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Purpose: Cytologically indeterminate thyroid nodules constitute 20–30% of fine-
needle aspiration samples obtained from suspicious thyroid nodules. Over half of 
patients with indeterminate thyroid nodules undergo diagnostic surgery; however, 
60–80% of excised nodules are benign. While some radiomics studies have built 
models to enhance the diagnostic efficacy of thyroid nodules, few have focused on 
indeterminate thyroid nodules with confirmed pathological results. We aimed to 
develop and evaluate ultrasound radiomics models to improve the diagnosis of 
indeterminate thyroid nodules and reduce unnecessary surgeries. 

Methods: We retrospectively analyzed ultrasound images of 197 indeterminate 
thyroid nodules with definitive pathological results. Regions of interest were 
manually delineated using 3-Dimensional Slicer software, and radiomics features 
were extracted using Pyradiomics software. Ultrasound radiomics feature 
selection and dimensionality reduction were performed using univariate 
analysis and the least absolute shrinkage and selection operator method. 
Independent training (n=136) and validation (n=61) cohorts were used to 
develop three radiomics models. Model performance was evaluated using 
receiver operating characteristic analysis and compared to two existing 
assisted diagnostic tools and two junior radiologists. 

Results: The Radunion model achieved the highest performance, with 90.5% 
sensitivity, 56.8% specificity, 75.0% positive predictive value, 80.7% negative 
predictive value, and 76.6% accuracy. The Radsize model minimized biopsies by 
21.1%, reducing the rate from 48.9% to 13.8%. These models outperformed the ITS 
100 system, Thynet deep learning-based tools (p < 0.05), and junior radiologists. 

Conclusion: Ultrasound radiomics models are promising, convenient, and 
accurate adjunct tools for predicting malignancy, improving junior radiologists’ 
diagnostic performance, reducing unnecessary biopsies, and enhancing 
diagnostic precision in clinical practice. 
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1 Introduction 

Cytologically indeterminate thyroid nodules (ITNs) account for 
20–30% of the fine-needle aspiration (FNA) samples from 
suspicious thyroid nodules (TNs) (1). These nodules correspond 
to Bethesda categories III–V, classified according to the Bethesda 
System for Reporting Thyroid Cytopathology (2). Bethesda III, IV, 
and V nodules carry a malignant risk of 13–30%, 23–34%, and 67– 
83%, respectively (2). Consequently, more than half of patients with 
ITNs opt for diagnostic surgery (3), although 60–80% of these 
excised nodules are benign on final pathological analysis (4, 5). 
Senior radiologists achieve excellent diagnostic efficacy for Bethesda 
V TNs using ultrasound (US) features (3). However, diagnosing 
Bethesda III and IV nodules remains challenging, despite reports 
that microcalcifications (6) and hypoechoic features (7) can predict 
malignancy. Grayscale US has significant limitations, exhibiting low 
diagnostic specificity (44–67.3%) (8–10) and high inter-observer 
variability (9, 11, 12), particularly for highly suspicious nodules 
(e.g., ACR TR4 and TR5). Differential diagnosis of ITNs requires a 
new solution to overcome the impact of radiologists, techniques, 
and equipment. 

Radiomics has emerged as a promising approach for predicting 
the pathology, prognosis, and lymph node metastasis of TNs (13– 
18). Radiomics models based on US images demonstrate superior 
diagnostic efficacy compared with conventional US risk 
stratification systems (19). These models offer advantages, such as 
high accuracy (0.761–0.874) (14, 15, 20), lower intra-observer 
variability (14, 21), and reduced rates of unnecessary FNA 
procedures (3.1–37.7%) (19, 22) for TNs. However, previous 
models on common TN perform poorly for ITNs. The well-
established artificial intelligence (AI) adjunct diagnostic tools have 
also demonstrated poor accuracy (e.g., 0.64 in accuracy for 88 
Bethesda III nodules), despite achieving an AUC of 0.92 for 
common TNs (23). Few radiomics studies have focused on ITNs 
diagnosis or the diagnostic performance of ITN-specific radiomics 
models remains suboptimal, with area under curves (AUCs) 
ranging from 0.64 to 0.74 (23–25). A proportion of ITN patients 
undergo guideline-recommended follow-up observation or ablative 
minimally invasive treatment, making it difficult to collect ITNs 
with definitive cytopathology and postoperative histopathology. 
Due to the absence of such ITNs in training data, pilot studies 
propose that the efficiency of radiomics models could improve if 
trained specifically on ITN US images (24, 25). High indices, such as 
a negative predictive value (NPV) of 93.9% and a positive predictive 
value (PPV) of 93.8%, have been reported for Bethesda III nodules, 
indicating the potential utility of these models in supporting follow-
up management of benign ITNs (26). However, such studies are 
limited, involving only dozens of ITNs. The critical questions 
remain unanswered regarding the diagnostic performance of 
ITN-specific radiomics models, their potential to enhance 
radiologists’ diagnostic accuracy, their role in reducing 
unnecessary aspiration biopsies, and their comparability to 
published AI adjunct diagnostic tools. 

