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during pregnancy alleviates 
LPS-induced placental damage 
and improves the fetal survival 
and growth in mice 
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Pengfei Liu4, Xiuliang Dai3* and Hongbin Xu2* 

1Department of Nursing, Changzhou Hygiene Vocational Technology College, Changzhou, 
Jiangsu, China, 2Obstetrics and Gynecology Department, The Second People’s Hospital of 
Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, China, 3The 
Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou 
Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China, 4The Department of Animal 
Center, Kebiao Medical Testing Center, Changzhou, Jiangsu, China 
Background: Intrauterine infection is a major cause of preterm birth, fetal 
demise, and growth restriction. Placental damage resulting from such 
infections plays a central role in mediating these adverse outcomes. 
Pyrroloquinoline quinone (PQQ) is a naturally occurring nutrient known for its 
antioxidant, anti-inflammatory, and mitochondrial-supporting properties. This 
study aimed to investigate whether pre-conditioning with PQQ during 
pregnancy could mitigate adverse effects induced by lipopolysaccharide (LPS)-
mediated inflammation in mice. 

Methods: Pregnant mice were randomly assigned to three groups: control, LPS, 
and LPS + PQQ. On gestational day (GD) 16.5, mice in the LPS groups were 
intraperitoneally injected with either a single dose of 3 mg/mouse (moderate 
inflammation) or two doses of 3ug/mouse (severe inflammation) of LPS. In the 
LPS + PQQ group, PQQ was administered daily from GD 0.5. Outcomes assessed 
included labor time, fetal survival, fetal and placental weights. Placental structure, 
vascular networks, inflammation, oxidative stress, and gene expression profiles 
were evaluated using H&E staining, immunohistochemistry, Prussian blue 
staining, and RNA sequencing. 

Results: Pre-conditioning with PQQ significantly alleviated LPS-induced fetal 
demise and reduced fetal and placental growth. PQQ also improved placental 
morphology, restored vascular integrity, and normalized aberrant gene 
expression profiles. Furthermore, PQQ treatment markedly reduced placental 
inflammation and oxidative stress in mice exposed to moderate LPS. However, 
under  high-dose  LPS  conditions,  PQQ  failed  to  confer  significant  
protective effects. 
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Conclusion: Our findings suggest that Pre-conditioning with PQQ during 
pregnancy can protect against inflammation-induced placental damage and 
improve fetal survival and growth under moderate inflammatory conditions. 
This study provides compelling proof-of-concept that PQQ buffers the 
placenta against maternal systemic inflammatory insults. However, its efficacy 
appears limited in the context of severe inflammation. 
KEYWORDS 

intrauterine infection, fetal health, pyrroloquinoline quinone, placental damage, 
pre-conditioning 
 

1 Introduction 

Intrauterine infections during pregnancy affects approximately 
1-4% of all births in the US, can lead to various maternal and 
neonatal complications, including preterm labor, sepsis, cerebral 
palsy, and even stillbirth (1, 2). Currently, anti-infection strategies, 
such as broad-spectrum intravenous antibiotics, are used to control 
bacterial infections. However, adjuvant therapies that can preserve 
placental function and fetal health are still lacking. Additionally, for 
pregnant women at high risk of intrauterine infection, such as those 
with a history of previous infections, preventive medicines are still 
not available. 

The placenta, serving as the crucial connection between the 
mother and the developing fetus, facilitates nutrient and oxygen 
exchange, waste removal, and hormone production to support 
pregnancy. It can, however, be easily affected by intrauterine 
infections. Intrauterine infection can lead to intensified and 
widespread inflammation and oxidative stress, thereby damaging 
the structure and function of the placenta (3). As a result, the 
placenta’s ability to exchange oxygen and nutrients becomes 
compromised, leading to adverse fetal outcomes such as growth 
restriction, preterm premature rupture of membranes, fetal brain 
damage, and even stillbirth (3). It has been demonstrated that 
targeting inflammation or oxidative stress could alleviate infection 
induced placental damage, thereby improving fetus outcomes (4–6). 

Pyrroloquinoline quinone (PQQ), initially identified as a 
bacterial co-factor (7), is also enriched in human breast milk (8). 
Recent studies have demonstrated that PQQ is essential for health 
in animals, including humans (9). PQQ deficiency has been shown 
to severely impact the development of mice, leading to growth 
retardation, immune dysfunction, and reproductive disorders (10). 
In contrast, PQQ supplementation can help prevent the progression 
of various diseases, including alkylating agent-induced ovarian 
dysfunction (11, 12). Administering PQQ during pregnancy has 
been shown to protect obese offspring from developing 
nonalcoholic fatty liver disease and to prevent developmental 
programming of microbial dysbiosis (13, 14). The health benefits 
of PQQ are closely linked to its antioxidant and anti-inflammatory 
properties (9). Additionally, PQQ is known as a mitochondrial 
02 
enhancer, promoting mitochondrial biogenesis (15). Due to its 
safety, commercial PQQ products are available for improving 
human health for healthy adults, but not pregnant and lactating 
women (16). This is due to the limited data available on the effects 
of PQQ supplementation during pregnancy. Therefore, the use of 
PQQ in pregnant women is still limited and require more research. 
Given these, we aim to investigate whether dietary intake of PQQ 
could protect the placenta from damage in the context of 
intrauterine infection 

