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Introduction: Numerous risk loci have been identified to have an essential role in

Metabolic associated steatotic liver disease (MASLD) susceptibility and

progression. The role of membrane-bound O-acyltransferase domain

containing 7 (MBOAT7, rs641738) and protein tyrosine phosphatase non-

receptor type 2 (PTPN2, rs2542151) genes in the risk of significant fibrosis in

MASLD patients is still unclear. The aim of this study was to examine the

association between MBOAT7 rs641738 and PTPN2 rs2542151 genotypes and

the risk of significant fibrosis in Egyptian individuals with MASLD.

Methods: We enrolled 142 patients with varying degrees of MASLD and 142

healthy controls with no evidence of MASLD. All subjects underwent biochemical

tests and genotyping of PTPN2 rs2542151 and MBOAT7 rs641738 by real-time

PCR. Additionally, patients were divided according to fibrosis stages assessed by

transient elastography (Fibroscan) into 103 patients with early fibrosis (F0, F1) and

39 with significant fibrosis (≥ F2).

Results and discussion: The study revealed that T allele and T/T genotype of

MBOAT7 rs641738 were more frequent among MASLD patients compared to

controls, with higher frequency in the significant fibrosis subgroup compared to

early fibrosis or control groups. Regarding PTPN2 rs2542151, the G allele and G/G

genotype were more frequent among MASLD patients compared to controls and
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showed higher frequency among the significant fibrosis group than controls.

Multivariable regression analysis revealed that triglycerides, hepatic steatosis

index, MBOAT7 rs641738 (C/T+T/T), and PTPN2 rs2542151 (G/T+G/G) were

independent predictors of MASLD susceptibility. Only PTPN2 rs2542151

(G/T+G/G) was the independent predictor of significant fibrosis in MASLD

patients. In conclusion, PTPN2 rs2542151 and MBOAT7 rs641738 SNPs are

associated with MASLD susceptibility, while only PTPN2 rs2542151 mutations

are associated with fibrosis progression.
KEYWORDS

MASLD, genotyping, fibrosis, MBOAT7, rs641738, PTPN2, rs2542151
Introduction

Pathogenesis of metabolic dysfunction-associated steatotic liver

disease (MASLD) is complex, thus its clinical presentation is varied.

Due to the rising prevalence of obesity and metabolic syndrome,

which are critical factors in the development and progression of the

disease, it has emerged as the most prevalent liver disease globally,

with a prevalence of about 30% (1). MASLD ranges from simple

steatosis into nonalcoholic steatohepatitis, steatohepatitis with

fibrosis, and cirrhosis (2).

Recently, the term of Non-alcoholic fatty liver disease (NAFLD)

has been replaced with MASLD, as well as the term of non-alcoholic

steatohepatitis (NASH) has been changed into metabolic

dysfunction- associated steatohepatitis (MASH) in a worldwide

agreement. A new diagnostic criteria based on the coexistence of

steatosis and clinical evidence of obesity, hypertension with

dysfunction in glucose, triglyceride (TG) and high density

lipoprotien (HDL) metabolism has been also stated for both of

them (3). However, several studies have displayed obvious over-lap

between both defined patients with NAFLD and MASLD. (4–6).

The diagnosis necessitates the lack of extensive alcohol intake

and other causes of hepatic fat accumulation, as well as the presence

of imaging or histological evidence of hepatic steatosis. According

to current guidelines, ultrasonography is the first-line imaging tool

for diagnosing hepatic steatosis and is frequently performed to

screen for MASLD (7). Patients also generally accept transient

elastography as a painless, quick, and complication-free method

of measuring liver stiffness. Currently, it’s advised as a rather

reliable method for determining whether or not patients with

MASLD have significant fibrosis (8). However, no well-

performing tool is available for early prediction of MASLD;

particularly, the levels of liver enzymes could be normal in those

patients (9). Several studies investigated the risk factors and

prediction risk scores for MASLD; however, their results are

debated (10–12).

The fact that not all individuals with obesity develop MASLD

and that disease rates vary throughout ethnic groups points to a

genetic basis for MASLD (13, 14). The available data suggest that
02
the transcription factor 4 (TCM4) gene is not highly expressed in

the human liver (15). However, the available Expression

Quantitative Trait Loci analysis suggests that rs641738 SNP

present in the first exon of TCM4 gene leads to C>T missense

mutation, and leads to reduced expression and activity of the

membrane bound O-acyltransferase domain containing 7 gene

(MBOAT7), and perhaps participates in the progression of liver

disease (15, 16). It was reported that sSNP; rs641738 is located a few

hundred base pairs downstream of the 3′-untranslated region of

MBOAT7, which belongs to a family of genes that encode specific

acyl donors and acceptors (17) including lysophosphatidylinositol

acyltransferase 1 (LPIAT1), which has a role in controlling the

amount of free arachidonic acid in cells (18). Given its role in

inflammatory lipid pathways, most mechanistic work relating to

rs641738 has focussed on MBOAT7 (19). Rs 641738, C>T is

associated with lower hepatic expression of MBOAT7 at both the

mRNA (20) and protein levels (15). However, these findings have

not been consistently replicated in different ethnicities (21) and

there is a lack of data from the Middle East and African countries.

