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Introduction: Numerous risk loci have been identified to have an essential role in
Metabolic associated steatotic liver disease (MASLD) susceptibility and
progression. The role of membrane-bound O-acyltransferase domain
containing 7 (MBOAT7, rs641738) and protein tyrosine phosphatase non-
receptor type 2 (PTPN2, rs2542151) genes in the risk of significant fibrosis in
MASLD patients is still unclear. The aim of this study was to examine the
association between MBOATY rs641738 and PTPNZ2 rs2542151 genotypes and
the risk of significant fibrosis in Egyptian individuals with MASLD.

Methods: We enrolled 142 patients with varying degrees of MASLD and 142
healthy controls with no evidence of MASLD. All subjects underwent biochemical
tests and genotyping of PTPNZ2 rs2542151 and MBOATY rs641738 by real-time
PCR. Additionally, patients were divided according to fibrosis stages assessed by
transient elastography (Fibroscan) into 103 patients with early fibrosis (FO, F1) and
39 with significant fibrosis (> F2).

Results and discussion: The study revealed that T allele and T/T genotype of
MBOAT7 rs641738 were more frequent among MASLD patients compared to
controls, with higher frequency in the significant fibrosis subgroup compared to
early fibrosis or control groups. Regarding PTPNZ2 rs2542151, the G allele and G/G
genotype were more frequent among MASLD patients compared to controls and
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showed higher frequency among the significant fibrosis group than controls.
Multivariable regression analysis revealed that triglycerides, hepatic steatosis
index, MBOATY rs641738 (C/T+T/T), and PTPN2 rs2542151 (G/T+G/G) were
independent predictors of MASLD susceptibility. Only PTPN2 rs2542151
(G/T+G/G) was the independent predictor of significant fibrosis in MASLD
patients. In conclusion, PTPNZ2 rs2542151 and MBOAT7 rs641738 SNPs are
associated with MASLD susceptibility, while only PTPNZ2 rs2542151 mutations
are associated with fibrosis progression.

MASLD, genotyping, fibrosis, MBOAT7, rs641738, PTPNZ2, rs2542151

Introduction

Pathogenesis of metabolic dysfunction-associated steatotic liver
disease (MASLD) is complex, thus its clinical presentation is varied.
Due to the rising prevalence of obesity and metabolic syndrome,
which are critical factors in the development and progression of the
disease, it has emerged as the most prevalent liver disease globally,
with a prevalence of about 30% (1). MASLD ranges from simple
steatosis into nonalcoholic steatohepatitis, steatohepatitis with
fibrosis, and cirrhosis (2).

Recently, the term of Non-alcoholic fatty liver disease (NAFLD)
has been replaced with MASLD, as well as the term of non-alcoholic
steatohepatitis (NASH) has been changed into metabolic
dysfunction- associated steatohepatitis (MASH) in a worldwide
agreement. A new diagnostic criteria based on the coexistence of
steatosis and clinical evidence of obesity, hypertension with
dysfunction in glucose, triglyceride (TG) and high density
lipoprotien (HDL) metabolism has been also stated for both of
them (3). However, several studies have displayed obvious over-lap
between both defined patients with NAFLD and MASLD. (4-6).

The diagnosis necessitates the lack of extensive alcohol intake
and other causes of hepatic fat accumulation, as well as the presence
of imaging or histological evidence of hepatic steatosis. According
to current guidelines, ultrasonography is the first-line imaging tool
for diagnosing hepatic steatosis and is frequently performed to
screen for MASLD (7). Patients also generally accept transient
elastography as a painless, quick, and complication-free method
of measuring liver stiffness. Currently, it’s advised as a rather
reliable method for determining whether or not patients with
MASLD have significant fibrosis (8).
performing tool is available for early prediction of MASLD;

However, no well-

particularly, the levels of liver enzymes could be normal in those
patients (9). Several studies investigated the risk factors and
prediction risk scores for MASLD; however, their results are
debated (10-12).

The fact that not all individuals with obesity develop MASLD
and that disease rates vary throughout ethnic groups points to a
genetic basis for MASLD (13, 14). The available data suggest that
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the transcription factor 4 (TCM4) gene is not highly expressed in
the human liver (15). However, the available Expression
Quantitative Trait Loci analysis suggests that rs641738 SNP
present in the first exon of TCM4 gene leads to C>T missense
mutation, and leads to reduced expression and activity of the
membrane bound O-acyltransferase domain containing 7 gene
(MBOAT?7), and perhaps participates in the progression of liver
disease (15, 16). It was reported that sSSNP; rs641738 is located a few
hundred base pairs downstream of the 3’-untranslated region of
MBOAT?, which belongs to a family of genes that encode specific
acyl donors and acceptors (17) including lysophosphatidylinositol
acyltransferase 1 (LPIAT1), which has a role in controlling the
amount of free arachidonic acid in cells (18). Given its role in
inflammatory lipid pathways, most mechanistic work relating to
rs641738 has focussed on MBOAT7 (19). Rs 641738, C>T is
associated with lower hepatic expression of MBOAT?7 at both the
mRNA (20) and protein levels (15). However, these findings have
not been consistently replicated in different ethnicities (21) and
there is a lack of data from the Middle East and African countries.

