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Introduction: Glycemic variability (GV) is an increasingly important predictive

indicator of vascular occlusion-related complications. Studies have

demonstrated that a higher GV is associated with poor outcomes in patients

with cerebral infarction (CI). The prognostic utility of GV in CI patients for

predicting acute kidney injury (AKI) remains inadequately characterized. This

investigation systematically examines the pathophysiological relationship

between acute glycemic fluctuations and AKI development in CI populations,

with particular emphasis on temporal patterns of glucose dysregulation.

Methods: This retrospective cohort analysis utilized data from the MIMIC-IV

database, categorizing CI patients into quartiles based on GV metrics. Primary

outcomes included AKI incidence and renal replacement therapy (RRT) initiation,

with in-hospital mortality designated as the secondary endpoint. Analytical

methodologies employed Kaplan-Meier survival curves with log-rank testing,

multivariable-adjusted Cox proportional hazards regression, and logistic

regression modeling to evaluate GV-AKI associations while controlling for

critical confounders.

Results: The analytical cohort comprised 3,343 critically ill individuals extracted

from the MIMIC-IV database. Kaplan-Meier curve analysis demonstrated

progressively elevated cumulative risks of AKI development, RRT requirement,

and in-hospital mortality among individuals with heightened GV. Following

multivariable adjustment, logistic regression models and Cox proportional

hazards analyses confirmed GV as an independent predictor of AKI

progression, RRT dependency, and mortality risk in cerebral infarction patients.
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Conclusion: This investigation identifies GV as an independent prognostic

determinant for AKI development in cerebral infarction patients. GV

demonstrates clinical utility as a biomarker for stratifying AKI risk in

this population.
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Introduction

CI is a serious neurological disorder, which is the main cause of

disability and mortality worldwide. The brain and kidneys have

similar physiological characteristics in terms of anatomy, vascular

regulation, and hemodynamics. Through central/autonomic

pathways and immune interactions, the neurorenal axis normally

sustains systemic homeostasis, whose dysfunction - as seen in

hypertensive sympathoexcitation - disrupts pressure-natriuresis

mechanisms (1). Studies have shown that approximately 11.60% of

patients with ischemic stroke have AKI, which increases the risk of

poor prognoses (2). The prevalence of dialysis-requiring AKI among

cerebrovascular accident inpatients demonstrates a progressive

upward trajectory, exhibiting robust correlations with elevated

mortality risk and non-routine discharge dispositions (3). Although

accumulating evidence has shown an association between CI and

renal dysfunction, the underlying mechanisms remain unclear. Early

identification and targeted mitigation of AKI risk determinants post-

CI are essential for optimizing prognostic trajectories.

GV represents a composite biomarker quantifying both acute

fluctuations and chronic alterations in blood glucose (BG)

homeostasis, serving as a dynamic indicator of glucoregulatory

efficacy (4). This pathophysiological mechanism is orchestrated

through multisystemic interactions involving the neuroendocrine

axis and peripheral organ systems. Clinical evidence identifies

infectious processes, surgical interventions, traumatic injuries,

critical comorbidities, and pharmacological agents as principal

etiological drivers of stress-induced glycemic dysregulation in

ICU settings (5). Research has shown that patients with severe

hyperglycemia require longer hospital stays and exhibit higher

invasive ventilation and mortality rates; however, imatinib

significantly lowers the incidence of severe hyperglycemia (6).
e kidney injury; ALT,

ase; BG, blood glucose;

, cerebral infarction; CI,

D, chronic obstructive

diabetes mellitus; GV,

o; HTN, hypertension;

dical Information Mart

lood cell; RRT, renal

e blood cell.

02
Weekly subcutaneous semaglutide administration demonstrated

superior efficacy to placebo in reducing cardiovascular mortality

and nonfatal cardiovascular events (myocardial infarction and

stroke) over a mean 39.8-month follow-up period (7).