Protein tyrosine phosphatase non-receptor type 2 (PTPN2),

formerly known as T-cell protein tyrosine phosphatase (TCPTP)

due to its initial discovery in T cells, is another candidate gene

identified by GWAS. It encodes the enzyme tyrosine-protein

phosphatase non-receptor type 2, a member of the superfamily of

protein tyrosine kinases (22). which is a dephosphorylation enzyme

that can inhibit multiple inflammatory signaling pathways and

regulate many biological processes as well as a variety of

pathophysiological processes (23, 24). The intergenic SNP,

rs2542151 is located in chromosome 18p11, 5.5 kb upstream of

the PTPN2 gene, showed the strongest association with Chrons

disease (25, 26). The brain, liver, lung, and gastrointestinal system

all have significant levels of PTPN2 expression. Consequently,

mutations in the PTPN2 gene frequently lead to the development

of inflammatory disorders such as Crohn’s disease, hepatitis,

diabetes, and atherosclerosis (27, 28). Additionally, it was

reported that SNPs in PTPN2 rs2542151 in patients with MASLD

was associated with higher severity of fatty liver disease and a higher

prevalence of type 2 diabetes mellitus (T2DM) (29).
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However, the MBOAT7 and PTPN2 genes has been explored in

several studies (15, 30–34), the relationship between the both genes

and the risk of significant fibrosis in MASLD is still debatable due to

a lack of evidence in different ethnicities especially in the Middle

East and African countries. Therefore, we hypothesized to examine

the association between MBOAT7 rs641738 and PTPN2 rs2542151

genotypes and the risk of significant fibrosis in Egyptian patients

with MASLD.
Subjects and methods

This case-control study included 142 patients with MASLD,

who were recruited from the outpatient clinic of the National Liver

Institute, Menoufia University, Egypt, and the endocrinology unit of

the Internal Medicine Department, Faculty of Medicine, Menoufia

University, Egypt. Exclusion criteria included age <18; patients with

hepatic decompensation; other causes of chronic liver disease;

autoimmune diseases; thyroid abnormalities; malignancy; sepsis;

and patients consuming alcohol or receiving steatogenic drugs. In

addition, 142 volunteers with no evidence of MASLD and matching

age and sex were included as controls.

All subjects underwent full history-taking and physical

examination. Waist circumference (WC) was measured at the top

of the iliac crests using a non-stretchable tape. Body mass index

(BMI) was calculated by devision of Weight in Kg by

height squared.
Sample collection and laboratory
investigations

Eight mL of venous blood was withdrawn in the morning after

an overnight fast. Two ml of blood was preserved on EDTA, to be

used later for extraction of DNA. For CBC assay, one ml was

evacuated into EDTA tube, CBC was assessed by the Sysmex XT-

1800i automated hematology analyzer (Sysmex, Japan). Another 1

ml was used for INR assessment by The Sysmex CS-1600

Automated Hemostasis Testing (Sysmex Corporation, Kobe,

Japan) and it was preserved on citrate. The remaining four ml

was evacuated in a plain tube, centrifuged, and the resulting sera

was divided into two aliquots: one for the assay of liver function

tests as well as fasting blood sugar, lipid profiles, and creatinine

using the Cobas e501 Auto analyzer (Roche-Germany), and the

other for the insulin assay by the enzyme-linked immunosorbent

assay (ELISA) method (Shanghai Sunred Biological Technology

Co., Ltd. Catalogue No. 201-12-1720).

Homeostasis model assessment (HOMA) index for insulin

resistance: calculated as [fasting insulin (µU/mL)×fasting glucose

(mg/dL)/405] (35).

Hepatic steatosis index: calculated as [8 × ALT/AST + BMI + 2,

if DM; +2, if female], with values < 30 ruling out and values > 36

ruling in steatosis (36).

Conventional ultrasonography (US) examination: performed

for all subjects using the US system (iU22, Philips Medical Systems,
Frontiers in Endocrinology 03
Bothell, WA, USA) for the diagnosis of MASLD. Increased

echogenicity in liver tissue relative to renal tissue is indicative of

steatosis (37)].
Liver fibrosis assessment in MASLD patients

Liver stiffness measurement (LSM) was performed using

transient elastography (Fibroscan, Echosens, France) through a

right intercostal space with the patient in supine position,

avoiding deep inspiration during breath hold, with the right arm

extended. LSM above 7.1 kilopascal was defined for significant

fibrosis (F ≥ 2) according to the manufacturer’s guidelines and

previous studies (8). Patients were divided according to fibrosis

stages into 103 patients with early fibrosis (F0, F1) and 39 with

significant fibrosis (≥ F2).
Gene polymorphism by real-time PCR

DNA was extracted from all samples using a spin column

method according to the manufacturer’s instructions by Gene JET

TM whole blood Genomic DNA Purification Mini Kit (Thermo

Scientific, EU/Lithuania). Nanodrop spectrophotometer (UV

spectrophotometer Q3000, Quawell Technology, Inc., USA) was

used for determination of DNA concentrations.

PTPN2 rs2542151 and MBOAT7 rs641738 SNPs were analyzed

utilizing the TaqMan SNP genotyping assay kit (Thermo Fisher

Scientific, Waltham, MA, USA). Assay IDs for PTPN2 rs2542151

and MBOAT7 rs641738 were C_3043363_10 and C_8716820_10,

respectively. Context Sequence [VIC/FAM] for rs2542151 and

rs641738, respectively, were as follows: ACTTCGCCAATGCCT

TGGTTCGGGC[G/T]CTTCCTGAGACTCTCATTTTCCTAA.

T C T G G C C T C C C G G G G GG C C A G C C A C [ C / T ]

CCCTAGAGGAGCCCCAGGCTTCTGA.