Protein tyrosine phosphatase non-receptor type 2 (PTPN2),
formerly known as T-cell protein tyrosine phosphatase (TCPTP)
due to its initial discovery in T cells, is another candidate gene
identified by GWAS. It encodes the enzyme tyrosine-protein
phosphatase non-receptor type 2, a member of the superfamily of
protein tyrosine kinases (22). which is a dephosphorylation enzyme
that can inhibit multiple inflammatory signaling pathways and
regulate many biological processes as well as a variety of
pathophysiological processes (23, 24). The intergenic SNP,
rs2542151 is located in chromosome 18pll, 5.5 kb upstream of
the PTPN2 gene, showed the strongest association with Chrons
disease (25, 26). The brain, liver, lung, and gastrointestinal system
all have significant levels of PTPN2 expression. Consequently,
mutations in the PTPN2 gene frequently lead to the development
of inflammatory disorders such as Crohn’s disease, hepatitis,
diabetes, and atherosclerosis (27, 28). Additionally, it was
reported that SNPs in PTPN2 rs2542151 in patients with MASLD
was associated with higher severity of fatty liver disease and a higher
prevalence of type 2 diabetes mellitus (T2DM) (29).

frontiersin.org


https://doi.org/10.3389/fendo.2025.1615162
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Abdelsattar et al.

However, the MBOAT?7 and PTPN2 genes has been explored in
several studies (15, 30-34), the relationship between the both genes
and the risk of significant fibrosis in MASLD is still debatable due to
a lack of evidence in different ethnicities especially in the Middle
East and African countries. Therefore, we hypothesized to examine
the association between MBOATY7 rs641738 and PTPN2 rs2542151
genotypes and the risk of significant fibrosis in Egyptian patients
with MASLD.

Subjects and methods

This case-control study included 142 patients with MASLD,
who were recruited from the outpatient clinic of the National Liver
Institute, Menoufia University, Egypt, and the endocrinology unit of
the Internal Medicine Department, Faculty of Medicine, Menoufia
University, Egypt. Exclusion criteria included age <18; patients with
hepatic decompensation; other causes of chronic liver disease;
autoimmune diseases; thyroid abnormalities; malignancy; sepsis;
and patients consuming alcohol or receiving steatogenic drugs. In
addition, 142 volunteers with no evidence of MASLD and matching
age and sex were included as controls.

All subjects underwent full history-taking and physical
examination. Waist circumference (WC) was measured at the top
of the iliac crests using a non-stretchable tape. Body mass index
(BMI) was calculated by devision of Weight in Kg by
height squared.

Sample collection and laboratory
investigations

Eight mL of venous blood was withdrawn in the morning after
an overnight fast. Two ml of blood was preserved on EDTA, to be
used later for extraction of DNA. For CBC assay, one ml was
evacuated into EDTA tube, CBC was assessed by the Sysmex XT-
1800i automated hematology analyzer (Sysmex, Japan). Another 1
ml was used for INR assessment by The Sysmex CS-1600
Automated Hemostasis Testing (Sysmex Corporation, Kobe,
Japan) and it was preserved on citrate. The remaining four ml
was evacuated in a plain tube, centrifuged, and the resulting sera
was divided into two aliquots: one for the assay of liver function
tests as well as fasting blood sugar, lipid profiles, and creatinine
using the Cobas e501 Auto analyzer (Roche-Germany), and the
other for the insulin assay by the enzyme-linked immunosorbent
assay (ELISA) method (Shanghai Sunred Biological Technology
Co., Ltd. Catalogue No. 201-12-1720).

Homeostasis model assessment (HOMA) index for insulin
resistance: calculated as [fasting insulin (uWU/mL)xfasting glucose
(mg/dL)/405] (35).

Hepatic steatosis index: calculated as [8 x ALT/AST + BMI + 2,
if DM; +2, if female], with values < 30 ruling out and values > 36
ruling in steatosis (36).

Conventional ultrasonography (US) examination: performed
for all subjects using the US system (iU22, Philips Medical Systems,
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Bothell, WA, USA) for the diagnosis of MASLD. Increased
echogenicity in liver tissue relative to renal tissue is indicative of
steatosis (37).

Liver fibrosis assessment in MASLD patients

Liver stiffness measurement (LSM) was performed using
transient elastography (Fibroscan, Echosens, France) through a
right intercostal space with the patient in supine position,
avoiding deep inspiration during breath hold, with the right arm
extended. LSM above 7.1 kilopascal was defined for significant
fibrosis (F = 2) according to the manufacturer’s guidelines and
previous studies (8). Patients were divided according to fibrosis
stages into 103 patients with early fibrosis (FO, F1) and 39 with
significant fibrosis (> F2).

Gene polymorphism by real-time PCR

DNA was extracted from all samples using a spin column
method according to the manufacturer’s instructions by Gene JET
TM whole blood Genomic DNA Purification Mini Kit (Thermo
Scientific, EU/Lithuania). Nanodrop spectrophotometer (UV
spectrophotometer Q3000, Quawell Technology, Inc., USA) was
used for determination of DNA concentrations.

PTPN2 rs2542151 and MBOAT?7 rs641738 SNPs were analyzed
utilizing the TagMan SNP genotyping assay kit (Thermo Fisher
Scientific, Waltham, MA, USA). Assay IDs for PTPN2 rs2542151
and MBOATY rs641738 were C_3043363_10 and C_8716820_10,
respectively. Context Sequence [VIC/FAM] for rs2542151 and
rs641738, respectively, were as follows: ACTTCGCCAATGCCT
TGGTTCGGGC|G/T]CTTCCTGAGACTCTCATTTTCCTAA.

TCTGGCCTCCCGGGGGGCCAGCCACIC/T
CCCTAGAGGAGCCCCAGGCTTCTGA.

