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GLP-1 receptor agonists
synergistic effects of
metabolic reprogramming
and cardioprotection
Xuan Wang1†, Mengmeng Qi1†, Lili Yang1, Libo Yang2,
Xiaoyue Wang1, Fang Zhang1, Yukun Cui1, Dongxin Wang1,
Yangang Wang1 and Wenshan Lv1*

1Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao,
Shandong, China, 2Department of Endocrinology, The Affiliated Taian City Central Hospital of
Qingdao University, Tai’an, Shandong, China
Diabetes mellitus, a condition that significantly elevates the incidence and

mortality risks associated with cardiovascular diseases, exacerbates the disease

burden in China. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have

garnered considerable attention, as they not only regulate blood glucose but also

play a vital role in safeguarding the cardiovascular system. Recent research shows

that metabolic reprogramming is a key mechanism for the cardioprotective

effects of GLP-1RAs. GLP-1RAs can achieve metabolic reprogramming by

regulating fatty acid, glucose, and ketone body metabolism, as well as

mitochondrial function. This process optimizes cardiac energy metabolism,

alleviates oxidative stress, and reduces the risk of cardiovascular diseases. This

review provides a comprehensive summary of the energy metabolism under

normal cardiac conditions and the metabolic reprogramming involved in

diabetes-related heart disease. The potential applications and challenges of

targeted metabolic reprogramming in the cardioprotective effects of GLP-1RAs

are further discussed.
KEYWORDS

metabolic reprogramming, glucagon-like peptide-1 receptor agonists, heart failure,
cardiovascular system, diabetes
1 Introduction

With the advancement of the social economy and alterations in lifestyle patterns,

chronic metabolic disorders like obesity and diabetes have emerged as major public health

issues (1, 2). The International Diabetes Federation (IDF) data shows that by 2021,

approximately 537 million adults worldwide suffered from diabetes, accounting for

nearly one-tenth of the global adult population (3). In China, the number of diabetes

patients exceeds 140 million, and it is projected to reach 174 million by 2045 (3). These

patients commonly exhibit one or multiple components of metabolic syndrome. Such
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components are closely linked to a high incidence of cardiovascular

disease (CVD) and heart failure (HF), resulting in elevated

mortality rates and soaring healthcare costs (4, 5).

Type 2 diabetes mellitus (T2DM) is typically characterized by a

gradual decline in b-cell function, often rooted in insulin resistance

(6). Currently, the management of diabetes primarily relies on

lifestyle modifications and pharmacological interventions to

maintain optimal blood glucose levels, thereby preventing or

delaying the onset of diabetes-related complications (7, 8).

Metabolic reprogramming represents the process wherein an

organism modifies its energy metabolism pathways, such as

transitioning from glucose metabolism to fatty acid oxidation or

other metabolic routes, in response to environmental alterations or

disease conditions. This adjustment is to meet new physiological

needs (9). Emerging research has indicated that metabolic

reprogramming serves as one of the key mechanisms through

which GLP-1RAs confer their cardioprotective effects (10, 11). In

the context of GLP-1RAs, metabolic reprogramming involves

modulating energy metabolism and regulating cardiac function and

pathological remodeling through various mechanisms (12, 13). This

strategic approach helps prevent or slow the development of

cardiovascular complications associated with diabetes. These effects

may further support the cardio protection conferred by GLP-1RAs, a

property that has been increasingly recognized in recent decades.

In this review, we will summarize the energy metabolism under

normal cardiac conditions and the metabolic reprogramming

involved in diabetes-related heart disease. Distinguished from

prior reviews, we focus specifically on elucidating the role of

GLP-1RAs in modulating cardiac metabolism and function

through the lens of metabolic reprogramming. We explore the

novel mechanisms by which GLP-1RAs confer cardiovascular

protection in diabetic patients, offering fresh insights into their

therapeutic potential. Our goal is to provide a broader and more

nuanced perspective for future research on GLP-1RA-based

therapeutics, potentially paving the way for innovative approaches

to managing cardiometabolic diseases.
2 Clinical evidence for
cardioprotective effects of GLP-1RAs