The mixture of the PCR reaction consisted of 1 mL of genomic

DNA (1–10 ng), 7.5 mL of TaqMan Genotyping Master Mixture

(Applied Biosystems), 5.75 mL of nuclease-free water, and 0.75 mL of
TaqMan SNP (probes). For the negative control reaction, 6 uL of

DNAse-free water was added. PCR reactions for rs2542151

included enzyme activation at 95°C for 10 min, then 40 cycles

were run at 92 °C for 15 seconds, and finally annealing at 60°C for 1

min. For rs641738, initial denaturation was at 95°C for 10 min, then

40 cycles were run at 95°C for 15 seconds (denaturing), followed by

60°C for 1 min (annealing/extension). PCR amplification was

performed by a Rotor gene Q Real Time PCR System reaction

(QIAGEN, GmbH-Germany). The results were analyzed with allelic

discrimination software. If there was no nucleotide change in

rs2542151 or rs641738 wildtype genotypes, G/G or C/C was

assigned. If G changed to T at the rs2542151 SNP position, the T/

T mutant genotype was assigned. If C changed to T at the rs641738

SNP position, the T/T mutant genotype was assigned. To ensure the

accuracy and reliability of our genotyping results, we included

duplicate samples in genotyping assays to verify the consistency

and reproducibility of the results. The concordance rate between
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duplicate samples was >99%, indicating high genotyping accuracy.

Additionally, we set a call rate threshold of >95% for both cases and

controls, ensuring that only samples with high-quality genotyping

data were included in the analysis.
Sample size

The idea of an event per variable (EPV) of 20 is appropriate for

logistic regression analysis, according to Austin and Steyerberg (38).

Only independent variables with significant effect sizes are used in

order to retain their results (39, 40). Consequently, an EPV of 8 was

relevant, and 260 participants were required. After allowing for a

10% dropout rate, 288 participants were recruited. Six participants

were excluded either due to refusal to participate (controls) or not

fulfilling the study criteria (patients), leaving 284 participants (142

subjects per group).
Statistical analysis

We used SPSS version 25.0 (SPSS Inc., Chicago, IL, USA), was

used for statistical analysis. The independent t and ANOVA tests

were used for parametric data. Kruskal-Wallis and Mann-Whitney

tests were applied for non-parametric data. Pearson’s chi-square

(c2) test was used for comparing between two groups. Fisher’s exact

test was employed in cases where at least one of the expected cells

had a value below 5. A test of homogeneity of variances was

performed. The Tukey test post hoc analysis was used for

assumed equal variance, while the Dunnett T3 test was used for

assumed unequal variance. Statistical significance was determined

at a P value less than 0.05. To assess the effects of alleles and

haplotypes, the 95% confidence interval (CI) and odds ratio (OR)

were calculated. Each SNP was assessed for Hardy-Weinberg

equilibrium (HWE) in patients with MASLD and controls to

detect any deviations from expected genotype frequencies

identifying potential genotyping errors or other issues that could
Frontiers in Endocrinology 04
impact the validity of our results. For additional analysis of the

association between gene polymorphisms and risk of disease, OR

was done in various genetic models (dominant, recessive, co-

dominant 1, co-dominant 2, and overdominant). Multivariable

binary logistic regression analysis was performed to detect the

most associated predictors in relation to MASLD.
Results

The BMI, waist circumference, diabetes mellitus, and hypertension

were significantly higher in patients with MASLD compared to

controls. The PTPN2 rs2542151 genotype frequencies were matched

with the HWE among controls and patients with MASLD. The

MBOAT7 rs641738 genotype frequencies were matched with

the HWE among controls only, while it significantly differed from

the HWE among patients with MASLD (Table 1). Hepatic steatosis

index was significantly higher among the significant fibrosis subgroup

than the early fibrosis or control groups. The laboratory characteristics

of the studied groups were summarized in Table 2.

Table 3 illustrates the genotype and allele distribution of

MBOAT7 rs641738 and PTPN2 rs2542151 polymorphisms among

MASLD patients and controls, further stratified by fibrosis stages.

Notably, the T/T genotype of MBOAT7 rs641738 was significantly

more frequent in MASLD patients compared to controls (47.9% vs.

9.2%), with an OR of 14.12 (95% CI: 6.83–29.20, p < 0.001), and this

association was even stronger in the significant fibrosis subgroup

(OR = 68.54, 95% CI: 18.33–256.32, p < 0.001). For PTPN2

rs2542151, although the G/G genotype showed only a trend

toward association with MASLD overall (OR = 1.92, 95% CI:

0.90–4.07, p = 0.078), its frequency was markedly elevated in

patients with significant fibrosis (OR = 21.07, 95% CI: 5.30–83.77,

p < 0.001), suggesting a specific role in fibrosis progression.

Table 4 further confirms these findings through multiple genetic

models, demonstrating that the dominant model for MBOAT7

rs641738 (C/T+T/T vs. C/C) conferred an approximately fivefold

increased risk of MASLD (OR = 4.96, 95% CI: 2.94–8.36, p < 0.001),
TABLE 1 Demographic, clinical characteristics and Hardy-Weinberg equilibrium of the studied groups(controls and total MASLD patients).

Controls
No = 142

Total MASLD patients
No = 142 Test of sig P value

Mean ± SD Mean ± SD

Age 41.6 ± 10.1 43.6 ± 11.0 t=1.60 0.111

BMI (Kg/M2) 26.3 ± 1.1 29.7 ± 2.4 t=15.26 <0.001*

Waist circumference (CM) 71.5 ± 3.6 90.4 ± 5.2 t=35.54 <0.001*

No % No %

Sex
▪ Female
▪ Male

79
63

55.6
44.4

72
70

50.7
49.3

c2 = 0.69 0.405

Hypertension 9 6.3 28 19.7 c2 = 11.21 0.001*

Diabetes Mellitus 14 9.9 55 38.7 c2 = 32.18 <0.001*

(Continued)
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TABLE 1 Continued

Hardy-Weinberg Equilibrium

Controls
No = 142 c2 P value

Total MASLD patients
No = 142 c2 P value

Observed Expected Observed Expected

MBOAT7 rs641738
▪ C/C®

▪ C/T
▪ T/T

81
48
13

77.6
54.7
9.6

2.14 0.143
30
44
68

19.0
65.9
57.0

15.69
<0.001*

PTPN2 rs2542151
▪ T/T®

▪ G/T
▪ G/G

79
48
15

74.7
56.6
10.7

3.26 0.070
55
67
20

55.2
66.7
20.2

0.003 0.995
F
rontiers in Endocrinology
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No, Number; BMI, Body mass index; t: independent t test; c2: Pearson’s chi-square test; ®: Reference group; *Statistically significant at p < 0.05.
TABLE 2 Hepatic steatosis index and laboratory investigations of the studied groups.