Interestingly, the lower the BG control, the less likely it is to

increase the incidence of long-term benign events. Ma et al.

reported that hypoglycemia was strongly associated with ICU

mortality among patients without diabetes mellitus (DM) and less

so among those with DM (8). Recently, GV, which is a

comprehensive evaluation of hyperglycemia and hypoglycemia,

has become a significant indicator of glycemic control. In contrast

to static glycemic parameters (mean BG), GV demonstrates

superior clinical utility as a dynamic biomarker of glucose

fluctuation magnitude. Among individuals with diabetes mellitus,

heightened GV independently predicts elevated risks of major

adverse limb events, including peripheral arterial disease

progression and critical limb ischemia development (9). Elevated

GV independently predicts heightened 90-day mortality risk and

represents a critical modifiable prognostic determinant in critically

ill patients with AKI (10). Elevated glycemic variability (GV),

indicative of impaired blood glucose homeostasis, exhibits a dose-

dependent association with heightened risks of major adverse

cardiocerebrovascular and renal events (MACCRE). Nevertheless,

the pathophysiological interplay between GV and AKI development

in CI populations remains inadequately characterized.Specifically,

CI patients often present with stress-induced hyperglycemia,

autonomic dysfunction, and a high prevalence of comorbidities

such as hypertension and diabetes, all of which may predispose

them to acute kidney injury (AKI). Additionally, blood glucose

variability in CI patients is more pronounced due to the

neuroendocrine disturbances associated with acute cerebral

events. Therefore, investigating GV in this specific population

may reveal clinically relevant insights that are not as apparent in

the general population.

This investigation employed Kaplan-Meier survival analysis to

delineate the temporal relationship between GV and AKI

development in CI populations. To validate these associations, we

applied multivariate-adjusted logistic regression and Cox

proportional hazards models, complemented by stratified

subgroup evaluations to systematically investigate the

interdependent associations between RRT utilization, in-hospital

mortality, and CI-AKI progression.
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Methods

Data source and study population

We retrospectively retrieved data on patients with sepsis from

the Medical Information Mart for the Intensive Care (MIMIC)-IV

database, which includes comprehensive information on all patients

treated at the Beth Israel Deaconess Medical Center in Boston,

Massachusetts, between 2008 and 2019. The data included vital

signs, laboratory test results, medications, risk assessment

indicators, and other relevant information. The requirement for

research qualifications was waived (official certification number:

52681986 for the first author Yiming Hua). Owing to demands for

privacy protection, databases de-identify personal information by

replacing patients identifiers with random codes. CI is a type of

stroke that occurs when a blood vessel supplying blood to the brain

is obstructed, leading to a lack of oxygen and nutrients in the

affected area of the brain. The deprivation of blood flow results in

brain cell death and subsequent neurological deficits (11). The

exclusion criteria for the MIMIC-IV database were as follows:

(1) not being admitted for the first time, (2) not having AKI

records, (3) not having more than three glucose tests before AKI,

and (4) ICU stay <24 h (Figure 1).
Data extraction

In this study, we used a Structured Query Language to extract

data from the Navicat Premium software (version 12.0). To quantify
Frontiers in Endocrinology 03
GV, we derived the coefficient of variation (CV) using the formula

CV = [standard deviation (SD) of blood glucose/MBG] × 100%,

which provides a normalized measure of glucose fluctuation

independent of absolute glucose levels. All measurements were

obtained before the occurrence of AKI. All data obtained from

the MIMIC-IV database within 24 h of admission included age; sex;

white blood cell (WBC), red blood cell (RBC), and platelet counts;

hemoglobin (HB), blood urea nitrogen (BUN), serum creatinine

(SCR), alanine aminotransferase (ALT), aspartate aminotransferase

(AST), sodium, potassium, calcium, and chloride levels;

hypertension (HTN); chronic heart failure (CHF); presence of

chronic obstructive pulmonary disease (COPD), DM, chronic

kidney disease (CKD), and AKI; RRT use; and in-hospital

mortality. The follow-up period began on the first day of

hospitalization and ended at the onset of AKI. The secondary

endpoint extended from the initial admission to the first use of

RRT or death during the follow-up period.
Primary and secondary outcomes

The primary endpoint of this study was the incidence of AKI.