The mixture of the PCR reaction consisted of 1 UL of genomic
DNA (1-10 ng), 7.5 uL of TagMan Genotyping Master Mixture
(Applied Biosystems), 5.75 UL of nuclease-free water, and 0.75 uL of
TaqMan SNP (probes). For the negative control reaction, 6 uL of
DNAse-free water was added. PCR reactions for rs2542151
included enzyme activation at 95°C for 10 min, then 40 cycles
were run at 92 °C for 15 seconds, and finally annealing at 60°C for 1
min. For rs641738, initial denaturation was at 95°C for 10 min, then
40 cycles were run at 95°C for 15 seconds (denaturing), followed by
60°C for 1 min (annealing/extension). PCR amplification was
performed by a Rotor gene Q Real Time PCR System reaction
(QIAGEN, GmbH-Germany). The results were analyzed with allelic
discrimination software. If there was no nucleotide change in
rs2542151 or rs641738 wildtype genotypes, G/G or C/C was
assigned. If G changed to T at the rs2542151 SNP position, the T/
T mutant genotype was assigned. If C changed to T at the rs641738
SNP position, the T/T mutant genotype was assigned. To ensure the
accuracy and reliability of our genotyping results, we included
duplicate samples in genotyping assays to verify the consistency
and reproducibility of the results. The concordance rate between
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duplicate samples was >99%, indicating high genotyping accuracy.  impact the validity of our results. For additional analysis of the

Additionally, we set a call rate threshold of >95% for both cases and ~ association between gene polymorphisms and risk of disease, OR

controls, ensuring that only samples with high-quality genotyping  was done in various genetic models (dominant, recessive, co-

data were included in the analysis. dominant 1, co-dominant 2, and overdominant). Multivariable
binary logistic regression analysis was performed to detect the
most associated predictors in relation to MASLD.

Sample size

The idea of an event per variable (EPV) of 20 is appropriate for Results
logistic regression analysis, according to Austin and Steyerberg (38).
Only independent variables with significant effect sizes are used in The BMI, waist circumference, diabetes mellitus, and hypertension
order to retain their results (39, 40). Consequently, an EPV of 8 was  were significantly higher in patients with MASLD compared to
relevant, and 260 participants were required. After allowing for a  controls. The PTPN2 rs2542151 genotype frequencies were matched
10% dropout rate, 288 participants were recruited. Six participants ~ with the HWE among controls and patients with MASLD. The
were excluded either due to refusal to participate (controls) or not ~ MBOAT7 rs641738 genotype frequencies were matched with
fulfilling the study criteria (patients), leaving 284 participants (142  the HWE among controls only, while it significantly differed from
subjects per group). the HWE among patients with MASLD (Table 1). Hepatic steatosis
index was significantly higher among the significant fibrosis subgroup
than the early fibrosis or control groups. The laboratory characteristics
Statistical analysis of the studied groups were summarized in Table 2.
Table 3 illustrates the genotype and allele distribution of
We used SPSS version 25.0 (SPSS Inc., Chicago, IL, USA), was ~ MBOATY rs641738 and PTPN2 rs2542151 polymorphisms among
used for statistical analysis. The independent t and ANOVA tests ~ MASLD patients and controls, further stratified by fibrosis stages.
were used for parametric data. Kruskal-Wallis and Mann-Whitney ~ Notably, the T/T genotype of MBOATY rs641738 was significantly
tests were applied for non-parametric data. Pearson’s chi-square  more frequent in MASLD patients compared to controls (47.9% vs.
(x2) test was used for comparing between two groups. Fisher’s exact ~ 9.2%), with an OR of 14.12 (95% CI: 6.83-29.20, p < 0.001), and this
test was employed in cases where at least one of the expected cells  association was even stronger in the significant fibrosis subgroup
had a value below 5. A test of homogeneity of variances was (OR = 68.54, 95% CI: 18.33-256.32, p < 0.001). For PTPN2
performed. The Tukey test post hoc analysis was used for  rs2542151, although the G/G genotype showed only a trend
assumed equal variance, while the Dunnett T3 test was used for  toward association with MASLD overall (OR = 1.92, 95% CI:
assumed unequal variance. Statistical significance was determined ~ 0.90-4.07, p = 0.078), its frequency was markedly elevated in
at a P value less than 0.05. To assess the effects of alleles and  patients with significant fibrosis (OR = 21.07, 95% CI: 5.30-83.77,
haplotypes, the 95% confidence interval (CI) and odds ratio (OR)  p < 0.001), suggesting a specific role in fibrosis progression.
were calculated. Each SNP was assessed for Hardy-Weinberg Table 4 further confirms these findings through multiple genetic
equilibrium (HWE) in patients with MASLD and controls to  models, demonstrating that the dominant model for MBOAT7
detect any deviations from expected genotype frequencies 15641738 (C/T+T/T vs. C/C) conferred an approximately fivefold
identifying potential genotyping errors or other issues that could  increased risk of MASLD (OR = 4.96, 95% CI: 2.94-8.36, p < 0.001),

TABLE 1 Demographic, clinical characteristics and Hardy-Weinberg equilibrium of the studied groups(controls and total MASLD patients).

Controls Total MASLD patients
No =142 No =142 Test of sig P value
Mean + SD Mean + SD
Age 416 +10.1 436+ 11.0 t=1.60 0.111
BMI (Kg/M?) 26.3 + 1.1 29.7 2.4 t=15.26 <0.001*
Waist circumference (CM) 71.5 + 3.6 90.4 + 52 t=35.54 <0.001*
No % No % ‘
Sex
= Female 79 55.6 72 50.7 N
= Male 63 444 70 493 =069 0405
Hypertension 9 6.3 28 19.7 ¥ =1121 0.001*
Diabetes Mellitus 14 9.9 55 387 x* = 3218 <0.001*
(Continued)
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TABLE 1 Continued

Hardy-Weinberg Equilibrium

10.3389/fendo.2025.1615162

Controls
No =142 P value P value
Observed Expected Observed Expected
MBOATY rs641738
s C/C® 81 776 30 19.0
<0.001*

= C/T 48 547 2.14 0.143 44 65.9 15.69
s T/T 13 96 68 57.0
PTPN2 rs2542151
s T/T® 79 747 55 55.2
= G/T 48 56.6 3.26 0.070 67 66.7 0.003 0.995
s G/G 15 10.7 20 202

No, Number; BMI, Body mass index; t: independent t test; xz: Pearson’s chi-square test; ®. Reference group; *Statistically significant at p < 0.05.