In this study, we aimed to address these gaps by developing an 
ITN-specific US radiomics model and comparing its performance 
    Frontiers in Endocrinology 02 
          
        
      

          
        

         
         

            
          

       

with that of radiologists and published AI diagnostic tools. We 
assumed that radiomics could provide invisible and valuable 
features beyond radiologists’ observation. By combining 
conventional US and radiomics features of ITNs, the new method 
could improve the preoperative differentiation between benign and 
malignant ITNs. Using pathological diagnosis as the gold standard, 
we developed and evaluated the radiomics models in comparison 
with the Thynet online tool, the ITS 100 system, and two junior 
radiologists. Our aim was to improve the accuracy of preoperative 
ITN diagnosis and minimize unnecessary invasive interventions. 
  

  

        
         

         
          

          
          

        
        
       
          

        
            

          
          
           

             
         

   
           

            
          

            
            

            

2 Methods 

2.1 Patients 

This retrospective study was approved by the Institutional 
Ethics Committee of the hospital. All procedures were performed 
in compliance with relevant laws and institutional guidelines. Given 
the retrospective nature of the study, the requirement for informed 
consent was waived. We clarified that all data were anonymized 
before processing and the study adhered to the Declaration of 
Helsinki. Between September 2019 and February 2024, 3,801 
patients with ITN who underwent both fine-needle aspiration 
cytology (FNAC) and pathological examinations were initially 
assessed. The inclusion criteria were as follows (1): a definitive 
histopathological diagnosis of the target nodule following surgery, 
(2) a FNAC classification of Bethesda III or IV, and (3) availability 
of B-mode US performed within 2 weeks before resection. The 
exclusion criteria were as follows: (1) an FNAC classification of 
Bethesda I, II, V, or VI, (2) absence of postoperative pathological 
results, and (3) unclear or missing US images of the target nodule. A 
flowchart outlining the inclusion and exclusion process is presented 
in Figure 1. 

A total of 191 patients with 197 ITNs were included (median 
age: 48 years; range: 24–76 years; sex: 36 men, 155 women). Four 
patients presented with two ITNs, and one presented with three 
ITNs. The ITNs were randomly divided into two cohorts in a 7:3 
ratio: a training cohort with 136 nodules (25 men and 109 women) 
and a validation cohort with 61 nodules (11 men and 48 women). 
     

          
        

          
      

        
         

        
          
         

       
          

2.2 Clinical and US information 

Clinical data, including age, sex, FNAC results, US images, and 
pathological diagnoses, were collected from medical records. US 
images were acquired using 3–15 MHz linear probes from 10 
different manufacturers (Philips, Toshiba, Siemens, Vinno, 
Hitachi, Aloka, GE Healthcare, Supersonic, Mindray, and Esaote). 
For quality control, low-quality images with severe artifacts or 
significant image resolution reductions were removed by two 
senior radiologists with over 5 years of thyroid US experience. 
These radiologists evaluated the images for five ACR TI-RADS 
lexicon features (composition, echogenicity, shape, margin, and 
echogenic foci) and determined the ACR rating for each nodule. 
 frontiersin.org 
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One senior radiologist with > 10 years of experience and two junior 
radiologists with < 3 years of experience retrospectively assessed all 
images to classify nodules as “benign” or “malignant” for 
comparative diagnostic efficacy analysis. The pathology results 
were scrutinized and confirmed by a senior pathologist. All 
radiologists and pathologist were blinded. 
      

          
         

          
           

       
        

          
        
      

        
          

        
  

         
        

          
         

       
        

       
         

         
        

2.3 Feature selection and model building 

The clinical variables and all test results were analyzed via 
univariate and multivariate analysis. Variables with p-values < 0.05 
in both analyses were retained. Regions of interest (ROIs) were 
manually delineated on US images in PNG format using 3D Slicer 
software (version 5.6.2, https://www.slicer.org, Earth, TX, USA) 
(Supplementary Figure 1). To assess reproducibility, a radiologist 
re-delineated all US images twice within a 2-week interval. An 
intraclass correlation coefficient (ICC) > 0.7 was considered 
indicative of satisfactory inter-observer agreement. Resampling 
and z-score normalization were applied to ensure consistency 
across repeated results, with a resampled resolution of 1×1 mm2 

per pixel. Radiomics features were extracted using Pyradiomics 
software (http://pyradiomics.readthedocs.io/en/latest/index.html) 
with the default setting, yielding 851 original features. Radiomics 
feature selection and dimensionality reduction were first conducted 
by selecting features with an inter-observer ICC > 0.7. Subsequently, 
the optimal regularization parameter (l) for the least absolute 
shrinkage and selection operator (LASSO) method was 
determined using the minimum criteria. Then, feature selection 
was performed through 10-fold cross-validation. Finally, the 
variance inflation factors (VIFs) for the features selected by 
LASSO were calculated to avoid severe linear dependence. After 
feature selection, a radiomics score (RAD-score) was generated 
    Frontiers in Endocrinology 03 
         
          
          

          
        

         

through a linear combination of the selected features. Calibration 
was assessed for the radiomics models, and decision curve analysis 
was performed to evaluate their clinical utility by quantifying net 
benefits at different threshold probabilities in the entire cohort. The 
methodology for feature extraction and analysis followed previously 
established protocols, as outlined in the referenced literature (27). 
     