The diagnostic criteria for AKI were based on the Kidney Disease:

Improving Global Outcomes (KDIGO) guidelines, which define

AKI as either an increase in serum creatinine (SCR) to ≥1.5 times

the baseline within 7 days, an increase of ≥0.3 mg/dL in SCR within

24 hours, or oliguria (12). The baseline SCR level used in this study

was that measured within the first 24 h of admission. RRT is an

indirect indicator of AKI severity and was considered a

secondary endpoint.
FIGURE 1

Flowchart of extraction of patients with cerebral infarction from Medical Information Mart for the Intensive Care-IV database for this study.
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Statistical analysis

Continuous variables were presented as means and standard

deviations and compared between groups using either the Mann–

Whitney U test or Student’s t-test. Categorical variables were

expressed as frequencies and percentages and compared between

groups using Fisher’s exact test or Pearson’s chi-square test.

Kaplan–Meier survival analysis was used to assess the correlation

between GV and AKI incidence in each group. Additionally, Cox

proportional hazards model analysis was performed to calculate the

hazard ratios (HRs) and their corresponding 95% confidence

intervals (CIs) for the impact of GV on AKI incidence across

different groups. The analysis adjusted for multiple variables that

may have influenced the outcomes. No variable adjustments were

made in model 1. Model 2 was adjusted for sex and age. As illustrated

in Table 1, the following variables were included in model 3: age; sex;
Frontiers in Endocrinology 04
WBC and RBC counts; HB, SCR, BUN, ALT, AST, sodium, calcium,

and chloride levels; and presence of CHF, HTN, DM, and CKD. Each

model incorporated GV in both continuous and categorical forms.

Q1 served as the baseline group in all models. Furthermore, restricted

cubic splines were applied to examine the relationship between GV

and AKI incidence based on the fully adjusted model 3. We also

employed competing risk analysis, specifically the Fine-Gray model,

to account for the confounding effect of in-hospital mortality on the

incidence of AKI and RRT, thereby minimizing bias introduced by

competing events.

Subgroup analyses were conducted to explore the impact of the

GV value on outcome indicators within various subgroups defined

based on sex (female vs. male), age (<65 vs. ≥65 years) and presence

of conditions, such as HTN, CHF, COPD, CKD and DM. All data

analyses were performed using R version 4.2.3. Statistical

significance was defined as a two-sided p-value < 0.05.
TABLE 1 Cox regression model for the association of glycemic variability with acute kidney injury incidence and renal replacement therapy use and
logistic regression model for its association with in-hospital mortality in the Medical Information Mart for the Intensive Care database.

Categories
Model 1 Model 2 Model 3

HR (95%CI) Pvalue HR (95%CI) Pvalue HR (95%CI) Pvalue

AKI incidence

GV as continuous 1.788 [95%CI 1.422-2.248] <0.001 1.776 [95%CI 1.411-2.237] <0.001 1.349 [95%CI 0.970-1.877] 0.076

Quartilea

Q1 Ref. Ref. Ref.

Q2 1.199 [95%CI 1.073-1.339] 0.001 1.186 [95%CI 1.061-1.325] 0.003 1.166 [95%CI 1.007-1.350] 0.040

Q3 1.306 [95%CI 1.170-1.458] <0.001 1.303 [95%CI 1.166-1.456] <0.001 1.299 [95%CI 1.121-1.505] <0.001

Q4 1.446 [95%CI 1.296-1.612] <0.001 1.439 [95%CI 1.289-1.606] <0.001 1.320 [95%CI 1.133-1.537] <0.001

RRT incidence

GV as continuous 8.064 [95%CI 4.921-13.220] <0.001 9.915 [95%CI 6.020-16.330] <0.001 4.539 [95%CI 1.753-11.752] 0.002

Quartilea

Q1 Ref. Ref. Ref.

Q2 4.186 [95%CI 1.934-9.063] <0.001 4.384 [95%CI 2.025-9.494] <0.001 2.222 [95%CI 0.883-5.590] 0.090

Q3 5.900 [95%CI 2.785-12.501] <0.001 6.531 [95%CI 3.080-13.850] <0.001 2.609 [95%CI 1.065-6.392] 0.036

Q4 11.424 [95%CI 5.538-23.567] <0.001 13.362 [95%CI 6.459-27.646] <0.001 4.285 [95%CI 1.789-10.261] 0.001

In-hospital mortality

GV as continuous 1.429 [95%CI 1.316-1.551] <0.001 1.421 [95%CI 1.309-1.543] <0.001 1.326 [95%CI 1.176-1.494] <0.001

Quartilea

Q1 Ref. Ref. Ref.