In the process of literature screening for this study, strict

inclusion criteria were followed to ensure research quality and

relevance to the research theme: In terms of study type, priority

was given to randomized controlled trials (RCTs), prospective

cohort studies, systematic reviews. In terms of study subjects, the

focus was on patients with T2DM, T2DM patients complicated with

cardiovascular diseases, or animal models of diabetes-related heart

diseases. Moreover, in terms of outcome indicators, the selection

centered on "cardioprotection". Cardiovascular-related indicators

included the incidence of major adverse cardiovascular events

(MACE), cardiac function indicators, and the progression of

atherosclerotic lesions.

A search on PubMed with the keywords "Cardiovascular" and

"GLP-1 receptor agonists" for the five-year period spanning from 2020
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to 2025 retrieved 2,712 items. Existing evidence indicates that GLP-

1RAs have demonstrated remarkable cardioprotective effects (14–19).

Cardiovascular outcome trials have indicated that GLP-1RAs can

decrease the primary composite outcome of first-time major adverse

cardiovascular events (MACE) among diabetes patients (20). A

systematic review and meta-analysis of randomized controlled trials

demonstrated that GLP-1RAs were linked to a significant decline in

the MACE incidence(hazard ratio [HR]: 0.86; 95% confidence interval

[CI]: 0.79-0.94; I.: 0% (21). Since 2016, numerous cardiovascular

outcome studies have revealed that GLP-1RAs can efficiently

prevent cardiovascular events such as acute myocardial infarction

and stroke, and also lower related mortality (22). Consequently,

current guidelines suggest the use of GLP-1RAs for patients with a

history of atherosclerotic vascular disease (23). Preclinical research has

shown that GLP-1RAs can decelerate the development and

progression of atherosclerotic lesions by stabilizing and reducing

plaque vulnerability (24). GLP-1RAs have also been beneficial in

both heart failure with reduced ejection fraction (HFrEF) and heart

failure with preserved ejection fraction (HFpEF) (25). For instance, a

prospective trial reported that semaglutide alleviated heart-failure-

related symptoms and physical limitations in HFpEF patients (26).

However, more research is required to determine whether semaglutide

can reduce clinical heart -failure events in this patient group (27).

Clinical trials have shown that GLP-1RAs have a variety of

effects, which are presented in Table 1. For example, liraglutide

might reduce the occurrence rate of myocardial infarction in high-

risk T2DM patients and enhance the clinical outcomes of

myocardial infarction (28). Regarding heart failure, liraglutide can

remarkably improve the left-ventricular diastolic function,

indicating its potential in the treatment of T2DM (29).

Tirzepatide, a dual GLP-1/GIP receptor agonist that has been

approved for controlling blood sugar in T2DM, has emerging

evidence suggesting that it is superior to GLP-1RAs in terms of

glycemic control and weight loss (30, 31). In the SURPASS-4 trial,

tirzepatide significantly decreased blood pressure, body weight, and

HbA1c, and its dual-receptor agonism improved lipid profiles,

increased insulin secretion, reduced inflammation, and promoted

endothelial integrity (32). A recent randomized and double-blind

trial revealed that, for adults with poorly controlled T2DM, oral

semaglutide at total doses of 25 mg and 50 mg was more effective

than the 14-mg total dose in reducing HbA1c and body weight (33).

Nevertheless, whether the cardioprotective effect of GLP-1RAs

follows a similar dose-dependent pattern still requires further

investigation. This is because the primary and key secondary

endpoints of this trial were limited to glycemic control and body

weight reduction, with no assessment of cardiovascular outcomes

that are used to define cardioprotection. Second, long-term data on

the cardioprotective efficacy of high-dose oral semaglutide

remain lacking.