   

        
        

         
          

        
       
          

          
          

        
        

       

2.4 Performance comparison with thyroid 
AI diagnosis tools 

Two dynamic AI-based US auxiliary diagnostic systems were 
utilized for comparative analysis: UAI-X Laboratory’s Thynet tools 
(accessible online with author permission) (23) and Ian Thyroid 
Solution 100 (ITS100) (Med AI Technology Co. Ltd, Wuxi, China). 
Both systems employ convolutional neural network deep learning 
algorithms to provide dichotomous predictions (benign or 
malignant) for each nodule. These tools were trained using a 
large dataset of thyroid US images from the Chinese population. 
Thynet represents an academic research tool, whereas ITS100 is a 
commercial product integrated into an US instrument. The 
diagnostic performance of the ITN radiomics models was 
evaluated in comparison with these AI systems. 
   

        
          

          
        

            
       

       

2.5 Statistical analyses 

Statistical analyses were conducted using SPSS (version 22.0; 
IBM Corp., Armonk, NY, USA) and R software (version 4.3.2; 
Vienna, Austria). The Shapiro–Wilk test was employed to assess the 
normality of data distribution. Continuous variables were expressed 
as means ± SD and range values. Pathology diagnosis served as the 
gold standard for evaluating diagnostic performance. The 
sensitivity, specificity, PPV, NPV, accuracy, unnecessary biopsy 
  

                 
FIGURE 1 

Flowchart of patient enrollment. FNAC, fine-needle aspiration cytology; ITN, indeterminate thyroid nodules; TN, thyroid nodules; US, ultrasound. 
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rate, and AUC were calculated for radiomics models, radiologists, 
and thyroid AI diagnosis tools. The unnecessary biopsy rate was 
defined as the proportion of benign nodules among those classified 
as requiring biopsy. AUCs were statistically compared using the 
DeLong test, while proportions were compared using the chi-
squared tests or Fisher’s exact test, as appropriate. Statistical 
significance was defined as p < 0.05. 
  

   

           
              

            
         

       
       

         
          

         
       

         
       

3 Results 

3.1 Patient characteristics 

This study evaluated 197 ITNs from 191 patients (36 men and 
155 women), with a median age of 48 ± 11 (range: 24–76) years. The 
study flowchart is illustrated in Figures 1, 2. Tables 1, 2 summarize 
the clinical and pathological characteristics of the training and 
validation cohorts. No significant differences were observed 
between  these  cohorts  regarding  pathological  or  US  
characteristics (all p > 0.05). The proportions of malignant 
nodules were 72.1% (98/136) and 68.9% (42/61) in the training 
and validation cohorts, respectively (p = 0.773). Malignant nodules 
exhibited significantly smaller diameters, higher nodular numbers, 
and elevated RadScores compared to benign nodules in both 
cohorts (all p < 0.05) (Table 2). 
     
 

        
            

3.2 Feature selection and RAD-Score 
development 

Univariate analysis and multivariate analysis revealed that nodular 
size (p < 0.014), Bethesda classification (p < 0.038), and capsular invasion 
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(p < 0.001) were significant variables with p < 0.05.  Followed by an ICC  >  
0.7, there were 37 radiomics features selected using the LASSO method 
with the regularization parameter (l) values of 0.034 (Supplementary 
Figure 2a, b). Finally, 10 features were included in the RAD-Score 
formula as VIF < 10 to avoid severe linear dependence (Supplementary 
Figure 2c). Among them, original_glrlm_ShortRunEmphasis showed 
negative relation with malignancy while wavelet-HLH_glrlm_ 
RunLengthNonUniformityNormalized showed positive relation with 
malignancy, which both might be corresponding to unclear border 
and irregular margin in the US features. 

Since capsular invasion is a postoperative variable and not 
suitable for preoperative diagnostic purposes, it was excluded 
from the radiomics models. 

The RAD-Score for malignant nodules was significantly higher 
than that for benign nodules in the training ([1.93 ± 1.31] vs. [−0.55 ± 
2.18], p < 0.001) and validation cohorts ([1.61 ± 1.40] vs. [0.42 ± 
2.11], p = 0.012)  (Table 2). The Rad model yielded AUCs of 0.775 
(95% confidence interval [CI]: 0.686–0.864) in the training cohort 
(Figure 3a) and 0.731 (95% CI: 0.583–0.878) in the validation cohort 
(Figure 3b). Adding nodular size improved the model’s AUC to 0.893 
(95% CI: 0.832–0.955) in the training cohort (Figure 3a) and  0.856  
(95% CI: 0.747–0.964) in the validation cohort (Figure 3). Further 
addition of Bethesda classification resulted in the Radunion model 
with an AUC of 0.860 (95% CI: 0.804-0.916) for the entire cohort 
(Figure 3c). The Radsize and Radunion models significantly 
outperformed the Rad model (p < 0.001), although differences 
between the Radsize and Radunion models were not statistically 
significant (p > 0.001). The calibration curves of three radiomics 
models are shown in Figure 4, and the Radunion model showed the 
best calibration. Decision curve analysis indicated that the radiomics 
models were clinically useful, with the Radunion providing the 
greatest net benefit (Figure 5). 
  

     
FIGURE 2 

Radiomics diagnostic model study workflow. 
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TABLE 1 Characteristics of ITNs in training and validation cohorts. 