Q2 1.068 [95%CI 1.034-1.103] <0.001 1.066 [95%CI 1.032-1.101] <0.001 1.065 [95%CI 1.018-1.114] 0.006

Q3 1.077 [95%CI 1.043-1.113] <0.001 1.075 [95%CI 1.040-1.110] <0.001 1.054 [95%CI 1.006-1.103] 0.025

Q4 1.161 [95%CI 1.124-1.200] <0.001 1.158 [95%CI 1.121-1.196] <0.001 1.135 [95%CI 1.082-1.191] <0.001
fr
Model 1 was unadjusted.
Model 2 was adjusted for sex and age.
Model 3 was adjusted for age; sex; white blood cell and red blood cell counts; hemoglobin, serum creatinine, blood urea nitrogen, alanine aminotransferase, aspartate aminotransferase, sodium,
calcium, and chloride levels; and the presence of chronic heart failure, hypertension, diabetes, and chronic kidney disease.
The lowercase letter “a” following “quartile” indicates that, according to the research method described earlier, the two groups were divided based on the 25% quartile.
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Results

Baseline characteristics

The basic characteristics of the patients with sepsis from the

MIMIC-IV database are presented in Table 2. Based on their GV,

patients are categorized into Q1 (0, 0.11), Q2 (0.11, 0.167), Q3

(0.167, 0.248), and Q4 (0.248, 1.88); the average GV for these

groups were 0.08 ± 0.02, 0.14 ± 0.02, 0.20 ± 0.02, 0.38 ± 0.16. More
Frontiers in Endocrinology 05
importantly, AKI incidence was significantly higher in Q4 (84.2%)

than in Q1 (71.2%), Q2 (78.1%), and Q3 (80.7%). More

importantly, RRT use (10.4%) and in-hospital mortality (21.3%)

were also significantly higher in Q4 than in the other three groups.

In terms of demographic data, Q4 included older patients and a

higher proportion of female patients, compared with the other three

groups. Further, Q4 was characterized by higher WBC count and

BUN, SCR, ALT, and AST levels but lower RBC count and HB,

sodium, calcium, and chloride levels, compared with the other three
TABLE 2 Baseline characteristics of patients according to GV value.

Categories
Q1 (0,0.11] Q2 (0.11,0.167] Q3 (0.167,0.248] Q4 (0.248,1.88]

Pvalue
(N=836) (N=836) (N=835) (N=836)

Demographic

Age 69.44 ± 15.62 69.60 ± 14.49 71.30 ± 13.83 71.52 ± 13.99 0.003

Gender 0.011

Male 454 ( 54.3) 475 ( 56.8) 431 ( 51.6) 411 ( 49.2)

Female 382 ( 45.7) 361 ( 43.2) 404 ( 48.4) 425 ( 50.8)

Laboratory tests

WBC (K/uL) 9.45 ± 4.30 10.10 ± 4.38 10.58 ± 8.83 10.70 ± 5.51 <0.001

RBC (K/uL) 4.08 ± 0.71 3.94 ± 0.79 3.93 ± 0.76 3.88 ± 0.79 <0.001

Platelets (K/uL) 235.40 ± 85.40 229.20 ± 107.51 230.59 ± 94.94 235.17 ± 103.03 0.461

Hemoglobin (g/dL) 11.62 ± 2.29 11.03 ± 2.42 10.77 ± 2.36 10.35 ± 2.37 <0.001

BUN (mg/dL) 17.05 ± 11.15 19.92 ± 14.71 21.55 ± 16.88 25.81 ± 20.27 <0.001

SCR (mg/dL) 0.94 ± 0.54 1.12 ± 1.03 1.16 ± 1.00 1.38 ± 1.46 <0.001

ALT (U/L) 27.66 ± 36.35 58.54 ± 257.27 64.53 ± 207.42 78.11 ± 250.20 <0.001

AST (U/L) 38.73 ± 129.34 78.70 ± 324.51 93.88 ± 302.95 99.73 ± 300.13 <0.001

Sodium (mEq/L) 138.01 ± 3.88 137.96 ± 4.51 137.56 ± 4.81 137.47 ± 5.10 0.031

Potassium (mEq/L) 3.89 ± 0.45 3.90 ± 0.50 3.93 ± 0.55 3.90 ± 0.56 0.560

Calcium (mg/dL) 8.55 ± 0.73 8.42 ± 0.80 8.37 ± 0.86 8.27 ± 0.90 <0.001

Chloride (mg/dlL) 103.03 ± 4.38 103.12 ± 5.28 102.68 ± 5.66 102.24 ± 6.28 0.008

GV 0.08 ± 0.02 0.14 ± 0.02 0.20 ± 0.02 0.38 ± 0.16 <0.001

Comorbidities, n(%)