TABLE 2 Hepatic steatosis index and laboratory investigations of the studied groups.

Total MASLD

Controls Early fibrosis  Significant fibrosis patients
No = 142 No = 103 No = 39 No = 142
Mean + SD Mean + SD Mean + SD Mean + SD

Hepatic steatosis index 364 +1.8 399 + 3.0 42.7 + 6.7 P, ,,3<0.001* 41.1 + 4.5 <0.001*
Hemoglobin (gm/dl) 142 +1.2 133+13 135+ 1.1 P, ,<0.05% P5>0.05 134 +12 <0.001*
WBCs x10%/uL 70+12 78+ 1.5 7.1+ 1.2 P, 3<0.05% P,>0.05 76+ 15 <0.001*
Platelets x10°/uL 337.9 + 453 307.2 + 64.0 184.7 + 16.6 P,,3<0.001* 273.6 + 77.8 <0.001*
Albumin (g/dL) 46+ 04 45+ 0.4 39+02 P;>0.05, P, 5<0.001* 44+04 <0.001*
Billirubin (mg/dL) 0.6 +0.2 0.6 +02 0.7 +0.2 P;>0.05, P,5<0.05* 0.6+02 0.006*
INR 1.0 + 0.02 1.0 + 0.05 1.0 + 0.03 P,>0.05, P,3<0.05* 1.0 + 0.04 0.009*
Total cholesterol

(mmol) 155.4 + 14.3 307.9 + 52.6 3559 + 44.9 P, ,3<0.001* 321.1 + 549 <0.001*
HDL (mmol/l) 62.1+88 557 + 122 522459 P,,<0.001%, P5>0.05 547 +10.9 <0.001*
LDL (mmol/l) 77.6 + 11.9 228.8 + 34.8 2280 + 24.1 P,,<0.001%, P5>0.05 2286 + 322 <0.001*
Triglycerides (mmol/l) 1147 +17.3 195.6 + 49.5 200.1 + 12.8 P, ,<0.001%, P5>0.05 196.8 + 42.5 <0.001*
Creatinine (mg/dl) 0.6+ 0.2 0.7 %02 0.8+02 P,,<0.01% P5>0.05 0.7 %02 <0.001*

Median (IQR) Median (IQR) Median (IQR) Median (IQR)
Fasting insulin (mmol/l) 10.1 (8.9-11.3) 30 (25-120) 170 (39-200) P,,5<0.001* 31 (25-154.5) <0.001*
FBG (mmol/l) 4.6 (43-5.1) 6.1 (54-8.1) 10.9 (6.7-18.5) P, ,3<0.001* 6.6 (5.5-10.2) <0.001*
HbAlc (%) 4.6 (4.4-4.9) 4.9 (4.6-6.9) 7.9 (5.9-9.3) P, ,3<0.001% 5.2 (4.8-7.9) <0.001*
HOMA-IR 2.1 (1.8-2.4) 7.4 (5.9-42.9) 87.9 (11.4-155.9) P, ,35<0.001* 8.6 (6.2-69.9) <0.001*
AST (U/L) 23 (17-30) 39(27-55) 102 (89-139) P,,3<0.001* 51 (29.8-80.3) <0.001*
p

ALT (U/L) 26 (19-33) 51(37-77) 61 (52-76) <0001, 11')3<0.05* 57 (39-76.3) <0.001*

No, Number; SD, Standard deviation; WBCs, White blood cells; INR, International normalized ratio; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; FBG, Fasting blood glucose;
HbAlc, Hemoglobin A1C; HOMA-IR, Homeostasis model assessment for Insulin resistance; AST, Aspartate transaminase; ALT, Alanine transaminase; IQR, Interquartile range; Statistical tests,
t test and Mann-Whitney for 2 groups, ANOVA and Kruskal-Wallis for > 2 groups; P;, Controls vs. Early fibrosis, P,, Controls vs. Significant fibrosis; P, Early vs. Significant fibrosis; P,, Controls

vs. Total patients; *Statistically significant at p < 0.05.
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TABLE 3 MBOATY7 rs641738 and PTPN2 rs2542151 genotypes and alleles among the studied groups.