Features level Overall 
(n=197) 

training cohort 
(n=136) 

validation cohort 
(n=61) 

Age,y (mean±SD) 48.15 ±11.21 48.32±11.30 47.77±11.10 

Gender (%) Female 161 (81.7) 111 (81.6) 50 (82.0) 

Male 36 (18.3) 25 (18.4) 11 (18.0) 

Size,cm (mean±SD) 1.11±1.09 1.11±1.06 1.09±1.16 

Bethesda (%) BethesdaIII 136 (69.0) 91 (66.9) 45 (73.8) 

BethesdaIV 61 (31.0) 45 (33.1) 16 (26.2) 

Invaded_capsule (%) Negative 118 (59.9) 87 (64.0) 31 (50.8) 

Positive 79 (40.1) 49 (36.0) 30 (49.2) 

TI-RADS (%) 2 5 (2.5) 4 (2.9) 1 (1.6) 

3 12 (6.1) 10 (7.4) 2 (3.3) 

4 74 (37.6) 53 (39.0) 21 (34.4) 

5 106 (53.8) 69 (50.7) 37 (60.7) 

Composition (%) Cystic and solid 8 (4.1) 7 (5.1) 1 (1.6) 

Solid 189 (95.9) 129 (94.9) 60 (98.4) 

Echogenicity (%) Hyperechoic/Isoechoic 22 (11.2) 15 (11.0) 7 (11.5) 

Hypoechoic 175 (88.8) 121 (89.0) 54 (88.5) 

Border(%) Clear 83 (42.1) 64 (47.1) 19 (31.1) 

Unclear 114 (57.9) 72 (52.9) 42 (68.9) 

Margin (%) Regular 76 (38.6) 55 (40.4) 21 (34.4) 

Irregular 121 (61.4) 81 (59.6) 40 (65.6) 

Shape (%) < 1 95 (48.2) 68 (50.0) 27 (44.3) 

> 1 102 (51.8) 68 (50.0) 34 (55.7) 

Calcifications (%) None 104 (52.8) 74 (54.4) 30 (49.2) 

Coarse/Peripheral calcification 14 (7.1) 9 (6.6) 5 (8.2) 

Punctate echogenic foci 79 (40.1) 53 (39.0) 26 (42.6) 

CDFI (%) No 123 (62.4) 80 (58.8) 43 (70.5) 

Yes 74 (37.6) 56 (41.2) 18 (29.5) 

Number_of_nodules (%) Single 9 (4.6) 8 (5.9) 1 (1.6) 

Multiple 188 (95.4) 128 (94.1) 60 (98.4) 

BRAF_V600E (%) Negative 149 (75.6) 103 (75.7) 46 (75.4) 

Positive 33 (16.8) 25 (18.4) 8 (13.1) 

Unknown 15 (7.6) 8 (5.9) 7 (11.5) 

Metastasis (%) No 143 (72.6) 99 (72.8) 44 (72.1) 

Yes 54 (27.4) 37 (27.2) 17 (27.9) 

RAD-Score (mean±SD) 1.24 ± 1.88 1.24 ± 1.95 1.24 ± 1.73 
F
    rontiers in Endocrinology 
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Qualitative data were expressed as mean ± standard deviation or number and percentages (%), or median (25%–75% quantiles). ITNs, indeterminate thyroid nodules; TI-RADS, Thyroid Imaging 
Reporting and Data System. 
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TABLE 2 Characteristics of ITNs in the training and validation cohorts by pathology. 

Features level 

Training cohort(n=136) Validation cohort(n=61) 

Benign 
(n=38) 

Malignant 
(n=98) p Benign 

(n=19) 
Malignant 
(n=42) p 

Age,y (mean±SD) 49.39±12.81 47.91±10.70 0.493 51.05±12.20 46.29±10.38 0.121 

Gender (%) Female 29 (76.3) 82 (83.7) 0.455 14 (73.7) 36 (85.7) 0.44 

Male 9 (23.7) 16 (16.3) 5 (26.3) 6 (14.3) 

Size,cm (mean±SD) 1.78±1.56 0.85±0.63 <0.001 2.04±1.71 0.67±0.31 <0.001 

Bethesda (%) BethesdaIII 13 (34.2) 78 (79.6) <0.001 10 (52.6) 35 (83.3) 0.027 0.027 

BethesdaIV 25 (65.8) 20 (20.4) 9 (47.4) 7 (16.7) 

Invaded_capsule (%) Negative 33 (86.8) 54 (55.1) 0.001 15 (78.9) 16 (38.1) 0.007 0.007 

Positive 5 (13.2) 44 (44.9) 4 (21.1) 26 (61.9) 

TI-RADS (%) 2 3 (7.9) 1 (1.0) 0.004 1 (5.3) 0 (0.0) 0.004 0.004 

3 5 (13.2) 5 (5.1) 2 (10.5) 0 (0.0) 

4 19 (50.0) 34 (34.7) 10 (52.6) 11 (26.2) 

5 11 (28.9) 58 (59.2) 6 (31.6) 31 (73.8) 

Composition (%) Cystic and solid 2 (5.3) 5 (5.1) 1 0 (0.0) 1 (2.4) 1 1 

Solid 36 (94.7) 93 (94.9) 19 (100.0) 41 (97.6) 

Echogenicity (%) Hyperechoic/ 
Isoechoic 

9 (23.7) 6 (6.1) 0.009 6 (31.6) 1 (2.4) 0.004 0.004 

Hypoechoic 29 (76.3) 92 (93.9) 13 (68.4) 41 (97.6) 