In summary, GLP-1RAs have significant cardioprotective effects

in HFrEF, HFpEF and other clinical settings. Their benefits go

beyond glycemic control, suggesting potential as a key treatment for

cardiovascular diseases. Future research should focus on clarifying

their cardioprotective mechanisms and exploring applications in

other cardiovascular conditions.
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3 Normal cardiac energy metabolism
and abnormal cardiac energy
metabolism

3.1 Energy metabolism of the normal heart

Under normal physiological conditions, the heart generates

adenosine triphosphate (ATP) through mitochondrial oxidative

phosphorylation, utilizing fatty acids oxidation (FAO), glucose,

lactic acid, ketone bodies, and amino acids (AA) (34, 35). This

process is crucial for meeting the heart’s energy requirements.

Among these energy sources, FAO is the main contributor,

providing 50-70% of the ATP for muscle contraction (34, 36, 37).

In normal cardiac metabolism, the heart favors fatty acids for ATP

production because they are much more efficient than glucose (38).

For instance, the complete oxidation of 1 mole of a 20-carbon fatty

acid generates approximately 134 moles of ATP, while 1 mole of

glucose only yields about 30 moles of ATP (39). Although fatty acid

oxidation demands more oxygen, under aerobic conditions, its

ATP-generating efficiency is considerably higher (40). Therefore,

fatty acids are the preferred substrate for ATP production in a

healthy heart. Glucose also plays an essential role. In anaerobic

conditions, glucose undergoes glycolysis to form lactate, generating

2 ATP per molecule. In aerobic conditions, 94-97% of pyruvate

enters the mitochondria for the tricarboxylic acid (TCA) cycle, and

only 3-6% is converted into lactate (41). Additionally, lactic acid

contributes to cardiac energy metabolism. During fasting, it can

account for up to 2.8% of the ATP production in the human heart

(42, 43). Recent research has revealed that under specific

circumstances, lactic acid can even become the dominant supplier

of pyruvate for the heart, highlighting its importance (44). Recent

studies have shown that under certain conditions, lactic acid can

even be the primary source of pyruvate for the heart, emphasizing

its significance (45–47). Finally, amino acid oxidation, particularly

of branched-chain amino acids (BCAAs), is a minor source of ATP,

contributing less than 2% (34, 48, 49). This adaptability allows the

heart to regulate the utilization of different energy substrates

according to its needs, maintaining normal cardiac function and

ensuring a continuous supply of ATP (34, 50).
3.2 Abnormal cardiac energy metabolism

In the state of diabetes, the heart’s metabolic processes experience

substantial alterations because of a changed metabolic environment

marked by hyperglycemia, hyperlipidemia, and insulin resistance (51).

FAO becomes less efficient in terms of energy production and causes

lipotoxicity (52). This leads to the build-up of lipid intermediates such

as long-chain acyl-CoAs, acylcarnitines, ceramides, diacylglycerols, and

triacylglycerols within cardiomyocytes (52). These intermediate

substances interfere with mitochondrial function, cause oxidative

stress, and initiate apoptosis. Moreover, insulin resistance impairs

glucose uptake and utilization, further disrupting the heart’s energy

metabolism (53). This metabolic imbalance makes the inefficiencies

related to fatty acid oxidation even worse and contributes to overall
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metabolic disorder in the hearts of diabetic patients (54). Collectively,

these factors result in a decrease in cardiac efficiency and an increase in

oxidative stress. Eventually, they promote the development of heart

failure in diabetic individuals.

In HF, the heart loses its metabolic adaptability, which throws

energy metabolism into disarray. It has difficulty generating sufficient

ATP, much like an engine running out of fuel (55, 56). The heart’s

ability to alternate among fatty acids, glucose, and lactate as energy

sources is compromised, unable to meet the high-energy

requirements. The most prominent metabolic alterations in HF are

a reduction in the utilization of FAO and ATP production (57–59).

The capacity for fatty acid oxidation declines. Firstly, as heart failure

advances, the myocardium’s capability to oxidize fatty acids

diminishes (60). Secondly, the genes that code for key proteins

involved in fatty acid oxidation and their regulatory factors are

inhibitedOn one hand, as heart failure progresses, the

myocardium’s ability to oxidize fatty acids weakens (34). When the

heart switches from depending mainly on FAO to using more glucose

and ketone bodies, it might further damage the myocardium.