Hypertension 470 ( 56.2) 438 ( 52.4) 412 ( 49.3) 406 ( 48.6) 0.007

CHF 158 ( 18.9) 198 ( 23.7) 228 ( 27.3) 300 ( 35.9) <0.001

COPD 135 ( 16.1) 153 ( 18.3) 165 ( 19.8) 204 ( 24.4) <0.001

Diabetes 179 ( 21.4) 209 ( 25.0) 272 ( 32.6) 495 ( 59.2) <0.001

CKD 126 ( 15.1) 136 ( 16.3) 184 ( 22.0) 240 ( 28.7) <0.001

Events, n(%)

AKI 595 ( 71.2) 653 ( 78.1) 674 ( 80.7) 704 ( 84.2) <0.001

RRT 8 ( 1.0) 33 ( 3.9) 46 ( 5.5) 87 ( 10.4) <0.001

Death at hospital 53 ( 6.3) 108 ( 12.9) 115 ( 13.8) 178 ( 21.3) <0.001
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groups. Additionally, the incidences of CHF, COPD, DM, and CKD

were significantly higher, whereas the occurrence of HTN was

significantly lower in Q4 than in the other three groups (all p<0.05).
Association between GV and AKI incidence

The AKI incidence in the four groups of patients with CI were

71.2% (Q1), 78.1% (Q2), 80.7% (Q3) and 84.2% (Q4), underscoring

the increased risk of AKI in Q4, with higher GV (Table 2 and

Figure 2A). The cumulative risk curve also indicated that AKI

incidence in Q4 increased during the follow-up period (p<0.001)

(Figure 3). RRT use and in-hospital mortality in Q4 were 10.4% and

21.3%, respectively, which were significantly higher than those in

the other three groups, according to the stacked percentage bar

chart (Table 2 and Figures 2B, C). In addition, the cumulative risk

curve indicated that RRT use in Q4 increased during the follow-up

period (p<0.0001) (Figure 4).

The Cox regression model demonstrated that GV was

independently associated with AKI incidence. When GV was

treated as a categorical variable in the fully adjusted model 3, the

risk of AKI for Q4, Q3, and Q2 were as follows: HR, 1.320 (95% CI:

1.133–1.537); HR, 1.299 (95% CI: 1.121–1.505); and HR, 1.166 (95%

CI: 1.007–1.350), respectively. When GV was regarded as a

continuous variable, the risk of AKI was HR, 1.349 (95% CI:

0.970–1.877) (Table 1). When GV was treated as a categorical

variable in the fully adjusted model 3, the risks of RRT use for Q4,

Q3, and Q2 were as follows: HR, 4.285 (95% CI: 1.789–10.261); HR,

2.609 (95% CI: 1.065–6.392); and HR, 2.222 (95% CI: 0.883–5.590),

respectively. When the GV was regarded as a continuous variable,

the risk of AKI was as follows: HR, 4.539 (95% CI: 1.753–11.752)

(Table 1). Multivariate logistic regression analysis was used to assess

the predictive risk of in-hospital mortality among patients with CI

based on the GV values, and the fully adjusted model 3 yielded HRs

of 1.135 (95% CI: 1.082–1.191); 1.054 (95% CI: 1.006–1.103); and

1.065 (95% CI: 1.018–1.114) for Q4, Q3, and Q2, respectively.
Frontiers in Endocrinology 06
When GV was treated as a categorical variable and the GV as a

continuous variable, the HR was 1.326 (95% CI: 1.176–1.494)

(Table 1). Moreover, after accounting for in-hospital mortality in

the competing risk analysis, the incidence of AKI remained

significantly different in the fourth group. In the fully adjusted

Model 3, the hazard ratio (HR) was 1.66 [95% CI: 1.29–2.13], with a

p-value < 0.001(Supplementary Table S1).