10.3389/fendo.2025.1615162

Controls Total MASLD patients
No = 142 No = 142 Pvalue  OR(LL - UL 95% CI)
[\ fe} % [\ o) %
MBOATY7 rs641738
s C/C® 81 57.0 30 21.1 - - 1.0
= C/T 48 338 44 31.0 8.39 0.002* 2.48 (1.38-4.44)
s T/T 13 9.2 68 47.9 60.72 <0.001* 14.12 (6.83-29.20)
s C® 210 73.9 104 36.6 1.0
02 .001%
s T 74 26.1 180 83.4 800 <0.00 4.91 (3.43-7.03)
PTPN2 rs2542151
s T/T® 79 55.6 55 38.7 - - 1.0
s G/T 48 3338 67 472 7.34 0.006* 2.0 (121-3.32)
= G/G 15 10.6 20 14.1 291 0.078 1.92 (0.90-4.07)
n T® 206 725 177 62.3 1.0
6.74 0.009*
" G 78 275 107 377 1.60 (1.12-2.28)
Controls Early fibrosis
NeaL e Ng e Pvalue  OR(LL — UL 95% CI)
MBOATY7 rs641738
s C/C® 81 57.0 27 26.2 - - 1.0
s C/T 48 338 41 39.8 9.58 0.001* 2.56 (1.40-4.68)
= T/T 13 9.2 35 34.0 31.86 <0.001* 8.08 (3.73-17.47)
n C® 210 73.9 95 46.1 1.0
*
s T 74 26.1 111 53.9 3934 <0.001 3.32 (2.26-4.85)
PTPN2 rs2542151
s T/T® 79 55.6 52 50.5 - - 1.0
s G/T 48 338 43 41.7 125 0.262 1.36 (0.79-2.34)
= G/G 15 10.6 8 78 0.20 0.655 0.81 (0.32-2.05)
n T® 206 725 147 286 1.0
0.08 0.774
" G 78 275 59 714 1.06 (0.71-1.58)
Controls Significant fibrosis
N e 9 il Pvalue  OR (LL — UL 95% Cl)
MBOATY7 rs641738
o C/C® 81 57.0 3 7.7 - - 1.0
. OT 48 338 3 7.7 0.40 0.672 1.69 (0.33-8.70)
. T 13 9.2 33 84.6 68.98 <0.001* 68.54 (18.33-256.32)
s C® 210 73.9 9 115 1.0
99.72 <0.001*
T 74 26.1 69 88.5 21.76 (10.34-45.76)
PTPN2 rs2542151
s T/T® 79 55.6 3 7.7 - - 1.0
= G/T 48 338 24 61.5 23.35 <0.001* 13.17 (3.76-46.08)
s G/G 15 10.6 12 30.8 28.47 <0.001* 21.07 (5.30-83.77)
T® 2 2. . 1.
. 06 725 30 385 151 0.001° 0
= G 78 275 48 61.5 4.23 (2.50-7.15)

No, Number; %2, Pearson’s chi-square test; ® Reference group; OR, odds ratio; CI, confidence interval; *Statistically significant at p < 0.05.

with even higher risk in the recessive (OR = 9.12, 95% CI: 4.72-
17.62, p < 0.001) and co-dominant models. Meanwhile, the PTPN2
rs2542151 dominant model (G/T+G/G vs. T/T) showed a
significant, albeit moderate, association with MASLD
susceptibility (OR = 1.98, 95% CI: 1.24-3.18, p = 0.004).

Interestingly, the overdominant model revealed a protective effect
of the G/T heterozygote (OR = 0.57, 95% CI: 0.35-0.92, p = 0.021),
indicating a potential heterozygote advantage in disease risk.

The BMLI, fasting insulin, FBG, HbAlc, HOMA-IR, AST, and
fibroscan score were significantly higher among patients with
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TABLE 4 Comparison between the control and total patients’ groups MASLD having C/T+T/T genotypes of MBOATY7 rs641738 than
according to MBOATY7 rs641738 and PTPN2 rs2542151 gene

polymorphisms in different genetic models.

those having C/C genotype. For PTPN2 rs2542151, the BMI, total
cholesterol, fasting insulin, FBG, HbAlc, HOMA-IR, AST, ALT,

OR (LL - UL P value and fibroscan score were significantly higher among patients with
95% Cl) MASLD with G/T+T/T genotype than those with T/T

MBOATY rs641738 genotype (Table 5).
Table 6 presents multivariable logistic regression analyses
C/C® vs. C/T+T/T (Dominant) 496 (294-8.36) <0001 adjusted for clinical variables and confirms that both MBOAT7
C/C+C/T® vs. T/T (Recessive) 9.12 (4.72-17.62) <0.001% rs641738 (C/T+T/T) and PTPN2 rs2542151 (G/T+G/G) genotypes
CIC® vs. CIT (Co-dominant-1) 248 (1.38-4.44) 0.002* independently predict MASLD susceptibility with striking odds
ratios of 17.02 (95% CI: 9.80-295.66, p = 0.005) and 8.88 (95%
C/C® vs. T/T (Co-dominant-2) 1412 (683-2920) <000 CIL: 5.06-155.84, p = 0.010), respectively. In addition to genetic
C/T® vs. C/C+T/T 1.14 (0.69-187) 0612 factors, triglycerides (OR = 1.15, 95% CI: 1.06-1.25, p = 0.001) and
(Over dominant) hepatic steatosis index (OR = 7.89, 95% CI: 2.07-30.02, p = 0.002)
PTPN2 rs2542151 were significant independent clinical predictors. Importantly,
T/T® vs. G/T+G/G (Dominant) 198 (124-3.18) 0004 regarding the prediction of significant fibrosis, PTPN2 rs2542151
(G/T+G/G) was the only independent genetic predictor with a
T/T+G/T® vs. GIG (Recessive) 1.39 (0.68-2.83) 0-366 notably high OR of 23.36 (95% CI: 2.87-189.73, p = 0.003), whereas
T/T® vs. G/T (Co-dominant-1) 2.0 (1.21-3.32) 0.006* the MBOAT7 variant and traditional biochemical markers (AST,
T/T® vs. G/G (Co-dominant-2) 192 (090-4.07) 0087 ALT) did not maintain significance in the adjusted model. These
results emphasize the robust predictive value of these
((zji ‘(;2:)1/:;?)/ G 0.57 (0.35-0.92) 0.021* polymorphisms, particularly PTPN2 rs2542151, for MASLD risk
stratification and fibrosis progression in the Egyptian

OR, Odds ratio; CI, Confidence interval; *Statistically significant; ®, Reference group.

population studied.