In the present study, we used lipopolysaccharide (LPS) to 
establish a model of intrauterine infection in pregnant mice, 
mimicking bacterial infection. PQQ was supplemented through 
the diet starting on day 0.5 after pregnancy confirmation and 
continued until delivery or sacrifice. We then assessed the effects 
of PQQ treatment on fetal outcomes, placental structure, placental 
vessels network, gene expression profiles in placenta, inflammation 
and oxidative stress markers in placenta. In addition, we also tested 
whether PQQ can protect the fetal outcomes and placenta structure 
in response to high dose LPS. 
2 Materials and methods 

2.1 Mice and treatment 

Two-to three-month-old male and female BALB/c mice were 
purchased from Cavance Animal Company and housed in a specific 
pathogen-free (SPF) animal facility with ad libitum access to food 
and water, maintained under a 12-hour light/dark cycle. One female 
mouse was mated with one male mouse at 6 PM. The presence of a 
clear vaginal plug in the female mouse examined the following 
morning indicated successful mating, marking that day as 
gestational day  (GD)  0.5.  The pregnant mice were randomly

divided into three groups: the Control group, the LPS group, and 
the PQQ+LPS group. PQQ, purchased from Shandong Weifang 
Company, was incorporated into the mouse’s diet at a dosage of 5 
mg/kg. The food containing PQQ was provided to the mice in the 
PQQ+LPS group starting from GD 0.5 and continued until delivery 
or sacrifice. On GD 16.5, to establish a moderate infection model, 
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LPS (3 ug per mouse) was administered via intraperitoneal injection 
once. To establish a severe infection model, the same dose of LPS 
(3ug per mouse) was injected intraperitoneally twice at a 3-hour 
interval. Some pregnant mice in each group were maintained until 
delivery, while the remaining mice in each group were sacrificed on 
GD 17.5, the weight of placenta and fetus were recorded, placentas 
were collected for experimental use. The detailed study design was 
described in Supplementary Figure 1. 
2.2 Histology and immunohistochemistry 

The fresh placentas were fixed in 4% paraformaldehyde (PFA) 
solution for 48 hours. Following fixation, the placental tissues were 
dehydrated, cleared, and embedded in paraffin. Paraffin-embedded 
placentas were sectioned at a thickness of 5 µm. The sections were 
then dewaxed and rehydrated for subsequent histological and 
immunohistochemical staining. 

For hematoxylin and eosin (HE) staining, the sections were 
stained sequentially with hematoxylin followed by eosin. 

For Prussian blue staining, a commercial Prussian blue staining 
kit (BP-DL161, SenBeiJia Biological Technology, China) was used. 

For immunohistochemistry, the sections were subjected to 
antigen retrieval by boiling in Tris-EDTA solution for 10 mins. 
Endogenous peroxidase activity was blocked by incubating the 
sections with 3% H2O2. The sections were then incubated with 
10% donkey serum for blocking for 1 hour. The sections were then 
incubated overnight at 4C with primary antibodies, including anti-
CK7 antibody (17513-1-AP, Proteintech, China), anti-CD31 
antibody (#77699, Cell Signaling Technology, China), anti-IL6 
antibody (GB11117, Servicebio, China), anti-p65 antibody 
(GB11142, Servicebio, China), anti-8-OHdG antibody (sc-393871, 
Santa Cruz, China). After washing off the primary antibodies, the 
sections were incubated with horseradish peroxidase (HRP)-

conjugated goat anti-rabbit (A0208, Beyotime Biotechnology, 
China) or anti-mouse (A0216, Beyotime Biotechnology, China) 
secondary antibodies for 1 hour. The sections were visualized 
using DAB staining and counterstained with hematoxylin, 
followed by rinsing with running water to restore the blue color. 
Following dehydration and clearing, the slides were mounted, and 
photographs were taken. 
2.3 Quantification of histochemistry and 
immunohistochemistry 

For quantification of CK-7 positive area for each group, five 
representative images of CK7-positive staining from 5 placentas and 
5 pregnant mice for each group, were used for measuring the CK7-
positive areas by using Image J. The CK7-positive area in the 
control group was used as the reference for comparison. 

Quantification of vascular parameters, including vessel area, 
number of branch points, number of end points and mean 
lacunarity, five representative CD31-immunostained images from 
5 placentas and 5 pregnant mice for each group, were processed by 
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using Angio tool to measure vascular parameters (17). The 
parameters in Control group were set as reference for comparison. 

For quantification of Prussian blue clusters, number of Prussian 
blue clusters per section were evaluated by visual observation using 
five representative images from 5 placentas and 5 pregnant mice for 
each group. 

