabetes mellitus), and laboratory test results

(white blood cell count, neutrophils, lymphocytes, and other relevant

biomarkers). The neutrophil-to-lymphocyte ratio (NLR) was calculated

by dividing the neutrophil count by the lymphocyte count (15).
2.3 Feature screening

Boruta is a random forest-based feature selection algorithm used

to evaluate the importance of variables and identify features

significantly associated with the target variable (16). We

implemented this algorithm in R using the “Boruta” package, with

parameters set to “pValue = 0.01” and “maxRuns = 500”. The

algorithm generates random shadow variables and compares their

importance distribution with that of the actual variables, iteratively

assessing the significance of each variable. After a maximum of 500

iterations or when the variable importance stabilizes, the algorithm

finalizes the selection results and identifies significant features.
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LASSO regression applies a penalty function to shrink certain

regression coefficients, imposing a constraint on the sum of their

absolute values to keep it below a predetermined threshold, thereby

enhancing the model’s robustness (17). We performed LASSO

regression using the glmnet package in R, setting the family

parameter to “binomial” to suit our binary outcome data. The key

parameter, alpha, was set to 1, fully utilizing the LASSO method.

Through cross-validation using the cv.glmnet function, we selected

two lambda values: lambda.min, which minimizes the cross-

validation error, and lambda.1se, which offers a more
Frontiers in Endocrinology 03
parsimonious model. These two values help strike a balance

between model complexity and predictive accuracy. Finally, we

filtered out the variables that contributed meaningfully to

prediction based on non-zero coefficients, thereby simplifying the

model and enhancing its interpretability.

As previously reported in the literature (16), we adopted

the intersection of features identified by both Boruta and

LASSO as the final set of predictors. This approach balances

model complexity and interpretability while ensuring robust

feature selection.
FIGURE 1

Overview of data processing and machine learning workflow. (A) Database: Participants were selected from The First Affiliated Hospital of Shandong
First Medical University (2023–2024). Inclusion criteria were age ≥18 years and T2DM diagnosis. Exclusion criteria included other neuropathies,
malignancies, severe infections, organ dysfunction, and metabolic disorders. The final study cohort comprised 1,544 individuals. (B) Feature
selection: From an initial set of 23 variables, key variables were identified using the Boruta and LASSO methods. Selected features included diabetes
duration, serum creatinine (SCR), hypertension, neutrophil-to-lymphocyte ratio (NLR), smoking status, uric acid, lactate dehydrogenase (LDH), and
HbA1c. (C) Model training and testing: Nine machine learning algorithms, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF),
K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Naive Bayes (NB), XGBoost (XGB), Stochastic Gradient Boosting Trees (SGBT), and
Neural Network (NNET), were applied, with hyperparameter optimization performed using 10×10-fold cross-validation. Model evaluation metrics
included Receiver Operating Characteristic (ROC), Area Under the Curve (AUC), F1-score, calibration curves, and decision curves. Model
interpretation was conducted using SHAP analysis for feature importance.
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2.4 Algorithm development and validation

The predictive model was generated by partitioning the

complete dataset into two mutually exclusive subsets. Seventy

percent of the data was used for the training set, while the

remaining 30% was allocated to the test set. The test set was

reserved exclusively for final model evaluation and was not

involved in any model training, feature selection, hyperparameter

tuning, or validation procedures. All model development steps,

including cross-validation and hyperparameter optimization, were

conducted solely within the training set to prevent data leakage and

ensure robust evaluation. Various machine learning algorithms

were employed to develop the models, including logistic

regression (LR), random forest (RF), support vector machine

(SVM), decision tree (DT), k-nearest neighbors (KNN), Naive

Bayes (NB), stochastic gradient boosting (SGBT), and neural

network (NNET), as well as extreme gradient boosting (XGB).

These machine learning algorithms were implemented using the

Python package “Scikit-learn (version 0.24.1)”. These algorithms

were selected for their ability to model complex relationships

between variables and their robustness in handling both linear

and nonlinear data structures. The training process employed 10-

fold cross-validation, ensuring that the model was trained on

different subsets of the data to improve its generalization

capabi l i ty and prevent overfi t t ing . For each model ,

hyperparameter tuning was performed using grid search,

evaluating a range of possible hyperparameters to identify the

optimal value for each algorithm. To enhance the performance of

the predictive models, the optimal hyperparameters for each model

were identified through a combination of 10 rounds of 10-fold

cross-validation and hyperparameter grid search, utilizing the best

feature subset (Supplementary Table S1).