Controls
No = 142

Early fibrosis
No = 103

Significant fibrosis
No = 39 P value

Total MASLD
patients
No = 142 P4

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Hepatic steatosis index 36.4 ± 1.8 39.9 ± 3.0 42.7 ± 6.7 P1,2,3<0.001* 41.1 ± 4.5 <0.001*

Hemoglobin (gm/dl) 14.2 ± 1.2 13.3 ± 1.3 13.5 ± 1.1 P1,2<0.05*, P3>0.05 13.4 ± 1.2 <0.001*

WBCs ×103/mL 7.0 ± 1.2 7.8 ± 1.5 7.1± 1.2 P1,3<0.05*, P2>0.05 7.6 ± 1.5 <0.001*

Platelets ×103/mL 337.9 ± 45.3 307.2 ± 64.0 184.7 ± 16.6 P1,2,3<0.001* 273.6 ± 77.8 <0.001*

Albumin (g/dL) 4.6 ± 0.4 4.5 ± 0.4 3.9 ± 0.2 P1>0.05, P2,3<0.001* 4.4 ± 0.4 <0.001*

Billirubin (mg/dL) 0.6 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 P1>0.05, P2,3<0.05* 0.6 ± 0.2 0.006*

INR 1.0 ± 0.02 1.0 ± 0.05 1.0 ± 0.03 P1>0.05, P2,3<0.05* 1.0 ± 0.04 0.009*

Total cholesterol
(mmol/l)

155.4 ± 14.3 307.9 ± 52.6 355.9 ± 44.9 P1,2,3<0.001* 321.1 ± 54.9 <0.001*

HDL (mmol/l) 62.1 ± 8.8 55.7 ± 12.2 52.2 ± 5.9 P1,2<0.001*, P3>0.05 54.7 ± 10.9 <0.001*

LDL (mmol/l) 77.6 ± 11.9 228.8 ± 34.8 228.0 ± 24.1 P1,2<0.001*, P3>0.05 228.6 ± 32.2 <0.001*

Triglycerides (mmol/l) 114.7 ± 17.3 195.6 ± 49.5 200.1 ± 12.8 P1,2<0.001*, P3>0.05 196.8 ± 42.5 <0.001*

Creatinine (mg/dl) 0.6 ± 0.2 0.7 ± 0.2 0.8 ± 0.2 P1,2<0.01*, P3>0.05 0.7 ± 0.2 <0.001*

Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Fasting insulin (mmol/l) 10.1 (8.9-11.3) 30 (25-120) 170 (39-200) P1,2,3<0.001* 31 (25-154.5) <0.001*

FBG (mmol/l) 4.6 (4.3-5.1) 6.1 (5.4-8.1) 10.9 (6.7-18.5) P1,2,3<0.001* 6.6 (5.5-10.2) <0.001*

HbA1c (%) 4.6 (4.4-4.9) 4.9 (4.6-6.9) 7.9 (5.9-9.3) P1,2,3<0.001* 5.2 (4.8-7.9) <0.001*

HOMA-IR 2.1 (1.8-2.4) 7.4 (5.9-42.9) 87.9 (11.4-155.9) P1,2,3<0.001* 8.6 (6.2-69.9) <0.001*

AST (U/L) 23 (17-30) 39(27-55) 102 (89-139) P1,2,3<0.001* 51 (29.8-80.3) <0.001*

ALT (U/L) 26 (19-33) 51(37-77) 61 (52-76)
P1,

2<0.001*, P3<0.05*
57 (39-76.3) <0.001*
fronti
No, Number; SD, Standard deviation; WBCs, White blood cells; INR, International normalized ratio; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; FBG, Fasting blood glucose;
HbA1c, Hemoglobin A1C; HOMA-IR, Homeostasis model assessment for Insulin resistance; AST, Aspartate transaminase; ALT, Alanine transaminase; IQR, Interquartile range; Statistical tests,
t test andMann-Whitney for 2 groups, ANOVA and Kruskal-Wallis for > 2 groups; P1, Controls vs. Early fibrosis, P2, Controls vs. Significant fibrosis; P3, Early vs. Significant fibrosis; P4, Controls
vs. Total patients; *Statistically significant at p < 0.05.
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with even higher risk in the recessive (OR = 9.12, 95% CI: 4.72–

17.62, p < 0.001) and co-dominant models. Meanwhile, the PTPN2

rs2542151 dominant model (G/T+G/G vs. T/T) showed a

significant, albeit moderate, association with MASLD

susceptibility (OR = 1.98, 95% CI: 1.24–3.18, p = 0.004).
Frontiers in Endocrinology 06
Interestingly, the overdominant model revealed a protective effect

of the G/T heterozygote (OR = 0.57, 95% CI: 0.35–0.92, p = 0.021),

indicating a potential heterozygote advantage in disease risk.

The BMI, fasting insulin, FBG, HbA1c, HOMA-IR, AST, and

fibroscan score were significantly higher among patients with
TABLE 3 MBOAT7 rs641738 and PTPN2 rs2542151 genotypes and alleles among the studied groups.