Border (%) Clear 22 (57.9) 42 (42.9) 0.166 8 (42.1) 11 (26.2) 0.345 0.036 

Unclear 16 (42.1) 56 (57.1) 11 (57.9) 31 (73.8) 

Margin (%) Regular 23 (60.5) 32 (32.7) 0.005 7 (36.8) 14 (33.3) 1 

Irregular 15 (39.5) 66 (67.3) 12 (63.2) 28 (66.7) 

Shape (%) < 1 27 (71.1) 41 (41.8) 0.004 12 (63.2) 15 (35.7) 0.085 0.24 

> 1 11 (28.9) 57 (58.2) 7 (36.8) 27 (64.3) 

Calcifications (%) None 24 (63.2) 50 (51.0) <0.001 9 (47.4) 21 (50.0) 0.041 

Coarse/ 
Peripheral 
calcification 

7 (18.4) 2 (2.0) 4 (21.1) 1 (2.4) 

Punctate 
echogenic foci 

7 (18.4) 46 (46.9) 6 (31.6) 20 (47.6) 0.054 

CDFI (%) No 20 (52.6) 60 (61.2) 0.472 13 (68.4) 30 (71.4) 1 

Yes 18 (47.4) 38 (38.8) 6 (31.6) 12 (28.6) 

Number_of_nodules 
(%) 

Single 6 (15.8) 2 (2.0) 0.008 1 (5.3) 0 (0.0) 0.681 0.041 

Multiple 32 (84.2) 96 (98.0) 18 (94.7) 42 (100.0) 

BRAF_V600E (%) Negative 33 (86.8) 70 (71.4) 0.132 17 (89.5) 29 (69.0) 0.113 

Positive 3 (7.9) 22 (22.4) 0 (0.0) 8 (19.0) 1 

Unknown 2 (5.3) 6 (6.1) 2 (10.5) 5 (11.9) 

(Continued) 
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TABLE 2 Continued 

Features level 

Training cohort(n=136) Validation cohort(n=61) 

Benign 
(n=38) 

Malignant 
(n=98) p Benign 

(n=19) 
Malignant 
(n=42) p 

Metastasis (%) No 32 (84.2) 67 (68.4) 0.099 17 (89.5) 27 (64.3) 0.085 0.681 

Yes 6 (15.8) 31 (31.6) 2 (10.5) 15 (35.7) 

RAD-Score 
(mean±SD) 

-0.55±2.18 1.93±1.31 <0.001 0.42±2.11 1.61±1.40 0.012 
F
   rontiers in Endocrinol
  ogy 
 07 
                         
    

Qualitative data were expressed as mean ± standard deviation or number and percentages (%), or median (25%–75% quantiles). ITNs, indeterminate thyroid nodules; TI-RADS, Thyroid Imaging 
Reporting and Data System. 
  (c)(a) (b) 

  

                   
FIGURE 3 

Receiver operating characteristic (ROC) curves of radiomic models in (a) training cohort, (b) validation cohort, and (c) entire cohorts. 
    (a)  

  

                

(c)(b)

FIGURE 4 

Calibration curves of radiomic models in (a) training cohort, (b) validation cohort, and (c) entire cohorts. 
  (c)(a) (b) 

  

                      
                    

                

FIGURE 5 

Decision curve analysis (DCA) of the radiomics models in predicting malignancy in thyroid nodules: (a) training cohort, (b) validation cohort, and (c) 
entire cohorts. The vertical axis measures standardized net benefit. The horizontal axis shows the corresponding risk threshold. The DCA results 
indicate that the Radunion model had a higher overall net benefit compared to the other models. 
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3.3 Diagnostic performance of models 

Radiomics models demonstrated robust performance in 
distinguishing malignant TNs from benign ones, with the 
Radunion model achieving the highest accuracy of 85.3% in the 
training cohort (Table 3). The Radsize model had sensitivity, 
specificity, PPV, NPV, and accuracy rates of 71.4% (63.9−78.9%), 
80.7% (70.5−90.9%), 90.1% (84.5−95.6%), 53.5% (42.9−64.0%), and 
74.1% (68.0−80.2%), respectively. This model also reduced the 
unnecessary biopsy rate to 21.1% (8.1−34.0%) (Table 4). The 
Radunion model demonstrated the best overall performance, with 
sensitivity, specificity, PPV, NPV, and accuracy rates of 90.5% (85.2 
−95.8%), 56.8 (46.0−67.6%), 75.0% (67.8−82.2%), 80.7% (70.5 
−90.9%), and 76.6% (70.7−82.6%), respectively (Table 4). It also 
reduced overtreatment by 13−20% of false-positive cases. The 
accuracy of the ITS 100 system, Thynet online tools and two junior 
radiologists were 68.0%, 65.0%, 61.9% and 69.5%, respectively. 
Radiomics models outperformed the ITS 100 system and Thynet 
deep learning tools (p < 0.05), as well as two junior radiologists in 
terms of diagnostic accuracy (radiomics models vs. Junior radiologist 
2, p < 0.05; radiomics models vs. Junior radiologist 1, p > 0.05)

(Table 4). Two cases in Figure 6 demonstrate that the radiomics 
models provided accurate and stable diagnoses among AI-based 
tools, and junior radiologists for two cases. 
   Frontiers in Endocrinology 08
  

          
           
          

        
        

         
          