The performance of the machine learning models was evaluated

using the testing set, which had not been involved in the training

process. Key evaluation metrics, including accuracy, sensitivity,

specificity, positive predictive value (PPV), negative predictive

value (NPV), F1-score, kappa score, and area under the receiver

operating characteristic curve (AUC), were calculated to assess the

model’s ability to accurately classify individuals at risk for DPN.

Additionally, decision curve analysis (DCA) was performed to

evaluate the clinical utility of the models.
2.5 Model explanation

Explaining ML models can be challenging, especially with

complex models often referred to as “black-box” models. The

Shapley Additive Explanations (SHAP) method, based on game

theory, provides a solution to this issue by ranking the importance

of input features and explaining the results of predictive models.

SHAP calculates the contribution of each feature to the prediction,

offering both local and global explanations, thereby enhancing the

transparency and interpretability of the model (9, 18).

Interpretability analysis was performed using the SHAP Python

library (version 0.43.0).
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2.6 Network calculator

To support clinical implementation, the final prediction model

was deployed via a Shiny-based web platform. By inputting the

relevant clinical variables, the application generates an

individualized probability of DPN in diabetic patients.
2.7 Statistical analysis

The preliminary analysis of the dataset involved the application

of descriptive statistics. In clinical data, continuous variables were

expressed as mean ± standard deviation (SD), while categorical

variables were described using frequencies and percentages.

Statistical tests, such as the chi-square test and unpaired t-test,

were used to compare variables between groups. All statistical

analyses were performed using the R version 4.4.2 software

package. A two-sided P value of < 0.05 was considered

statistically significant.
3 Result

3.1 Patient characteristics

Table 1 presents the characteristics of the cohort. This study

included 1,544 diabetic patients (mean age: 64.39 years; 53% male).

Baseline characteristics were compared between patients with DPN

and patients without DPN, significant statistical differences were

found between the groups in terms of age, gender, smoking status,

hypertension, NE, LYM, NLR, Hb, uric acid, HbA1c, TC, SCR,

Albumin, LDH, and diabetes duration (P < 0.05). The type 2

diabetes patients were randomly divided into the training group

(n = 1,082) and the validation group (n = 462). In both groups,

approximately 34.3% and 34.2% of the patients were diagnosed with

DPN, respectively. The baseline characteristics of the two groups

were similar (Table 1).
3.2 Predictor screening

The Boruta algorithm is an extension of the random forest

method that accurately estimates the importance of each feature to

identify the actual feature set. The Boruta algorithm identified 9 key

factors, including diabetes duration, uric acid, HbA1c, NLR,

smoking status, SCR, LDH, Albumin, and hypertension

(Figure 2A). In contrast, LASSO regression is a shrinkage

estimation method that performs variable selection and

complexity adjustment by formulating an optimization objective

function that includes a penalty term. In this study, LASSO

regression was used to identify features such as diabetes duration,

uric acid, HbA1c, NLR, smoking status, SCR, LDH, and

hypertension (Figures 2B, C). By comparing the results obtained

from the Boruta algorithm and LASSO regression, we identified the

common subset of features selected by both methods. These selected
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TABLE 1 Comparison of demographic characteristics and clinical characteristics between diabetic peripheral neuropathy (DPN) and non-DPN
patients, and between training and test sets.