Figure 5 illustrates the restricted cubic spline regression model

based on the fully adjusted Cox regression of model 3, highlighting

the dose-response relationship between GV and the risk of AKI

(nonlinear p=0.46, p=0.011) and RRT use (nonlinear p=0.016,

p=0.002). Restricted cubic spline regression models for in-hospital

mortality demonstrated a relatively clear positive correlation with

GC (nonlinear p=0.089 and p<0.001).
Subgroup analyses

To further examine the relationship of GV with AKI incidence,

RRT use and in-hospital mortality, stratified analyses were

performed based on sex (female vs. male), age (<65 vs. ≥65 years)

and presence of conditions, such as HTN, CHF, COPD, CKD and

DM. When the patients were stratified by sex (male = odds ratio

[OR]: 1.337, 95% CI: 1.088–1.644; female = OR: 1.318, 95% CI:

1.048–1.657) and age (<65 years = OR: 1.535, 95% CI: 1.189–1.981;

≥65 years = OR: 1.169, 95% CI: 0.966–1.416), the fully adjusted

model showed a significant relationship between GV and AKI

incidence. Further, whether the patients were stratified by sex

(male = OR: 4.654, 95% CI: 1.360–15.923; female = OR: 2.986,

95% CI: 0.851–10.471) or age (<65 years = OR: 2.656, 95% CI:

0.864–8.169; ≥65 years = OR: 6.084, 95% CI: 1.422–26.035), the

fully adjusted model showed a significant relationship between GV

and RRT use. Moreover, when stratified by sex (male = OR: 1.153,

95% CI: 1.078–1.233; female = OR: 1.113, 95% CI: 1.039–1.192) and

age (<65 years = OR: 1.158, 95% CI: 1.077–1.245; ≥65 years = OR:

1.117, 95% CI: 1.049–1.190), the fully adjusted model showed a
FIGURE 2

Stacked percentage bar chart for acute kidney injury (AKI) incidence, renal replacement therapy (RRT) use, and in-hospital mortality. (A–C) AKI
incidence, RRT use, and in-hospital mortality are shown separately.
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FIGURE 4

Cumulative event incidence curves for renal replacement therapy use.
FIGURE 3

Cumulative event incidence curves for the incidence of acute kidney injury.
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significant relationship between GV and in-hospital mortality. The

same correlations were observed in patients with CHF, HTN,

myocardial infarction, COPD, CKD and DM (Figure 6).
Discussion

This study demonstrated that GV is a critical predictor of AKI

incidence in patients with CI. Notably, this correlation remained

significant in the MIMIC-IV patient cohort even after adjusting for

potential confounding factors. Importantly, this study introduces a

straightforward methodology for assessing the glucose control state

to optimize the stratification of AKI risk in critically ill patients

with CI.
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Epidemiological surveillance data from 2020 demonstrate

stroke prevalence rates of 2.6% (95%CI:2.6–2.6) in China, with

corresponding incidence and mortality rates quantified at 505.2

(95%CI:488.5–522.0) and 343.4 (95%CI:329.6–357.0) per 100,000

person-years, respectively (13). Ischemic stroke (IS) constituted the

predominant subtype, accounting for 87% of cases despite the

conventional categorization of IS and hemorrhagic subtypes (14).

CI is a major adverse event characterized by inadequate blood

supply to the cerebral functional zone and is accompanied by

reversible injury without apt reperfusion of the occlusion (15).

AKI represents a clinically consequential complication in CI

patients, mediated through multifactorial etiological pathways

including hypovolemic states, contrast-induced nephrotoxicity,

and baseline chronic comorbidities (16). A case-control study
FIGURE 5

Restricted cubic spline (RCS) showing the relationship between glycemic variability (GV) and outcome indicators in the Medical Information Mart for
the Intensive Care database. (A–C) RCS shows a correlation between GV and acute kidney injury incidence as well as in-hospital mortality in the fully
adjusted Cox regression model. Nonlinear p value indicates whether GV had a linear correlation with the outcome, and p>0.05 indicates a
linear correlation.
A 