       
        

         
          

         
       

        
       
        

       
       

          
          

         
         

4 Discussion 

In this study, we developed three radiomics models using US 
images of ITNs. The models were constructed as follows: the Rad 
model, based solely on radiomics features; the Radsize model, which 
incorporated nodular size and radiomics features; and the 
Radunion model, which included the Bethesda classification along 
with the Radsize model features. The models achieved diagnostic 
accuracies ranging from 74.1% to 85.3% across all ITN cohorts, 
outperforming both junior radiologists and two AI-assisted 
diagnostic tools. This demonstrates the potential of radiomics 
models to differentiate malignant from benign ITNs. Notably, the 
Radsize model reduced unnecessary biopsy rates by at least 13.8%, 
while the Radunion model could potentially spare 13%–20% of 
ITNs from diagnostic surgery prior to intervention. 

Beyond radiomics features, our findings identified nodular size, 
Bethesda classification, and microscopic capsular invasion as 
significant predictive factors for ITN malignancy. Interestingly, none 
of the five ACR TI-RADS-recommended features (composition, 
echogenicity, shape, border, and echogenic foci) significantly 
predicted malignancy in ITNs within our cohort (28). This suggests 
a potential need to refine conventional diagnostic criteria for ITNs. 

In our cohort, benign and malignant ITNs exhibited significant 
differences in nodule size, which corroborates findings by Xavier 
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TABLE 3 The performance of the Rad, Radsize, Radunion models. 

Training cohort(n 136) Validation cohort(n 61) Entire data(n 197) 

rad radsize union rad radsize union rad radsize union 

sensitivity 
86.7% 
(80.0%-
93.5%) 

75.5% 
(67.0%-
84.0%) 

84.7% 
(77.6%-
91.8%) 

100% 
(100%-100%) 

85.7% 
(75.1%-
96.3%) 

95.2% 
(88.8%-
100.0%) 

82.9% 
(76.6%-
89.1%) 

71.4% 
(63.9%-
78.9%) 

90.5% 
(85.2%-
95.8%) 

specificity 
57.9% 
(42.2%-
73.6%) 

92.1% 
(83.5%-100%) 

86.8% 
(76.1%-
97.6%) 

42.1% 
(19.9%-
64.3%) 

73.7% 
(53.9%-
93.5%) 

63.2% 
(41.5%-84.8%) 

52.6% 
(39.7%-
65.6%) 

80.7% 
(70.5%-
90.9%) 

56.8% 
(46.0%-
67.6%) 

PPV 
84.2% 
(77.0%-
91.3%) 

96.1% 
(91.8%-100%) 

94.3% 
(89.5%-
99.2%) 

79.2% 
(68.3%-
90.2%) 

87.8% 
(77.8%-
97.8%) 

85.1% 
(74.9%-95.3%) 

81.1% 
(74.7%-
87.5%) 

90.1% 
(84.5%-
95.6%) 

75.0% 
(67.8%-
82.2%) 

NPV 
62.9% 
(46.8%-
78.9%) 

59.3% 
(46.8%-
71.9%) 

68.8% 
(55.6%-
81.9%) 

100% 
(100%-100%) 

70.0% 
(49.9%-
90.1%) 

85.7% 
(67.4%-
100.0%) 

55.6% 
(42.3%-
68.8%) 

53.5% 
(42.9%-
64.0%) 

80.7% 
(70.5%-
90.9%) 

f1_score 85.4% 84.6% 89.2% 88.4% 86.7% 89.9% 82.0% 79.7% 82.0% 

accuracy 
78.7% 
(71.8%-
85.6%) 

80.1% 
(73.4%-
86.9%) 

85.3% 
(79.3%-
91.2%) 

82.0% 
(72.3%-
91.6%) 

82.0% 
(72.3%-
91.6%) 

85.2% 
(76.3%-94.1%) 

74.1% 
(68.0%-
80.2%) 

74.1% 
(68.0%-
80.2%) 

76.6% 
(70.7%-
82.6%) 

p_value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

auc 
0.775 

(0.686-0.864) 
0.893 

(0.832-0.955) 
0.917 

(0.870-0.964) 
0.731 

(0.583-0.878) 
0.856 

(0.747-0.964) 
0.868 

(0.772-0.965) 

0.729 
(0.650-
0.808) 

0.840 
(0.779-0.902) 

0.860 
(0.804-
0.916) 

Youden_index 44.6% 67.6% 73.5% 42.1% 59.4% 58.4% 36.9% 53.5% 55.7% 

UFR 
55.2% 
(37.1%-
73.3%) 

10.3% 
(0.0-21.4%) 

25.0% 
(6.0%-44.0%) 

100% 
(100%-100%) 

35.7% 
(10.6%-
60.8%) 

77.8% 
(50.6%-
100.0%) 

52.9% 
(39.2%-
66.6%) 

21.6% 
(10.3%-
32.9%) 

– 
  
f
                       
                          

   