Characteristic Total,
N = 1,544

Non-DPN,
N = 1,015

DPN,
N =529

P1 Training set,
N =1,082

Test set,
N = 462

P1

PN, % >0.99

Non-DPN 1,015 (65.7) 711 (65.7) 304 (65.8)

DPN 529 (34.3) 371 (34.3) 158 (34.2)

Age, years 64.39 (11.73) 62.77 (11.59) 67.50 (11.38) <0.001 64.25 (11.63) 64.72 (11.95) 0.47

Sex, % <0.001 0.47

Male 819 (53.0) 494 (48.7) 325 (61.4) 567 (52.4) 252 (54.5)

Female 725 (47.0) 521 (51.3) 204 (38.6) 515 (47.6) 210 (45.5)

BMI, % 0.99 0.97

Normal 252 (16.3) 165 (16.3) 87 (16.4) 175 (16.2) 77 (16.7)

Overweight 554 (35.9) 365 (36.0) 189 (35.7) 388 (35.9) 166 (35.9)

Obesity 738 (47.8) 485 (47.8) 253 (47.8) 519 (48.0) 219 (47.4)

Smoking
status, %

0.04 0.54

Now 352 (22.8) 242 (23.8) 110 (20.8) 245 (22.6) 107 (23.2)

Former 89 (5.8) 67 (6.6) 22 (4.2) 58 (5.4) 31 (6.7)

Never 1,103 (71.4) 706 (69.6) 397 (75.0) 779 (72.0) 324 (70.1)

Hypertension, % 0.01 0.92

Yes 988 (64.0) 627 (61.8) 361 (68.2) 691 (63.9) 297 (64.3)

No 556 (36.0) 388 (38.2) 168 (31.8) 391 (36.1) 165 (35.7)

WBC, × 109/L 7.46 (2.12) 7.42 (2.08) 7.53 (2.21) 0.34 7.68 (1.80) 7.71 (1.87) 0.72

NE, × 109/L 4.46 (1.65) 4.38 (1.55) 4.61 (1.81) 0.001 4.45 (1.64) 4.47 (1.66) 0.82

LYM, × 109/L 2.17 (0.88) 2.22 (0.88) 2.07 (0.86) <0.001 2.18 (0.88) 2.14 (0.87) 0.48

NLR 2.35 (1.43) 2.24 (1.31) 2.58 (1.62) <0.001 2.36 (1.51) 2.34 (1.23) 0.78

Hb, g/L 14.13 (1.59) 14.19 (1.56) 14.01 (1.66) 0.03 14.11 (1.59) 14.15 (1.61) 0.66

Uric acid, µmol/L 335.00 (92.21) 330.66 (91.81) 343.33 (92.50) 0.01 334.81 (93.96) 335.45 (88.09) 0.90

HbA1c, % 7.69 (1.82) 7.42 (1.81) 8.20 (1.72) <0.001 7.68 (1.80) 7.71 (1.87) 0.72

ALT, U/L 26.56 (19.54) 26.88 (19.01) 25.95 (20.51) 0.38 26.44 (19.86) 26.82 (18.78) 0.73

AST, U/L 25.44 (15.75) 25.47 (16.05) 25.39 (15.17) 0.93 25.45 (16.23) 25.43 (14.58) 0.99

TBil, mmol/L 11.28 (4.74) 11.28 (4.69) 11.26 (4.83) 0.94 11.27 (4.87) 11.30 (4.42) 0.90

TC, mmol/L 5.24 (1.21) 5.32 (1.23) 5.10 (1.17) 0.001 5.27 (1.20) 5.19 (1.25) 0.23

TG, mmol/L 2.34 (2.58) 2.36 (2.68) 2.31 (2.40) 0.73 2.36 (2.49) 2.30 (2.79) 0.66

SCR, mmol/L 88.34 (70.03) 78.99 (37.05) 106.28 (105.85) <0.001 88.33 (69.44) 88.36 (71.45) >0.99

Albumin, g/dl 41.74 (3.44) 41.94 (3.37) 41.36 (3.56) 0.002 41.66 (3.46) 41.93 (3.40) 0.17

Globulin, g/dl 32.01 (5.03) 31.92 (4.82) 32.16 (5.41) 0.37 32.03 (4.95) 31.95 (5.21) 0.76