In HF, when mitochondrial oxidative metabolism and ATP

synthesis decrease, it is frequently offset by an augmented glycolytic

response (61). During this compensatory process, the expression of

the GLUT1 glucose transporter protein, which is a glycolytic

intermediate, is upregulated (62). Simultaneously, the activity of

phosphofructokinase-1 (PFK-1) rises, and the overall glycolytic flux

also increases (62). However, the relatively small energy increment

from glycolysis is not enough to completely counteract the cardiac

dysfunction caused by energy deficiency (62). This situation might

be regulated by the overexpression of mitochondrial ATPase

inhibitor 1 (ATPIF1) (34, 63). It is worth noting that in cases

where HF occurs concurrently with diabetes, glucose oxidation does

not show an upward trend. Instead, there is an increase in anaerobic

glycolysis, while aerobic glycolysis decreases (56).

Mitochondrial malfunction plays a crucial role in cardiac

metabolic remodeling. It is characterized by elevated oxidative

stress, disturbed calcium balance, abnormal mitochondrial

dynamics, and irregular mitophagy (34). High reactive oxygen

species (ROS) in cardiomyocytes cause lipid peroxidation,

mitochondrial DNA damage, antioxidant depletion, and less ATP

production (64). Disrupted calcium homeostasis impairs metabolic

enzyme activity and activates cell-death pathways (65). Altered

mitochondrial dynamics with more fission and less fusion lead to

fragmented networks and lower metabolic efficiency. Dysregulated

mitophagy accumulates damaged mitochondria (66).

When fuel metabolism is disrupted and physiological stress

occurs, alternative energy sources like ketone bodies can become

essential for meeting the heart’s energy demands (67). Nevertheless,

high levels of ketone bodies have been associated with an increased

mortality risk (68). In metabolic disorders, BCAAs often exhibit

elevated concentrations (69). The buildup of BCAAs may lead to

cardiac enlargement and contribute to the progression of

hypertension and coronary heart disease (70, 71). Human

epidemiological research has mainly shown an association

between higher plasma BCAA levels in HF and unfavorable

outcomes (72). The energy metabolism of normal and abnormal
Frontiers in Endocrinology 04
hearts is illustrated in Figure 1. The flexible utilization of energy

substrates by the normal heart is central to maintaining cardiac

function. However, pathological conditions such as diabetes

mellitus disrupt this balance. In contrast, GLP-1RAs can regulate

the aforementioned key metabolic processes to help impaired hearts

restore an energy metabolism pattern approaching normality, with

the specific regulatory mechanisms to be elaborated in the section

on the mechanism of action of GLP-1RAs.
4 Mechanism of action of GLP-1RAs
especially the metabolic
reprogramming perspective

GLP-1RAs are hormones secreted by intestinal L cells in the

ileum and colon following nutrient intake (73). Their synthesis

occurs through the proteolytic processing of the proglucagon

precursor by various prohormone convertases (74). These agents

play a critical role in regulating postprandial glucose levels by

enhancing glucose-dependent insulin secretion, a mechanism that

ensures precise control of blood sugar following meals.

Accumulating clinical evidence indicates that GLP-1RAs mediate

their cardioprotective actions largely via metabolic reprogramming

(75, 76). This mechanism involves the modulation of fatty acid,

glucose, and ketone body metabolism, mitochondrial function, as

well as anti-inflammatory and antioxidant processes (77–80). Elevated

plasma fatty acid levels, being associated with an increased risk of HF,

can give rise to lipotoxicity (81). Such lipotoxicity induces cardiotoxic

effects through bioactive sphingolipids like ceramides and

diacylglycerols (DAGs) (82). GLP-1RAs mitigate these adverse

impacts by enhancing fatty acid oxidation via the Creb5/NR4a1

signaling axis, thereby reducing mitochondrial damage, lipid

accumulation, and ATP deficiency (77, 78, 83). This metabolic

regulation diminishes lipotoxic stress and optimizes cardiac energy

utilization, conferring direct cardioprotective benefits (83).