Controls
No = 142

Total MASLD patients
No = 142 c2 P value OR (LL – UL 95% CI)

No % No %

MBOAT7 rs641738

▪ C/C®

▪ C/T
▪ T/T

81
48
13

57.0
33.8
9.2

30
44
68

21.1
31.0
47.9

-
8.39
60.72

-
0.002*
<0.001*

1.0
2.48 (1.38-4.44)
14.12 (6.83-29.20)

▪ C®

▪ T
210
74

73.9
26.1

104
180

36.6
83.4

80.02 <0.001*
1.0

4.91 (3.43-7.03)

PTPN2 rs2542151

▪ T/T®

▪ G/T
▪ G/G

79
48
15

55.6
33.8
10.6

55
67
20

38.7
47.2
14.1

-
7.34
2.91

-
0.006*
0.078

1.0
2.0 (1.21-3.32)
1.92 (0.90-4.07)

▪ T®

▪ G
206
78

72.5
27.5

177
107

62.3
37.7

6.74 0.009*
1.0

1.60 (1.12-2.28)

Controls
No = 142

Early fibrosis
No = 103

c2 P value OR (LL – UL 95% CI)

MBOAT7 rs641738

▪ C/C®

▪ C/T
▪ T/T

81
48
13

57.0
33.8
9.2

27
41
35

26.2
39.8
34.0

-
9.58
31.86

-
0.001*
<0.001*

1.0
2.56 (1.40-4.68)
8.08 (3.73-17.47)

▪ C®

▪ T
210
74

73.9
26.1

95
111

46.1
53.9

39.34 <0.001*
1.0

3.32 (2.26-4.85)

PTPN2 rs2542151

▪ T/T®

▪ G/T
▪ G/G

79
48
15

55.6
33.8
10.6

52
43
8

50.5
41.7
7.8

-
1.25
0.20

-
0.262
0.655

1.0
1.36 (0.79-2.34)
0.81 (0.32-2.05)

▪ T®

▪ G
206
78

72.5
27.5

147
59

28.6
71.4

0.08 0.774
1.0

1.06 (0.71-1.58)

Controls
No = 142

Significant fibrosis
No = 39

c2 P value OR (LL – UL 95% CI)

MBOAT7 rs641738

• C/C®

▪ C/T
▪ T/T

81
48
13

57.0
33.8
9.2

3
3
33

7.7
7.7
84.6

-
0.40
68.98

-
0.672
<0.001*

1.0
1.69 (0.33-8.70)

68.54 (18.33-256.32)

▪ C®

▪ T
210
74

73.9
26.1

9
69

11.5
88.5

99.72 <0.001*
1.0

21.76 (10.34-45.76)

PTPN2 rs2542151

▪ T/T®

▪ G/T
▪ G/G

79
48
15

55.6
33.8
10.6

3
24
12

7.7
61.5
30.8

-
23.35
28.47

-
<0.001*
<0.001*

1.0
13.17 (3.76-46.08)
21.07 (5.30-83.77)

▪ T®

▪ G
206
78

72.5
27.5

30
48

38.5
61.5

31.31 <0.001*
1.0

4.23 (2.50-7.15)
No, Number; c2, Pearson’s chi-square test; ®, Reference group; OR, odds ratio; CI, confidence interval; *Statistically significant at p < 0.05.
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MASLD having C/T+T/T genotypes of MBOAT7 rs641738 than

those having C/C genotype. For PTPN2 rs2542151, the BMI, total

cholesterol, fasting insulin, FBG, HbA1c, HOMA-IR, AST, ALT,

and fibroscan score were significantly higher among patients with

MASLD with G/T+T/T genotype than those with T/T

genotype (Table 5).

Table 6 presents multivariable logistic regression analyses

adjusted for clinical variables and confirms that both MBOAT7

rs641738 (C/T+T/T) and PTPN2 rs2542151 (G/T+G/G) genotypes

independently predict MASLD susceptibility with striking odds

ratios of 17.02 (95% CI: 9.80–295.66, p = 0.005) and 8.88 (95%

CI: 5.06–155.84, p = 0.010), respectively. In addition to genetic

factors, triglycerides (OR = 1.15, 95% CI: 1.06–1.25, p = 0.001) and

hepatic steatosis index (OR = 7.89, 95% CI: 2.07–30.02, p = 0.002)

were significant independent clinical predictors. Importantly,

regarding the prediction of significant fibrosis, PTPN2 rs2542151

(G/T+G/G) was the only independent genetic predictor with a

notably high OR of 23.36 (95% CI: 2.87–189.73, p = 0.003), whereas

the MBOAT7 variant and traditional biochemical markers (AST,

ALT) did not maintain significance in the adjusted model. These

results emphasize the robust predictive value of these

polymorphisms, particularly PTPN2 rs2542151, for MASLD risk

stratification and fibrosis progression in the Egyptian

population studied.
TABLE 4 Comparison between the control and total patients’ groups
according to MBOAT7 rs641738 and PTPN2 rs2542151 gene
polymorphisms in different genetic models.

OR (LL – UL
95% CI)

P value

MBOAT7 rs641738

C/C® vs. C/T+T/T (Dominant) 4.96 (2.94-8.36) <0.001*

C/C+C/T® vs. T/T (Recessive) 9.12 (4.72-17.62) <0.001*

C/C® vs. C/T (Co–dominant–1) 2.48 (1.38-4.44) 0.002*

C/C® vs. T/T (Co–dominant–2) 14.12 (6.83-29.20) <0.001*

C/T® vs. C/C+T/T
(Over dominant)

1.14 (0.69-1.87) 0.612

PTPN2 rs2542151

T/T® vs. G/T+G/G (Dominant) 1.98 (1.24-3.18) 0.004*

T/T+G/T® vs. G/G (Recessive) 1.39 (0.68-2.83) 0.366

T/T® vs. G/T (Co–dominant–1) 2.0 (1.21-3.32) 0.006*

T/T® vs. G/G (Co–dominant–2) 1.92 (0.90-4.07) 0.087

G/T® vs. T/T+G/G
(Over dominant)

0.57 (0.35-0.92) 0.021*
OR, Odds ratio; CI, Confidence interval; *Statistically significant; ®, Reference group.
TABLE 5 Distribution of different parameters according to MBOAT7 rs641738 and PTPN2 rs2542151 genotypes among MASLD patients.