LDH, U/L 143.70 (35.69) 140.31 (33.51) 150.22 (38.75) <0.001 143.12 (35.28) 145.07 (36.63) 0.33

ALP, U/L 81.59 (30.58) 80.78 (31.11) 83.14 (29.50) 0.15 82.02 (31.67) 80.58 (27.87) 0.40

Diabetes
duration, years

7.08 (12.41) 6.24 (11.45) 8.69 (13.94) <0.001 6.86 (12.07) 7.60 (13.16) 0.29
F
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PN, peripheral neuropathy; BMI, body mass index; WBC, white blood cell; NE, neutrophil; LYM, lymphocyte; NLR, NE-to-LYM ratio; Hb, hemoglobin; ALT, glutamic pyruvic transaminase;
AST, glutamic oxaloacetic transaminase; TBil, total bilirubin; TC, total cholesterol; TG, thyroglobulin; SCR, serum creatinine; LDH, lactate dehydrogenase; ALP, alkaline phosphatase. 1Pearson’s
Chi-squared test; Wilcoxon rank sum test.
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features were ultimately used to construct the model, including

diabetes duration, uric acid, HbA1c, NLR, smoking status, SCR,

LDH, and hypertension (Figure 2D).
3.3 Model performance

We performed ten rounds of 10-fold internal cross-validation

and developed nine machine learning models. In the training

dataset, the AUC values for the models were as follows: LR 0.722

(95% CI: 0.694-0.749), DT 0.704 (95% CI: 0.677-0.730), RF 0.796

(95% CI: 0.774-0.818), KNN 0.883 (95% CI: 0.866-0.899), SVM

0.678 (95% CI: 0.649-0.705), NB 0.705 (95% CI: 0.677-0.732),

XGB 0.939 (95% CI: 0.928-0.950), SGBT 0.933 (95% CI: 0.921-

0.946), and NNET 0.784 (95% CI: 0.760-0.808) (Figure 3A). In the

test set, the SGBT model demonstrated superior predictive

performance with an AUC of 0.811 (95% CI: 0.776-0.843). In

comparison, the AUC values for the remaining models in the test

set were as follows: LR 0.757 (95% CI: 0.719-0.749), DT 0.657
Frontiers in Endocrinology 06
(95% CI: 0.613-0.699), RF 0.757 (95% CI: 0.718-0.794), KNN

0.749 (95% CI: 0.712-0.787), SVM 0.692 (95% CI: 0.649-0.734),

NB 0.704 (95% CI: 0.668-0.747), XGB 0.810 (95% CI: 0.777-

0.843), and NNET 0.740 (95% CI: 0.701-0.779) (Figure 3B). The

accuracy, sensitivity, specificity, PPV, NPV, F1 score, and kappa

values were calculated and compared for models within the

training set (Figure 3C) and the test set (Figure 3D). The DCA

demonstrated that, in the training set, the SGBT model

outperformed all other models across the entire threshold range

(0–0.8), followed by the XGB model (Figure 3E). In the test set, the

RF model provided the best performance across the full threshold

range (0–1.0) (Figure 3F).
3.4 Model explanation

We employed the SHAP method to interpret the final model’s

output by calculating the contribution of each variable to the

prediction. In Figure 4A, feature importance is visualized, where
FIGURE 2

Predictor screening results. (A) Boruta feature selection. (B) LASSO screening with lambda values indicated by dashed lines. (C) Variable trajectories
in the LASSO model. (D) Common predictors identified by Boruta and LASSO, including diabetes duration, HbA1c, NLR, SCR, hypertension, smoking
status, LDH, and uric acid.
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each point corresponds to a sample, and a color gradient from blue

(low values) to red (high values) reflects the magnitude of the

feature value. The vertical axis displays the ranked features, showing

the correlation and distribution of feature values with their

corresponding SHAP values. Figure 4B presents the average

SHAP values for each feature, ordered by importance in

descending order on the vertical axis. The analysis reveals that

diabetes duration, HbA1c, SCR, hypertension, and uric acid are the

top five most influential features, indicating their critical role in

predicting DPN. Figure 4C provides a decision plot, which

illustrates the contribution of each feature to the final prediction.