Additionally, GLP-1RAs reduce levels of cholesterol, low-density

lipoprotein (LDL), and triglycerides, thereby decreasing the

likelihood of cardiovascular events (84–86). Preclinical investigations

have shown that these agents downregulate proprotein convertase

subtilisin/kexin type 9 (PCSK9) expression, upregulate low-density

lipoprotein receptor (LDLR) levels, and suppress postprandial

secretion of triglycerides and chylomicrons (87, 88). For example,

exendin-4 lowers very-low-density lipoprotein cholesterol (VLDL-C)

and LDL-C in animal models by reducing hepatic sterol regulatory

element-binding protein 2 (SREBP2) levels and cholesterol absorption

(88). Tapolutide has been shown to decrease total cholesterol, LDL-C,

triglycerides, and hepatic steatosis (84). Tirzepatide further attenuates

lipopolysaccharide (LPS)-induced left ventricular remodeling and

dysfunction by inhibiting the TLR4/NF-kB/NLRP3 inflammatory

pathway (89). Collectively, these actions improve lipid profiles and

alleviate lipotoxic burdens on the myocardium, contributing to the

comprehensive cardioprotective effects of GLP-1RAs.

GLP-1RAs improve glucose uptake in cardiomyocytes through

dual mechanisms: triggering AMPK activation to facilitate GLUT4
frontiersin.org
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translocation to the cell membrane and regulating the insulin signaling

pathway to upregulate GLUT4 expression (79, 80). These agents

further optimize glucose utilization by activating glycolytic enzymes

such as hexokinase and phosphofructokinase, thereby enhancing

glycolytic flux (90). GLP-1RAs also alleviate high-sugar-induced

dysfunction in endothelial progenitor cells through the SDF-1b/
CXCR7-AMPK/p38-MAPK/IL-6 signaling axis (91). During

ischemia or periods of high energy demand, GLP-1RAs enhance

ketone body utilization, providing additional energy for

cardiomyocytes (92). This process is vital for reducing oxidative

stress and damage during myocardial ischemia-reperfusion injury. In

terms of mitochondrial function, GLP-1RAs act through multiple

pathways: first, stimulating mitochondrial biogenesis via the AMPK

signaling pathway to boost both the number and functionality of

mitochondria (93). Second, regulating mitochondrial dynamics to

decrease fragmentation and optimize morphological and functional
Frontiers in Endocrinology 05
integrity (94). Finally, GLP-1RAs decrease ROS to ease oxidative stress

and shield mitochondria (94). Their anti-inflammatory and

antioxidant properties further contribute to mitigating cardiac injury

and improving overall cardiovascular health. Proteomic studies in

T2DM patients show that liraglutide treatment enhances cardiac-

metabolic profiles by modulating 72 key proteins involved in acute-

phase responses, chronic inflammation, and oxidative stress-changes

thatmay improve heart health outcomes (95). Additionally, GLP-1RAs

therapy increases circulating vascular progenitor cell content while

reducing proinflammatory granulocyte precursor levels, representing

an additional mechanism underlying their cardioprotective effects (96).

The glucagon-like peptide-1 receptor (GLP-1R) is ubiquitously

present across multiple bodily tissues, including the pancreas, lungs,

kidneys, central nervous system, cardiovascular system, gastrointestinal

tract, as well as skin and vagus nerves (its tissue distribution is

illustrated in Figure 2) (97). By binding to these receptors, GLP-
FIGURE 1

Schematic of energy metabolism in normal and abnormal hearts. (A) Normal cardiac energy metabolism: Illustrates the primary energy substrates
(free fatty acids [FFAs], glucose, branched-chain amino acids [BCAAs]) being transported via proteins (e.g., CPT1, GLUT1/GLUT4) and integrated into
the tricarboxylic acid (TCA) cycle for ATP production. (B) Abnormal cardiac energy metabolism: Highlights impaired fatty acid oxidation, disrupted
mitochondrial function, and altered substrate utilization (e.g., increased anaerobic glycolysis) observed in conditions like diabetes or heart failure.
TCA, tricarboxylic acid cycle; BCAAs, branched-chain amino acids; FFAs, free fatty acids.
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1RAs induce calorie expenditure through mechanisms that mimic a

fasting-mimicking metabolic state. This adaptive pattern triggers

systemic adjustments in energy metabolism, encompassing glucose

homeostasis, hormonal secretion, energy substrate utilization, and

energy expenditure regulation.