Rad model integrates only radiomics features, Radsize model integrates radiomics features and nodular size, Radunion model integrates radiomics features, nodular size and Bethesda 
classification. PPV, positive predictive value; NPV, negative predictive value; UFR, unnecessary biopsy rate. n=136/61/197 means the number of nodules in training cohort , validation cohort and 
entire cohort, respectively. 
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et al., who identified nodular size as a key factor in model 
development (25). The ACR guidelines associate larger nodules 
with higher malignancy risks, recommending FNA for nodules >2.5 
cm in TR3 categories or follow-up for nodules <1.5 cm. However, 
our results showed that most malignant nodules were smaller, likely 
reflecting the increased prevalence of papillary thyroid 
microcarcinomas (<10 mm). Bethesda classification showed that 
Bethesda IV nodules were at higher risk of malignancy than 
Bethesda III nodules, which aligns with existing guidelines (2). 
   Frontiers in Endocrinology 09
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The Radsize model demonstrated significantly improved 
performance in both the training and entire cohorts compared to 
the Rad model. Furthermore, including the Bethesda classification 
in the Radunion model enhanced diagnostic precision, reducing the 
need for diagnostic surgery. Similarly, Gregoire et al. incorporated 
Bethesda classifications into logistic regression models for Bethesda 
III–V nodules, demonstrating comparable improvements (20). 
Although microscopic capsular invasion showed no preoperative 
diagnostic value, gross extrathyroidal extension diagnosed via 
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TABLE 4 Performance summary among AI tools, radiologists and two radiomic models. 

model Senior 
radiologist 

Junior radiolo 
gist 1 

Junior radiolo 
gist 2 

ITS 100 Thynet Radsize 
model 

Radunion 
model 

sensitivity 
92.1% 

(87.7%-96.6%) 
66.4%(58.6%-74.3%) 87.1%(81.6%-92.7%) 

70.7% 
(63.2%-78.3%) 

74.3% 
(67.0%-81.5%) 

71.4% 
(63.9%-78.9%) 

90.5% 
(85.2%-95.8%) 

specificity 
50.9% 

37.9%-63.9%) 
50.9%(37.9%-63.9%) 26.3%(14.9%-37.7%) 

61.4% 
(48.8%-74.0%) 

42.1% 
(29.3%-54.9%) 

80.7% 
(70.5%-90.9%) 

56.8 
(46.0%-67.6%) 

PPV 
82.2% 

(76.2%-88.2%) 
76.9%(69.3%-84.4%) 74.4%(67.7%-81.1%) 

81.8% 
(74.9%-88.7%) 

75.9% 
(68.8%-83.1%) 

90.1% 
(84.5%-95.6%) 

75.0% 
(67.8%-82.2%) 

NPV 
72.5% 

(58.7%-86.3%) 
38.2%(27.2%-49.1%) 

45.5% 
(28.5%-62.4%) 

46.1% 
(34.8%-57.3%) 

40.0% 
(27.6%-52.4%) 

53.5% 
(42.9%-64.0%) 

80.7% 
(70.5%-90.9%) 

f1_score 86.90% 71.3% 80.3% 75.9% 75.1% 79.7% 82.00% 

accuracy 
80.2% 

(74.6%-85.8%) 
61.9%(55.1%-68.7%) 

69.5% 
(63.1%-76.0%) 

68.0% 
(61.5%-74.5%) 

65.0% 
(58.3%-71.6%) 

74.1% 
(68.0%-80.2%) 

76.6% 
(70.7%-82.6%) 

p_value <0.001 0.036 0.037 <0.001 0.036 <0.001 <0.001 

UFR 
71.8% 

(57.7%-85.9%) 
37.3%(26.4%-48.3%) 70.0%(58.4%-81.6%) 

34.9% 
(23.1%-46.7%) 

47.8% 
(36.0%-59.6%) 

21.1% 
(8.1%-34.0%) 

_ 
  
                        
                 

ITS100, Ian Thyroid Solution 100, Thynet, online Thyroid AI auxiliary tools, Radsize model integrates radiomics features and nodular size, Radunion model integrates radiomics features, 
nodular size and Bethesda classification. PPV, positive predictive value; NPV, negative predictive value; UFR, unnecessary biopsy rate. 
  

                         
                      
                           

                      
                     

 

FIGURE 6 

Diagnosis of two nodules: Case 1 was a hypoechoic nodule in the right lobe of the thyroid. (a, b) Transverse and longitudinal US images. (c) 
Bethesda IV after FNA, and (d) histopathological result: benign. Two AI models classified it as a “benign” nodule, while two junior radiologists 
assessed it as “malignant,” and all three radiomics models classified it as “benign.” Case 2 was a hypoechoic nodule in the left lobe of the thyroid. (e, 
f) Transverse and longitudinal US images. (g) Bethesda III after FNA, and (h) histopathological result: benign. Two AI models classified it as 
“malignant,” two junior radiologists assessed it as “benign,” and all three radiomics models classified it as “benign.” Its histopathological diagnosis is 
“benign.”. 
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preoperative US remains a key determinant for surgical planning in 
thyroid cancers (29). 

The diagnostic accuracy of the Rad model was comparable to 
that of an SVM-based model by Chen et al. (74.1% vs. 71.8%) (26), 
which utilized clinical and sonographic features such as 
composition, echogenicity, margins, shape, echogenic foci, and 
nodule size in 194 ITNs (Bethesda III/IV/V). The AUC of the 
Radsize model outperformed that of the ResNet-50 model, which 
integrated radiomics features from 88 ITNs (0.840 vs. 0.740) (25), 
and was comparable to the multiple-modality models by Gregoire 
et al. (20), which combined clinical data with the Bethesda and 
French TI-RADS categories. These findings suggest that US 
radiomics may play an important role in enhancing the 
differential diagnosis of ITNs. 