MBOAT7 rs641738

P value

PTPN2 rs2542151

P valueC/C
No = 30

C/T+T/T
No = 112

T/T
No = 55

G/T+G/G
No = 87

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

Hepatic steatosis index 41.2 ± 4.1 40.5 ± 4.6 0.425 39.9 ± 3.6 41.1 ± 4.9 0.130

BMI(Kg/M2) 28.7 ± 1.8 29.9 ± 2.5 0.005* 28.6 ± 1.9 30.3 ± 2.5 <0.001*

Total cholesterol 313.7 ± 50.8 323.1 ± 55.9 0.544 309.7 ± 53.6 328.2 ± 54.6 0.050*

HDL 54.0 ± 14.5 54.9 ± 9.8 0.861 56.6 ± 13.3 53.6 ± 8.9 0.155

LDL 232.8 ± 33.0 227.4 ± 31.9 0.346 231.5 ± 36.5 226.6 ± 29.1 0.382

Triglycerides 195.3 ± 48.0 197.3 ± 41.0 0.586 196.6 ± 54.6 196.9 ± 32.8 0.971

Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Fasting insulin 26.2 (25-35) 39 (25.1-170) 0.013* 26 (25-35) 130 (26-180) <0.001*

FBG 5.4 (5-6.2) 6.7 (5.8-10.5) <0.001* 5.6 (5.3-6.4) 8.6 (6.1-11.1) <0.001*

HbA1C % 4.8 (4.5-5) 5.9 (4.9-8.6) <0.001* 4.8 (4.5-5.2) 6.8 (5.0-9.2) <0.001*

HOMA-IR 6.3 (5.7-8.4) 11.2 (6.5-79.3) 0.001* 6.5 (5.9-8.8) 46.1 (6.8-93.7) <0.001*

AST 37 (25-55) 55.5 (32.5-94) 0.004* 31 (25-54) 68 (41-102) <0.001*

ALT 54 (36.5-70.5) 57.5 (42-77) 0.256 48 (36-72) 61 (48-77) 0.021*

Fibroscan score 4.3 (3.5-5.2) 6.3 (5.2-8.7) <0.001* 4.9 (4-5.5) 7.5 (5.7-9.5) <0.001*
No, Number; SD, Standard deviation; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; FBG, Fasting blood glucose; HbA1c, Hemoglobin A1C; HOMA-IR, Homeostasis model
assessment-Insulin resistance; AST, Aspartate transaminase; ALT, Alanine transaminase; IQR, Interquartile range; *Statistically significant at p < 0.05 written in bold.
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Discussion

MASLD is a complicated illness where the environment and

susceptibility genes combine to affect the disease’s severity (41).

Population-based research in multi-ethnic cohorts have

demonstrated significant inter-ethnic diversity in susceptibility to

MASLD. African-Americans exhibit a diminished propensity for

developing MASLD relative to Europeans, but Asians, especially

Hispanics, face an elevated risk (42). The inter-ethnic disparities

were not explained by type 2 diabetes, obesity, or socioeconomic

variables (43). However, uncertainty surrounds the genetic

components linked to MASLD pathogenesis. GWAS has identified a

variety of SNPs linked to hepatic steatosis and fibrosis, some of which

are less reliably replicated and seem to be affected by ethnicity (44, 45).

Dietary factors and inherited variants in genes that play

important roles in antioxidant defense, such as glutathione S-

transferase Mu 1 (GSTM1), glutathione S-transferase theta 1

(GSTT1), cytochrome P450 superfamily members, and

sulfotransferase 1A1 (SULT1A1), have been found to interact

significantly with high fruit intake (more than two fruits/day) or

high consumption of grilled meat/fish (more than once per week).

This increases the risk of developing MASLD and may be related to

the steatosis caused by aromatic hydrocarbons, as severe MASLD is

characterized by oxidative stress and mitochondrial dysfunction (46).

Indeed, energy intake has increased generally in the Egyptian

population’s nutritional pattern during the last 50 years. Nutrition

shifted toward a diet with reduced consumption of fresh fruits and

vegetables while increasing consumption of processed foods, fast

food, red meat, vegetable oils, and soft beverages (47). According to
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estimates, up to 40% of the fat that Egyptian women consume is

saturated fat (48), and up to 80% of them consume insufficient

amounts of fresh fruit and vegetables each day. Similarly, the

average prevalence of inadequate physical activity in Egypt is

greater (31.0%) than the global average (27.5%), according to

Guthold et al. (49), Egypt is one of the top 10 nations in the

world for obesity rates (49). Also according to specific studies, the

prevalence range of MASLD in Egypt is roughly 47.5%, with 56.7%

having fibrosis (50), so the nature of liver disease in Egypt is

changing from one of communicable to noncommunicable

diseases (51, 52).

Liver fibrosis is the key prognostic factor in patients with

MASLD (53). Currently, there is insufficient evidence to establish

a robust connection between MBOAT7 rs641738 and PTPN2

rs2542151 gene polymorphisms and fibrosis progression in

MASLD, particularly in the Middle East and African countries.

Therefore, we investigated the potential role of these genotypes in

the prediction of significant fibrosis in Egyptian patients

with MASLD.