Within the central nervous system, GLP-1RAs function to reduce

hunger sensations, suppress appetite, lower caloric intake, amplify

satiety, and facilitate better management of eating behaviors (98–

102). Activation of GLP-1R in the hypothalamic paraventricular

nucleus (PVN) triggers an appetite-suppressing response through

neural pathways involving corticotropin-releasing hormone (CRH)

excitatory neurons (103, 104). Preclinical studies have indicated that
Frontiers in Endocrinology 06
GLP-1RAs require AMPK inhibition to exert their anorectic effects

(105). AMPK is a nutrient and glucose sensor in the hypothalamus that

is affected by substances such as blood glucose、intracellular energy

levels, leptin、GHrelin releasing peptide, and MT-2136 (106–109).

This regulatory mechanism is central to howGLP-1RAs control energy

intake, as outlined in the primary pathways for food intake inhibition

shown in Figure 3. Beyond central nervous system actions, the weight-

loss effects of GLP-1 analogs also involve peripheral metabolic

adaptations. These agonists can facilitate the transformation of

visceral white adipose tissue (WAT) into brown adipose tissue

(BAT), thereby stimulating BAT thermogenesis through sympathetic

nervous system activation to enhance energy expenditure (110–112).
FIGURE 2

The GLP-1R distribution.
FIGURE 3

GLP-1RAs main mechanism for inhibiting food intake.
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The comprehensive mechanism of action for GLP-1RAs is depicted in

Figure 4. And GLP-1RAs exert cardioprotective effects through

metabolic reprogramming is illustrated in Figure 5.
5 Conclusion

Diabetes mellitus imposes a heavy burden on public health

worldwide, particularly due to its close association with increased

incidence and mortality of cardiovascular diseases. Clinical evidence

consistently demonstrates that GLP-1RAs exert cardioprotective

effects, including a significant reduction in the risk of MACE,

alleviation of heart failure-related symptoms, and delay in the

progression of atherosclerotic lesions. For instance, semaglutide

alleviates physical limitations in HFpEF patients, while tirzepatide

reduces the composite endpoint of cardiovascular death or

worsening HF in obese patients with HFpEF-underscoring their

broad utility in cardiometabolic disease management. The notable
Frontiers in Endocrinology 07
cardioprotective benefits of GLP-1RAs have spurred exploration into

their mechanistic actions beyond glycemic control. Recent

investigations into their broad influences on glucose, lipid, and

protein metabolism have provided fresh insights into deciphering the

advantageous cardioprotective effects of this drug class in T2DM-

related cardiovascular disorders. Intriguingly, GLP-1RAs initiate

systemic metabolic reprogramming that emulates a fasting-like state

to regulate metabolic processes and energy balance. This

reprogramming entails enhanced glucose utilization, optimized lipid

metabolic pathways, and improved protein homeostasis-all of which

likely contribute to their cardiorenal protective actions. Specifically,

GLP-1RAs boost fatty acid oxidation, facilitate glucose uptake and

utilization, enhance mitochondrial function, and increase ketone body

utilization. Collectively, these mechanisms optimize cardiac energy

metabolism, mitigate oxidative stress, and support overall

cardioprotection. Further research is needed to resolve uncertainties

regarding the specific metabolic alterations and to achieve a

comprehensive understanding of how GLP-1RAs affect metabolism
FIGURE 4

The mechanism of action of GLP-1RAs is illustrated.
FIGURE 5

The mechanism of GLP-1RAs exerting cardioprotective effects through metabolic reprogramming.
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and the underlying molecular pathways. Future studies should assess

whether the metabolic reprogramming induced by GLP-1RAs exhibits

dose-dependent characteristics and employ bibliometric approaches to

investigate the temporal patterns of these metabolic changes.
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