This plot also tracks the changes in SHAP values for individual

samples, offering insights into feature interactions and the model’s

decision-making process.
Frontiers in Endocrinology 07
3.5 Implementation of the web calculator

As illustrated in Figure 5, the final SGBT model was deployed as

an interactive web application to facilitate clinical use. By entering

the values of the eight selected features, clinicians can obtain an

individualized risk estimate for DPN. The tool is available online at:

https://dpn-prediction.shinyapps.io/shiny-sgbt/.
4 Discussion

DPN is one of the most common complications in patients with

T2DM, characterized by its progressive, irreversible, and

debilitating nature (19, 20). With the increasing prevalence of
FIGURE 3

Performance and comparison of nine predictive models. ROC curves for the training set (A) and the test set (B). Evaluation metrics for the training
set (C) and the test set (D), including accuracy, sensitivity, specificity, PPV, NPV, F1 score, and kappa value. Decision Curve Analysis (DCA) for the
training set (E) and the test set (F).
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FIGURE 4

SHAP analysis for feature interpretability. (A) SHAP dendrogram of features for the SGBT model. (B) Feature importance ranking for the logistic
regression model. (C) Decision plot of feature contributions to the model outputs.
FIGURE 5

Web-based calculator for predicting the risk of diabetic peripheral neuropathy (DPN) in patients with diabetes using the developed model. By
entering values for diabetes duration, uric acid, HbA1c, NLR, smoking status, serum creatinine (SCR), lactate dehydrogenase (LDH), and hypertension,
an individualized DPN risk prediction can be obtained.
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https://doi.org/10.3389/fendo.2025.1614657
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sun et al. 10.3389/fendo.2025.1614657
diabetes, DPN has become a significant global public health issue.

DPN not only severely impacts the quality of life of patients but also

leads to long-term medical costs and substantial economic burden.

Without timely diagnosis and intervention, DPN can result in

severe complications such as lower limb ulcers, infections, and

even amputations, all of which significantly increase mortality and

disability rates. Therefore, developing effective early screening and

risk assessment tools is of crucial importance for the early diagnosis,

intervention, and prevention of DPN. This study aims to assess and

predict the risk of DPN using ML techniques. We compared nine

different machine learning models for analyzing and predicting the

risk of DPN, with the goal of developing a predictive tool that can

effectively identify the risk of DPN.

This study employed a dual approach combining the Boruta

algorithm and LASSO regression to ensure accurate feature

selection and model stability. The final predictive factors

identified included diabetes duration, uric acid, HbA1c, NLR,

smoking status, SCR, LDH, and hypertension. Most of these

factors have all been previously shown to be closely associated

with the development of DPN. Numerous studies indicate that

patients with a longer duration of T2DM are more likely to develop

DPN (21, 22). Persistent hyperglycemia has been found to induce

the formation of advanced glycation end products (AGEs), which

bind to proteins in nerve cells and vascular endothelial cells, causing

cellular damage, vascular injury, and neural dysfunction (23, 24).

Over time, the accumulation of AGEs may lead to chronic

inflammation and oxidative stress in neural tissues, further

damaging peripheral nerves. HbA1c is widely recognized as the

optimal biochemical marker for assessing long-term metabolic

control in diabetes patients. Numerous prospective studies have

confirmed a strong association between HbA1c and diabetic

complications, a conclusion consistent with our findings (25–27).

Our study also confirmed that uric acid and SCR are significant risk

factors for DPN. Since peripheral nerves and renal vasculature are

both exposed to the diabetic environment, it is generally believed

that the development and progression of diabetic nephropathy

(DN) and DPN occur concurrently (28, 29). A model was

developed to predict DN, analyzing the risk factors for

microvascular complications in T2DM patients, and it was found

that DPN is closely related to DN (30). Further studies observed a

significant correlation between different stages of DN and

neuropathy in type 2 diabetes patients (31).

Additionally, our findings demonstrate that NLR is an

important risk factor for DPN, consistent with previous studies

(32). High NLR values are often strongly associated with endothelial

dysfunction (33), which can lead to insufficient blood supply to

peripheral nerves. Enzymes and reactive oxygen species released by

neutrophils can damage vascular endothelial cells, exacerbating

microcirculatory disorders (34). Moreover, elevated NLR levels

reflect increased levels of pro-inflammatory cytokines, such as

TNF-a and IL-1b. These cytokines exhibit direct neurotoxicity,

accelerating neuronal apoptosis and functional loss (35).