Our study showed that MBOAT7 rs641738 T allele and T/T

genotype were more frequent among patients with MASLD than

controls, with higher frequency in the significant fibrosis subgroup

than the early fibrosis or control groups. In vitro and in vivo

research indicates that hepatic MBOAT7 downregulation induces

de novo lipogenesis, triglyceride synthesis, and hepatic lipid

accumulation (54). It can promote liver inflammation and fibrosis

by altering lipid composition and triggering the release of cytokines

and fibrogenic mediators (55). Recent studies indicated that the

MBOAT7 risk mutation was linked to hepatic fibrosis regardless of

inflammation, indicating that hepatocyte signaling in fibrogenic

mesenchymal cells can induce fibrosis (56, 57). Notably, MBOAT7

has been shown to be one of the single nucleotide polymorphisms

that are strongly linked to the onset of MASLD and the

advancement of the disease. Understanding the biology of these

genetic variations has led to new discoveries in the fields of lipid

droplet remodeling, hepatic very low-density lipoprotein secretion,

and lipogenesis (41).

Several studies revealed thatMBOAT7 rs641738 is implicated in

several hepatic diseases, involving alcohol-related cirrhosis and liver

fibrosis in chronic hepatitis B and C, as well as hepatocellular

carcinoma (HCC) (18, 33, 58, 59). However, other studies didn’t

reveal any association with liver disease progression or HCC

development (60–64).

In patients with MASLD, Mancina et al. initially reported,

irrespective of obesity, a link between the rs641738 variants and

elevated hepatic fat content, liver damage, and an increased risk of

increased necroinflammation and fibrosis in individuals of

European origin (15). This may be because of the association of

this variant with necro-inflammation, but with no hepatocellular

ballooning. Predominantly, MBOAT7 variant was found to be

independently associated with fibrosis’ development, which

represents the major determinant for the diagnosis of patients

with MASLD (65, 66) suggesting that a common etiology for

these conditions is related to alteration of hepatic lipid

metabolism. (15).
TABLE 6 Multivariable logistic regression analysis for predictors among
the studied groups.

MASLD susceptibility P value OR
95% CI

Lower Upper

Triglycerides 0.001* 1.15 1.06 1.25

Hepatic steatosis index 0.002* 7.89 2.07 30.02

MBOAT7 rs641738 (C/T
+T/T)

0.005* 17.02 9.80 295.66

PTPN2 rs2542151(G/T+G/G) 0.010* 8.88 5.06 155.84

AST 0.123 1.19 0.95 1.44

Hypertension 0.403 4.93 0.11 20.78

ALT 0.222 1.11 0.93 1.33

Diabetes Mellitus 0.816 1.47 0.05 38.97

Risk of significant fibrosis

PTPN2 rs2542151(G/T+G/G) 0.003* 23.36 2.87 189.73

ALT 0.327 1.01 0.99 1.03

Triglycerides 0.450 1.0 0.99 1.02

MBOAT7 rs641738 (C/T
+T/T)

0.354 2.97 0.29 29.92
OR, Odds ratio; CI, Confidence interval; *Statistically significant.
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Subsequently, conflicting findings about the association between

MASLD and the rs641738 variant have been published. Xia et al.’s

meta-analysis showed no relation ofMBOAT7 rs641738 with the risk

of MASLD (67). A different meta-analysis reported that the rs641738

C>T variant is a risk factor for the presence and severity ofMASLD in

Caucasians (21). The discrepancy among different ethnic groups

implies that genetic and environmental factors interact to

determine the susceptibility and severity of MASLD and liver

fibrosis. Furthermore, the T allele exhibits significant variability

among populations, with an allelic frequency of 0.37 in the global

population. In fact, the frequency of this minor allele in the 1000

Genomes project varies from 0.44 for European to 0.32 for African

and 0.22 for Asian ancestry (68). A systematic review concluded that

the published evidence supports the association between MBOAT7

rs641738 C>T and increased MASLD susceptibility and severity as

well as risk of advanced fibrosis in subjects with MASLD from

Caucasian, Hispanic, and African American ethnicities, with

contradictory findings in most studies on Asian populations (69).

More recently, this genetic variant was not found to be

significantly associated with MASLD in the Indian population (70)

or Korean subjects with lean MASLD (71), while in Chinese patients,

it was associated with increased MASLD occurrence but not related

to fibrosis in two studies (72, 73), additionally,it was found to

promote inflammation and fibrosis in another study (74), however

it was not related to the risk of MASLD in a different study (75). As

previously mentioned, studies reported an association between

MBOAT7 rs641738 and MASLD in Europeans; however, two

recent studies found no association in Mexican-origin individuals

(76) and Caucasian subjects from Romania (77), suggesting a

potential genetic variation within ethnic sub-populations.

In the Middle East and African countries, data on the relation

between MBOAT7 rs641738 and MASLD is lacking. To the far of

our knowledge, this study might be the first to assess the relation

between MBOAT7 SNPs and significant fibrosis in Egyptian

patients with MASLD. A study involving Egyptian patients with

HCV-related liver fibrosis revealed a significant correlation between

the MBOAT7 T/T genotype and advanced fibrosis (78). In our

study, BMI, fasting insulin, FBG, HbA1C, and HOMA-IR were

significantly higher among C/T+T/T than C/C genotype. The

rs641738 T allele has been associated with lower hepatic

expression of MBOAT7 at both the mRNA and protein levels

(68). MBOAT7 knockdown in the liver and adipose tissue of mice

promoted hepatic steatosis and inflammation, hyperinsulinemia,

and insulin resistance (79). We found no relation between ALT and

the C/T+T/T variant. In the meta-analysis by Teo et al., the

rs641738 C>T variant showed no effect on insulin resistance and

a positive relation with ALT in Caucasians but not in non-

Caucasian populations (21). A Mendelian randomization analysis

pointed to a causal role of genetically determined steatosis in the

determination of insulin resistance mediated by the degree of liver

damage (80). We also found that AST and fibroscan scores were

higher among C/T+T/T genotype, denoting a potential role of the T

allele in fibrosis progression. However, on multivariable regression

analysis, the C/T+T/T genotype was an independent predictor of

MASLD susceptibility but didn’t predict significant fibrosis.
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We also examined the role of PTPN2 rs2542151 genotypes in