 

B 

C 

FIGURE 6

Subgroup analyses for the association of glycemic variability with acute kidney injury incidence, renal replacement therapy use, and in-hospital
mortality. OR, odds ratio; CI, confidence interval.
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demonstrated lower AKI incidence (4.8% vs. 7.7%) among IS

patients receiving computed tomography angiography (OR=0.66,

95%CI=0.35–1.22) compared to controls (17). CKD patients exhibit

elevated susceptibility to AKI, with pre-existing CKD further

amplifying AKI incidence in IS populations (18). Zhu et al. and

Ma et al. found favorable concordance between AKI incidence and

acute ischemic stroke (AIS) during ICU stay (19, 20).

Studies have shown that BG regulation disorders are correlated

with a high risk of metabolic dysfunction-associated complications,

such as cardiovascular, cerebrovascular, and kidney-vascular diseases

(21, 22). Chi et al. elucidated the nephroprotective mechanisms of

dapagliflozin in attenuating lipopolysaccharide-induced endotoxic

shock and AKI-associated pathology in streptozotocin-induced

diabetic murine models, mediated through adenosine

monophosphate kinase pathway activation (23). Prior investigations

have documented AKI as a prevalent complication among pediatric

populations with newly diagnosed type 1 diabetes mellitus, exhibiting

independent associations with elevated BG concentrations and

diabetic ketoacidosis (DKA). Notably, all stage 3 AKI manifestations

demonstrated exclusive correlations with DKA (24). The harmful

effects of hyperglycemia on the kidneys are well known; however, the

harmful effects of hypoglycemia cannot be underestimated.

Hypoglycemia may lead to decreased renal blood flow and affect

renal perfusion and function. Chronic hypoglycemia induces renal

ischemic injury through pathophysiological mechanisms involving

diminished microvascular perfusion, ultimately resulting in reduced

glomerular filtration rate (25). In addition, hypoglycemia may affect

the metabolic function of the kidney, leading to a decline in the ability

of the kidney to regulate electrolyte and acid-base balance (26).

Moreover, hypoglycemia may be related to an increase in renal

injury markers, such as renal injury molecule-1 and neutrophil

gelatinase-related lipoproteins (27). Controlling blood sugar over a

wide range may not improve the long-term prognosis of patients;

however, a narrow and accurate blood sugar control range and small

variability interval need to be further explored.

This investigation acknowledges several methodological

limitations. Primarily constrained by single-timepoint GV

assessment at admission, the analysis lacks longitudinal glycemic

profiling, precluding comprehensive evaluation of dynamic multi-

organ dysfunction trajectories. Database limitations further

restricted granular severity stratification for critical comorbidities

(heart failure, hepatic insufficiency, malignancy). Moreover,

unmeasured socioeconomic determinants may introduce residual

confounding. And the study cohort predominantly comprised CI

patients from the United States. Substantial differences in

demographic characteristics—including racial/ethnic distribution,

BMI profiles, insulin secretion patterns, and smoking prevalence—

compared to Asian populations may limit the generalizability of the

findings to other geographic or ethnic groups. External validation

through multicenter prospective cohorts remains imperative to

confirm these findings. And in our subgroup analysis, GV was

not significantly associated with AKI among patients with pre-

existing diabetes. One possible explanation is that patients with

diabetes often exhibit long-term glycemic adaptations and may

tolerate wider fluctuations in blood glucose levels due to chronic
Frontiers in Endocrinology 09
metabolic conditioning. In contrast, non-diabetic individuals may

be more susceptible to glucose variability, which may trigger

oxidative stress, endothelial dysfunction, or immune activation,

thereby increasing the risk of AKI.

The results of this study show that GV, whether treated as a

categorical or continuous variable, has a significant positive effect on

the incidence of AKI, RRT use, and in-hospital mortality in patients

with AIS, suggesting that higher GV values may synergistically

enhance the damage caused by basic risk factors to the kidney.
Conclusion

This analysis identified elevated GV as inversely associated with

AKI incidence in CI patients. GV demonstrates independent

prognostic utility for AKI risk stratification in this population and

may inform targeted therapeutic strategies. Nevertheless, validation

through large-scale prospective cohort studies and mechanistic

investigations remains imperative.
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