The Radunion model achieved an AUC of 0.860 and the highest 
accuracy of 76.6% among junior radiologists, the Thynet online 
tools, and the ITS 100 system. In contrast, the previous Thynet tool, 
based on a deep learning algorithm and trained on 22,354 US 
images, achieved an AUC of 0.922 (23) but yielded an accuracy of 
only 65% in our ITN cohort. Part of Thynet’s training set included 
Bethesda II or VI nodules, which lack the characteristic features 
commonly observed in ITN US images. Most training images were 
from surgical nodules with a high malignant potential, which may 
explain why the Thynet model was less capable of generalizing to 
ITN images and tended to assign cases to the malignant category. 
This could also explain the discrepancies observed in the ITS 100 
system. The commercial ITS 100 system, which examined 1,007 TN 
US images, exhibited a sensitivity of 92.21%, specificity of 83.20%, 
and accuracy of 89.97% (30). However, in our ITN cohort, the 
sensitivity was 70.7%, specificity was 61.4%, and accuracy was 65%. 
Similarly, the S-Detect unit, an AI model for TNs (31), achieved an 
accuracy of 81.7% for 454 TNs but only an AUC of 0.795 for 159 
ITNs (32). In the current cohort, the Radunion model misclassified 
47 ITNs, including 11 benign ITNs and 36 malignant ITNs for 
pathology. The nodule sizes were evenly distributed from 0.3 to 3.7 
cm, 26 Bethesda III nodules with a size distribution of 0.3-3.7 cm, 
and 21 Bethesda IV nodules with a size distribution of 0.4-2.1 cm. 

These AI models were designed to reduce clinical workload and 
improve the efficiency of junior radiologists (33). One of the primary 
objectives of US radiomic studies is to avoid unnecessary biopsies in 
patients with benign nodules. Park et al. (22) combined radiomics 
with the ACR or American Thyroid Association guidelines (3, 28) 
and found that all readers showed improved performance and 
reduced unnecessary fine-needle aspiration (FNA) rates. Huang 
et al. (27) developed a radiomics nomogram that achieved an 
unnecessary FNA rate of 18.66% while maintaining an accuracy of 
82.48% for TNs. The Thynet-assisted strategy, a well-established 
method, reduced the number of FNAs from 61.9% to 35.2% in a 
simulated scenario (23). In this study, we provide evidence that the 
Radsize model can reduce the unnecessary biopsy rate by up to 48.9% 
compared to junior radiologists, achieving an unnecessary biopsy rate 
    Frontiers in Endocrinology 10 
          
         

    
         

           
          

          
          
         

          
          

         
          

           
          

           
            
           
          

        
         

          
       
          

          
       

       
       

      
          

        
           

           
        

of 21.1%. These results indicate that US radiomics models hold 
significant promise in the preoperative diagnosis of ITNs, especially 
for less experienced radiologists. 

This study had some limitations. First, the proportion of 
malignant nodules in the entire cohort of ITNs from a single 
medical center (71.1%, 140/197) was higher than that reported in 
other studies (19, 22), potentially introducing selection bias, such as 
lower specificity and lower NPV. The proportion of malignant cases 
would influence the generalizability and robustness of models among 
other dataset. Diagnostic thresholds for models may be low, leading 
to reduced predictive power for low-risk populations. Models may be 
overfitted to high-risk characteristics, making it difficult to accurately 
identify people at average risk. No more populations for external 
validation is the second shortage. The majority of patients at our 
center present with higher-risk nodules and tend to prefer ablative 
therapy when the nodular size <10 mm (34), some patients with 
nodular size >10 mm also require to try ablation therapy, leaving the 
patients with bigger or more risky nodule have to undergo the 
surgery, which results in a higher percentage of malignant nodules 
among those undergoing surgery. To address this limitation, 
collaboration across multiple medical centers is needed to further 
optimize and validate the performance of these radiomics models by 
different populations. Meanwhile, the retrospective design and 
potential variability in US image acquisition also effects the results. 
Thus, collecting row data in prospective research and expanding the 
range of imaging data, including contrast-enhanced US, 
microvascular imaging, and super-resolution US, is necessary. 
Combining multiple-modality models will be promising in 
improving diagnostic performance and minimizing unnecessary 
biopsies for ITNs (35, 36). Finally, we should consider further 
optimization and applicability studies for the model performance. 
We should establish clear conditions for the applicability of such a 
model in the clinical process and the management of its use, 
including a systematic training program for its users. 
  

         
         

         
        

       
       

         
       

       
       

        
      

        

5 Conclusions 

The US radiomics models developed in this study, particularly 
the Radsize and Radunion models, demonstrate the potential to 
serve as convenient and accurate adjunct tools for predicting 
malignancy in ITN. These models can significantly enhance 
diagnostic performance, particularly for junior radiologists, by 
improving accuracy and reducing unnecessary interventions, such 
as biopsies and surgeries. Our findings highlight the broader 
implications of adopting radiomics-based approaches in clinical 
practice, including more standardized diagnoses and improved 
patient management. Future studies should prioritize validating 
these models across diverse populations and integrating additional 
imaging modalities, such as contrast-enhanced and super-
resolution US, to further optimize their diagnostic capabilities. 
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