TABLE 5 Distribution of different parameters according to MBOAT7 rs641738 and PTPN2 rs2542151 genotypes among MASLD patients.

MBOAT7 rs641738 PTPNZ rs2542151
Nc? /=C30 I%T: T1/1£ Fvalue NoT/=T55 ?\g +=GB/7G Fvalue

Mean + SD Mean + SD Mean + SD Mean + SD
Hepatic steatosis index 412 £ 4.1 40.5 £ 4.6 0.425 399 +3.6 41.1 £49 0.130
BMI(Kg/M?) 287 + 1.8 299 +25 0.005* 286+ 1.9 30.3 +2.5 <0.001*
Total cholesterol 313.7 + 50.8 323.1 + 559 0.544 309.7 + 53.6 3282 + 546 0.050*
HDL 54.0 + 14.5 549 + 9.8 0.861 56.6 + 13.3 53.6 + 8.9 0.155
LDL 232.8 + 33.0 227.4 +31.9 0.346 2315 + 365 226.6 + 29.1 0.382
Triglycerides 195.3 + 48.0 197.3 + 41.0 0.586 196.6 + 54.6 196.9 + 32.8 0.971

Median (IQR) Median (IQR) Median (IQR) Median (IQR)
Fasting insulin 26.2 (25-35) 39 (25.1-170) 0.013* 26 (25-35) 130 (26-180) <0.001*
FBG 5.4 (5-6.2) 6.7 (5.8-10.5) <0.001* 5.6 (5.3-6.4) 8.6 (6.1-11.1) <0.001%
HbAIC % 4.8 (4.5-5) 5.9 (4.9-8.6) <0.001* 4.8 (4.5-5.2) 6.8 (5.0-9.2) <0.001*
HOMA-IR 6.3 (5.7-8.4) 11.2 (6.5-79.3) 0.001% 6.5 (5.9-8.8) 46.1 (6.8-93.7) <0.001*
AST 37 (25-55) 55.5 (32.5-94) 0.004* 31 (25-54) 68 (41-102) <0.001*
ALT 54 (36.5-70.5) 57.5 (42-77) 0.256 48 (36-72) 61 (48-77) 0.021%
Fibroscan score 43 (3.5-5.2) 6.3 (5.2-8.7) <0.001* 4.9 (4-5.5) 7.5 (5.7-9.5) <0.001*

No, Number; SD, Standard deviation; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; FBG, Fasting blood glucose; HbA1lc, Hemoglobin A1C; HOMA-IR, Homeostasis model
assessment-Insulin resistance; AST, Aspartate transaminase; ALT, Alanine transaminase; IQR, Interquartile range; *Statistically significant at p < 0.05 written in bold.
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TABLE 6 Multivariable logistic regression analysis for predictors among
the studied groups.

95% ClI
MASLD susceptibility P value OR
Lower Upper

Triglycerides 0.001* 1.15 1.06 1.25
Hepatic steatosis index 0.002* 7.89 2.07 30.02
MBOATY7 rs641738 (C/T

0.005* 17.02 9.80 295.66
+T/T)
PTPN2 rs2542151(G/T+G/G) 0.010* 8.88 5.06 155.84
AST 0.123 1.19 0.95 1.44
Hypertension 0.403 493 0.11 20.78
ALT 0.222 111 0.93 1.33
Diabetes Mellitus 0.816 1.47 0.05 38.97
Risk of significant fibrosis
PTPN2 rs2542151(G/T+G/G) 0.003* 23.36 2.87 189.73
ALT 0.327 1.01 0.99 1.03
Triglycerides 0.450 1.0 0.99 1.02
MBOAT?7 rs641738 (C/T

0.354 297 0.29 29.92
+T/T)

OR, Odds ratio; CI, Confidence interval; *Statistically significant.

Discussion

MASLD is a complicated illness where the environment and
susceptibility genes combine to affect the disease’s severity (41).
Population-based research in multi-ethnic cohorts have
demonstrated significant inter-ethnic diversity in susceptibility to
MASLD. African-Americans exhibit a diminished propensity for
developing MASLD relative to Europeans, but Asians, especially
Hispanics, face an elevated risk (42). The inter-ethnic disparities
were not explained by type 2 diabetes, obesity, or socioeconomic
variables (43). However, uncertainty surrounds the genetic
components linked to MASLD pathogenesis. GWAS has identified a
variety of SNPs linked to hepatic steatosis and fibrosis, some of which
are less reliably replicated and seem to be affected by ethnicity (44, 45).

Dietary factors and inherited variants in genes that play
important roles in antioxidant defense, such as glutathione S-
transferase Mu 1 (GSTM1), glutathione S-transferase theta 1
(GSTT1), cytochrome P450 superfamily members, and
sulfotransferase 1A1 (SULT1A1), have been found to interact
significantly with high fruit intake (more than two fruits/day) or
high consumption of grilled meat/fish (more than once per week).
This increases the risk of developing MASLD and may be related to
the steatosis caused by aromatic hydrocarbons, as severe MASLD is
characterized by oxidative stress and mitochondrial dysfunction (46).

Indeed, energy intake has increased generally in the Egyptian
population’s nutritional pattern during the last 50 years. Nutrition
shifted toward a diet with reduced consumption of fresh fruits and
vegetables while increasing consumption of processed foods, fast
food, red meat, vegetable oils, and soft beverages (47). According to
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estimates, up to 40% of the fat that Egyptian women consume is
saturated fat (48), and up to 80% of them consume insufficient
amounts of fresh fruit and vegetables each day. Similarly, the
average prevalence of inadequate physical activity in Egypt is
greater (31.0%) than the global average (27.5%), according to
Guthold et al. (49), Egypt is one of the top 10 nations in the
world for obesity rates (49). Also according to specific studies, the
prevalence range of MASLD in Egypt is roughly 47.5%, with 56.7%
having fibrosis (50), so the nature of liver disease in Egypt is
changing from one of communicable to noncommunicable
diseases (51, 52).