MASLD. The G allele and G/G genotype of the PTPN2 rs2542151

were more frequent among patients with MASLD compared to

controls. Also, the G/T and G/G genotypes were higher among

patients with significant fibrosis. Furthermore, the GT+GG

genotype was the only predictor of significant fibrosis. In line

with our results, Miele et al. recently demonstrated that the

PTPN2 rs2542151 T>G variant is associated with the severity of

fibrosis in Caucasian patients with MASLD (29).

PTPN2 is an intracellular enzyme encoded by the PTPN2 gene.

It has an important role in negatively regulating various

immunological pathways through the dephosphorylation of

various signaling proteins. It has a significant role in the

inflammatory signaling for several immune cells and intestinal

epithelial cells (81). Loss of PTPN2 in intestinal epithelial cells

promotes the secretion of inflammatory cytokines and dysfunction

of the intestinal barrier, which are vital factors in MASLD

pathogenesis. It leads to disruption of intracellular junction

proteins, increased intestinal permeability, disturbance of gut

microbiome, and promotes the translocation of microbes into

blood circulation, which has an essential role in the development

of liver steatosis and fibrosis progression (82). GWAS revealed that

loss-of-function mutations in PTPN2 were associated with

increased intestinal permeability, which is an early etiological

event of chronic immune diseases, such as inflammatory bowel

disease and celiac disease (83).

We found that the rs2542151 G/T+G/G genotype was

associated with significantly higher BMI, fasting insulin, FBG,

HbA1C, and HOMA-IR than the T/T genotype. Consistently,

Miele et al. found that the GT/GG genotype was independently

associated with diabetes (29). PTPN2 has been reported to have a

role in glucose metabolism. It regulates signal transduction of

insulin by inactivation of its receptor through dephosphorylation

mechanisms of the b-chain. In the liver, PTPN2 deficiency results in

enhancement of the signaling of growth hormone, insulin

resistance, increased weight and hepatic steatosis (84). Also, G/T

+G/G genotype was associated with significantly higher ALT, AST,

and fibroscan scores in our study, pointing to the role of the

rs2542151 mutation in MASLD severity and fibrosis progression.

Recently, partial PTPN2 deletion in dendritic cells was found to be

associated with liver inflammation (85). In the study by Miele et al.,

no difference was noted in the distribution of genotypes between

MASLD patients with high AST and ALT and those without high

transaminases (29).

When we performed multivariable logistic regression analysis,

the MBOAT7 rs641738 C/T+T/T and the PTPN2 rs2542151 G/T

+G/G genotypes, as well as serum triglycerides and hepatic steatosis

index, were the independent predictors of MASLD susceptibility.

This confirms the possible role of these genetic variants in the

pathogenesis of hepatic steatosis. High serum triglyceride level has

been reported as a key factor in the development of MASLD and is

an important marker for predicting MASLD even in lean patients

(86). The Hepatic Steatosis Index (HSI) has shown excellent

diagnostic performance in previous studies and has been

suggested as a useful tool for predicting MASLD (87). The only
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independent predictor of significant fibrosis in our study was the

PTPN2 rs2542151 G/T+G/G genotype, which strengthens a

proposed pathogenetic hypothesis of PTPN2 rs2542151 as a

predisposing factor of impaired gut permeability that correlates

with the severity of MASLD (29). Notably, PTPN2 treatment

significantly decrease serum TG, total cholesterol, and LDL levels,

as well as reducing metabolic disturbances and hyperglycemia in

mice (88). Additionally, taken the theatrical role of PTPN2 and CD8

+ T cells in MASH pathogenesis, therapeutic targeting of PTPN2

might importantly enhance outcomes for patients with MASLD as

well as MASH. (89).

The genetic differences seen among genetically distinct ethnic

groups may then be a result of genomic evolution and selection

(nutritional genomics). The in-depth understanding of diet-genome

interactions may enable the use of novel nutritional and lifestyle

strategies for the prevention and management of chronic illnesses

through precision nutrition, which may be a component of

customized medicine therapy (90) improving the results of

MASLD and associated comorbidities (91).
Study limitations

Our study has several limitations that should be considered when

interpreting the results: The cross-sectional nature of our study limits

our ability to infer temporal relationships between genotypes and

fibrosis progression. Longitudinal studies are needed to further

explore these dynamics. The use of hospital-based volunteers as

controls may introduce selection bias, potentially affecting the

generalizability of our findings. Future studies could benefit from

community-based recruitment strategies. The reliance on ultrasound

for diagnosing the absence of MASLD in controls may not detect

mild steatosis due to its limited sensitivity. More precise diagnostic

methods might be necessary for accurate classification.

In conclusion, our study identified the PTPN2 rs2542151 G/T

+G/G genotype as an independent predictor of significant fibrosis

among Egyptian patients with MASLD. Furthermore, theMBOAT7

rs641738 C/T+T/T and PTPN2 rs2542151 G/T+G/G genotypes

were significantly associated with increased risk and susceptibility

to MASLD. These findings hold potential implications for genetic

screening and personalized risk stratification in MASLD patients.

However, validation in prospective cohorts is necessary to confirm

these results and elucidate their clinical utility. Future research

should prioritize larger, multi-regional studies to further investigate

the role of these genetic variants in MASLD pathogenesis

and progression.
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