In this study, we developed and compared the performance of

nine ML models, including LR, RF, SVM, DT, KNN, NB, SGBT,
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NNET, and XGB. Among these, XGB and SGBT demonstrated the

highest discriminative ability on the training set, with AUCs of

0.939 (95% CI: 0.928–0.950) and 0.933 (95% CI: 0.921–0.946),

respectively. On the test set, the AUC of SGBT was 0.811 (95%

CI: 0.776–0.843), slightly outperforming XGB at 0.810 (95% CI:

0.777–0.843). Although the performance difference between these

models on the test set was marginal, SGBT exhibited greater

stability and generalization capability, making it the optimal

choice for this study. The superior generalization performance of

SGBT is particularly valuable in ensuring robustness and reliability

when applied to real-world scenarios, where data distributions can

be complex and variable.

Although the SGBT model demonstrated the best performance

among the nine ML models, the performance gap between the

training set (AUC: 0.933) and the testing set (AUC: 0.811) suggests

a potential risk of overfitting. This discrepancy may be attributed to

model complexity, limited sample size, or inherent data

heterogeneity. In light of the data imbalance in this study, one

potential approach to mitigate this overfitting could be applying

techniques such as SMOTE to balance the dataset. SMOTE has been

shown to improve model generalization by synthesizing new

samples from the minority class, which could lead to a more

balanced training process and potentially reduce overfitting.

However, we did not apply SMOTE in this study to avoid altering

the real-world distribution of DPN cases, but it remains a strategy

for future exploration. Additionally, expanding the sample size and

incorporating external validation cohorts would be beneficial in

further assessing the model’s robustness.

To further enhance the interpretability of the selected model,

we utilized SHAP, a method designed to address the “black-box”

nature of ML algorithms (36, 37). SHAP effectively elucidated

the contributions of individual features, highlighting key clinical

indicators such as diabetes duration, HbA1c, SCR, hypertension,

and uric acid. These features, widely recognized as critical

factors in the development of DPN, were shown to play a

significant role in the ML framework used for risk prediction.

Among them, longer diabetes duration and elevated HbA1c

levels emerged as the most influential predictors. These findings

are consistent with previous studies (38–40), which have

demonstrated that chronic hyperglycemia and prolonged

disease duration contribute to the development of diabetic

neuropathy by promoting oxidative stress, inflammation, and

microvascular damage. This alignment with clinical evidence

enhances the model ’s interpretability and supports its

clinical applicability.

Compared with existing DPN prediction models, our SGBT

model demonstrated competitive performance. For example, one

prior study utilizing logistic regression reported an AUC of 0.759

(41), whereas our model achieved a higher AUC of 0.811 on the

independent test set, indicating better predictive capability and

generalizability. On the other hand, a recent study by Jiang et al.

(42) reported a higher AUC of 0.900. Their model integrated both

conventional clinical variables and unique indicators derived from

traditional Chinese medicine, potentially capturing more
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comprehensive biological signals and improving overall predictive

accuracy. In contrast, our model was developed solely using routine

clinical and biochemical variables, which enhances its practicality,

reproducibility, and ease of implementation in standard healthcare

settings. Furthermore, our model features SHAP-based

interpretability and a web-based risk calculator to facilitate

clinical translation.

Despite the achievements of this study, there are some

limitations to acknowledge. First, as a retrospective study, issues

such as missing data and selection bias may affect the reliability of

the results. Second, the cohort primarily consisted of urban patients

receiving standardized treatment protocols, which may not fully

represent rural populations or institutions with varying healthcare

delivery practices. Third, the relatively small sample size and lack of

adjustment for key covariates, such as lifestyle factors and

medication regimen, may limit the generalizability of the findings

to the broader population. To address these limitations, future

research should adopt a prospective, multicenter design with larger

and more diverse cohorts, ensuring enhanced representativeness

and external validity. Additionally, exploring novel biomarkers and

dynamic risk factors, along with incorporating real-time

monitoring data, may enrich the model’s predictive capabilities.

Such advancements would facilitate its clinical application,

ultimately enabling more precise diagnosis and personalized

management strategies for DPN patients.
5 Conclusion

This study developed an effective predictive tool for DPN using

the SGBT model. By identifying and analyzing key predictive

factors, it establishes a solid scientific foundation for the early

detection and prevention of DPN, aiming to reduce complications

and improve patients’ quality of life. Future efforts should focus on

further validating the model’s performance, enhancing its accuracy

and practical applicability, and integrating it into clinical workflows

to advance personalized management and improve outcomes for

DPN patients.
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