Liver fibrosis is the key prognostic factor in patients with
MASLD (53). Currently, there is insufficient evidence to establish
a robust connection between MBOAT7 rs641738 and PTPN2
rs2542151 gene polymorphisms and fibrosis progression in
MASLD, particularly in the Middle East and African countries.
Therefore, we investigated the potential role of these genotypes in
the prediction of significant fibrosis in Egyptian patients
with MASLD.

Our study showed that MBOAT? rs641738 T allele and T/T
genotype were more frequent among patients with MASLD than
controls, with higher frequency in the significant fibrosis subgroup
than the early fibrosis or control groups. In vitro and in vivo
research indicates that hepatic MBOAT7 downregulation induces
de novo lipogenesis, triglyceride synthesis, and hepatic lipid
accumulation (54). It can promote liver inflammation and fibrosis
by altering lipid composition and triggering the release of cytokines
and fibrogenic mediators (55). Recent studies indicated that the
MBOATY? risk mutation was linked to hepatic fibrosis regardless of
inflammation, indicating that hepatocyte signaling in fibrogenic
mesenchymal cells can induce fibrosis (56, 57). Notably, MBOAT?7
has been shown to be one of the single nucleotide polymorphisms
that are strongly linked to the onset of MASLD and the
advancement of the disease. Understanding the biology of these
genetic variations has led to new discoveries in the fields of lipid
droplet remodeling, hepatic very low-density lipoprotein secretion,
and lipogenesis (41).

Several studies revealed that MBOAT?7 rs641738 is implicated in
several hepatic diseases, involving alcohol-related cirrhosis and liver
fibrosis in chronic hepatitis B and C, as well as hepatocellular
carcinoma (HCC) (18, 33, 58, 59). However, other studies didn’t
reveal any association with liver disease progression or HCC
development (60-64).

In patients with MASLD, Mancina et al. initially reported,
irrespective of obesity, a link between the rs641738 variants and
elevated hepatic fat content, liver damage, and an increased risk of
increased necroinflammation and fibrosis in individuals of
European origin (15). This may be because of the association of
this variant with necro-inflammation, but with no hepatocellular
ballooning. Predominantly, MBOAT7 variant was found to be
independently associated with fibrosis’ development, which
represents the major determinant for the diagnosis of patients
with MASLD (65, 66) suggesting that a common etiology for
these conditions is related to alteration of hepatic lipid
metabolism. (15).
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Subsequently, conflicting findings about the association between
MASLD and the rs641738 variant have been published. Xia et al.’s
meta-analysis showed no relation of MBOAT? rs641738 with the risk
of MASLD (67). A different meta-analysis reported that the rs641738
C>T variant is a risk factor for the presence and severity of MASLD in
Caucasians (21). The discrepancy among different ethnic groups
implies that genetic and environmental factors interact to
determine the susceptibility and severity of MASLD and liver
fibrosis. Furthermore, the T allele exhibits significant variability
among populations, with an allelic frequency of 0.37 in the global
population. In fact, the frequency of this minor allele in the 1000
Genomes project varies from 0.44 for European to 0.32 for African
and 0.22 for Asian ancestry (68). A systematic review concluded that
the published evidence supports the association between MBOAT7
rs641738 C>T and increased MASLD susceptibility and severity as
well as risk of advanced fibrosis in subjects with MASLD from
Caucasian, Hispanic, and African American ethnicities, with
contradictory findings in most studies on Asian populations (69).

More recently, this genetic variant was not found to be
significantly associated with MASLD in the Indian population (70)
or Korean subjects with lean MASLD (71), while in Chinese patients,
it was associated with increased MASLD occurrence but not related
to fibrosis in two studies (72, 73), additionally,it was found to
promote inflammation and fibrosis in another study (74), however
it was not related to the risk of MASLD in a different study (75). As
previously mentioned, studies reported an association between
MBOAT?7 rs641738 and MASLD in Europeans; however, two
recent studies found no association in Mexican-origin individuals
(76) and Caucasian subjects from Romania (77), suggesting a
potential genetic variation within ethnic sub-populations.

In the Middle East and African countries, data on the relation
between MBOAT?7 rs641738 and MASLD is lacking. To the far of
our knowledge, this study might be the first to assess the relation
between MBOAT7 SNPs and significant fibrosis in Egyptian
patients with MASLD. A study involving Egyptian patients with
HCV-related liver fibrosis revealed a significant correlation between
the MBOAT7 T/T genotype and advanced fibrosis (78). In our
study, BMI, fasting insulin, FBG, HbA1C, and HOMA-IR were
significantly higher among C/T+T/T than C/C genotype. The
rs641738 T allele has been associated with lower hepatic
expression of MBOAT7 at both the mRNA and protein levels
(68). MBOAT7 knockdown in the liver and adipose tissue of mice
promoted hepatic steatosis and inflammation, hyperinsulinemia,
and insulin resistance (79). We found no relation between ALT and
the C/T+T/T variant. In the meta-analysis by Teo et al., the
rs641738 C>T variant showed no effect on insulin resistance and
a positive relation with ALT in Caucasians but not in non-
Caucasian populations (21). A Mendelian randomization analysis
pointed to a causal role of genetically determined steatosis in the
determination of insulin resistance mediated by the degree of liver
damage (80). We also found that AST and fibroscan scores were
higher among C/T+T/T genotype, denoting a potential role of the T
allele in fibrosis progression. However, on multivariable regression
analysis, the C/T+T/T genotype was an independent predictor of
MASLD susceptibility but didn’t predict significant fibrosis.
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We also examined the role of PTPN2 rs2542151 genotypes in
MASLD. The G allele and G/G genotype of the PTPN2 rs2542151
were more frequent among patients with MASLD compared to
controls. Also, the G/T and G/G genotypes were higher among
patients with significant fibrosis. Furthermore, the GT+GG
genotype was the only predictor of significant fibrosis. In line
with our results, Miele et al. recently demonstrated that the
PTPN2 rs2542151 T>G variant is associated with the severity of
fibrosis in Caucasian patients with MASLD (29).

PTPN2 is an intracellular enzyme encoded by the PTPN2 gene.
It has an important role in negatively regulating various
immunological pathways through the dephosphorylation of
various signaling proteins. It has a significant role in the
inflammatory signaling for several immune cells and intestinal
epithelial cells (81). Loss of PTPN2 in intestinal epithelial cells
promotes the secretion of inflammatory cytokines and dysfunction
of the intestinal barrier, which are vital factors in MASLD
pathogenesis. It leads to disruption of intracellular junction
proteins, increased intestinal permeability, disturbance of gut
microbiome, and promotes the translocation of microbes into
blood circulation, which has an essential role in the development
of liver steatosis and fibrosis progression (82). GWAS revealed that
loss-of-function mutations in PTPN2 were associated with
increased intestinal permeability, which is an early etiological
event of chronic immune diseases, such as inflammatory bowel
disease and celiac disease (83).

We found that the rs2542151 G/T+G/G genotype was
associated with significantly higher BMI, fasting insulin, FBG,
HbA1C, and HOMA-IR than the T/T genotype. Consistently,
Miele et al. found that the GT/GG genotype was independently
associated with diabetes (29). PTPN2 has been reported to have a
role in glucose metabolism. It regulates signal transduction of
insulin by inactivation of its receptor through dephosphorylation
mechanisms of the B-chain. In the liver, PTPN2 deficiency results in
enhancement of the signaling of growth hormone, insulin
resistance, increased weight and hepatic steatosis (84). Also, G/T
+G/G genotype was associated with significantly higher ALT, AST,
and fibroscan scores in our study, pointing to the role of the
rs2542151 mutation in MASLD severity and fibrosis progression.
Recently, partial PTPN2 deletion in dendritic cells was found to be
associated with liver inflammation (85). In the study by Miele et al.,
no difference was noted in the distribution of genotypes between
MASLD patients with high AST and ALT and those without high
transaminases (29).

When we performed multivariable logistic regression analysis,
the MBOATY7 rs641738 C/T+T/T and the PTPN2 rs2542151 G/T
+G/G genotypes, as well as serum triglycerides and hepatic steatosis
index, were the independent predictors of MASLD susceptibility.
This confirms the possible role of these genetic variants in the
pathogenesis of hepatic steatosis. High serum triglyceride level has
been reported as a key factor in the development of MASLD and is
an important marker for predicting MASLD even in lean patients
(86). The Hepatic Steatosis Index (HSI) has shown excellent
diagnostic performance in previous studies and has been
suggested as a useful tool for predicting MASLD (87). The only

frontiersin.org


https://doi.org/10.3389/fendo.2025.1615162
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Abdelsattar et al.

independent predictor of significant fibrosis in our study was the
PTPN2 152542151 G/T+G/G genotype, which strengthens a
proposed pathogenetic hypothesis of PTPN2 rs2542151 as a
predisposing factor of impaired gut permeability that correlates
with the severity of MASLD (29). Notably, PTPN2 treatment
significantly decrease serum TG, total cholesterol, and LDL levels,
as well as reducing metabolic disturbances and hyperglycemia in
mice (88). Additionally, taken the theatrical role of PTPN2 and CD8
+ T cells in MASH pathogenesis, therapeutic targeting of PTPN2
might importantly enhance outcomes for patients with MASLD as
well as MASH. (89).

The genetic differences seen among genetically distinct ethnic
groups may then be a result of genomic evolution and selection
(nutritional genomics). The in-depth understanding of diet-genome
interactions may enable the use of novel nutritional and lifestyle
strategies for the prevention and management of chronic illnesses
through precision nutrition, which may be a component of
customized medicine therapy (90) improving the results of
MASLD and associated comorbidities (91).

Study limitations

Our study has several limitations that should be considered when
interpreting the results: The cross-sectional nature of our study limits
our ability to infer temporal relationships between genotypes and
fibrosis progression. Longitudinal studies are needed to further
explore these dynamics. The use of hospital-based volunteers as
controls may introduce selection bias, potentially affecting the
generalizability of our findings. Future studies could benefit from
community-based recruitment strategies. The reliance on ultrasound
for diagnosing the absence of MASLD in controls may not detect
mild steatosis due to its limited sensitivity. More precise diagnostic
methods might be necessary for accurate classification.

In conclusion, our study identified the PTPN2 rs2542151 G/T
+G/G genotype as an independent predictor of significant fibrosis
among Egyptian patients with MASLD. Furthermore, the MBOAT7
rs641738 C/T+T/T and PTPN2 rs2542151 G/T+G/G genotypes
were significantly associated with increased risk and susceptibility
to MASLD. These findings hold potential implications for genetic
screening and personalized risk stratification in MASLD patients.
However, validation in prospective cohorts is necessary to confirm
these results and elucidate their clinical utility. Future research
should prioritize larger, multi-regional studies to further investigate
the role of these genetic variants in MASLD pathogenesis
and progression.
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