For quantification of IL6 intensity, five representative images of 
immunohistochemistry staining of IL6 from 5 placentas and 5 
pregnant mice for each group, were used for measuring the IL6 
intensity by using Image J. The IL6 intensity in Control group was 
set as reference for comparison. 

For quantification of p65 and 8-OHdG nuclear positive cells, 
five representative images of immunohistochemistry staining of p65 
and 8-OHdG from 5 placentas and 5 pregnant mice for each group, 
were used for measuring p65 and 8-OHdG nuclear positive cells by 
using Image J. The percentage of p65 and 8-OHdG nuclear positive 
cells were calculated as positive cells to the whole cells. 
2.4 RNA-sequencing and analysis 

Fresh placentas (n=3 in each group) were immediately 
immersed in liquid nitrogen, and stored in -80 °C for later use. 

2.4.1 RNA isolation and library preparation 
Total RNA was extracted using the TRIzol reagent (Invitrogen, 

CA, USA) according to the manufacturer’s protocol. RNA purity 
and concentration were assessed using the NanoDrop 2000 
spectrophotometer (Thermo Scientific, USA). RNA integrity was 
evaluated  using  the  Agilent  2100  Bioanalyzer  (Agilent  
Technologies, Santa Clara, CA, USA). Library construction was 
performed using the VAHTS Universal V10 RNA-seq Library Prep 
Kit (Premixed Version), following the manufacturer’s instructions. 
Transcriptome sequencing and analysis were conducted by OE 
Biotech Co., Ltd. (Shanghai, China). 

2.4.2 RNA sequencing and differentially 
expressed genes analysis 

The libraries were sequenced on an Illumina NovaSeq 6000 
platform, generating 150 bp paired-end reads. For each sample, 
39.04 to 48.59 million raw reads were obtained. Raw FASTQ files 
were initially processed using fastp (18), and low-quality reads were 
removed to obtain clean reads. After filtering, 38.35 to 47.66 million 
clean reads per sample were retained for downstream analysis. 
Clean reads were aligned to the mouse reference genome using 
HISAT2 (19). Gene expression levels were quantified as fragments 
per kilobase of transcript per million mapped reads (FPKM) (20), 
and read counts were generated using HTSeq-count (21). Principal 
component analysis (PCA) was conducted in R (v3.2.0) to evaluate 
the biological replicates. Differential expression analysis was 
performed using DESeq2 (22), with significantly differentially 
expressed genes (DEGs) defined as those with a Q value < 0.05 
and a fold change > 2 or < 0.5. The gene expression levels between 
groups were provided in Supplementary Data. Hierarchical 
clustering of DEGs was conducted using R (v3.2.0) to visualize 
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gene expression patterns across different groups and samples. Gene 
Ontology (GO) (23) and KEGG (24) enrichment analyses were 
performed to identify significantly enriched terms using the 
hypergeometric distribution in R (v3.2.0). Bubble plots were 
generated in R to visualize the enrichment results. 
2.5 Statistical analysis 

Data are expressed as mean ± SD. Statistical significance among 
groups was determined using one-way ANOVA, followed by 
Tukey’s multiple comparisons test. GraphPad Software (Version 
11) was used for statistical analysis. A p-value of < 0.05 was 
considered statistically significant. 
3 Results 

3.1 Pre-conditioning with PQQ improved 
fetal survival in pregnant mice treated with 
LPS 

After the injection of LPS, pregnant mice were observed every 
hour until parturition occurred in the control group for recording 
labor time and viability of fetuses. Preterm birth and decreased fetal 
survival are the primary outcomes of intrauterine infection (25) (26, 
27). Initially, we used two dosages (3ug/mouse) of LPS to establish 
intrauterine infection model. Our results showed that all pregnant 
mice treated with high-dose LPS delivered within 24 hours, and no 
viable fetuses were observed (Supplementary Figures 2A, B). PQQ 
treatment had no effect on the incidence of preterm birth or fetal 
survival under these conditions (Supplementary Figures 2A, B). In 
addition, some fetuses were delivered enclosed within an intact 
amniotic sac (Supplementary Figure 2C). HE staining revealed 
profound structural changes in the placental labyrinth, including 
disrupted architecture, enlarged vessels, and accumulation of blood 
cells, observed in both the LPS and PQQ groups (Supplementary 
Figure 2D). These findings indicate that PQQ did not confer 
protective effects in the context of severe infection during pregnancy. 

We speculated that a high dose of LPS induced overwhelming 
inflammation, which may have masked the effect of PQQ. Therefore, 
we used a single dose of LPS to establish the intrauterine infection 
model. As expected, LPS treatment at gestational day (GD) 16.5 
induced preterm birth in mice, decreased fetal survival, and resulted 
in smaller fetal and placental size and weight (Figures 1A–E). 
Compared to pregnant mice in the LPS group, mice in the PQQ 
group had a longer time to labor following LPS treatment, although 
the difference was not statistically significant (Figure 1A). Here, 
preterm delivery was defined as delivery occurring before gestational 
day GD 19. Further analysis showed that in the Control group, the 
percentage of preterm birth was 0/4 (0%), in the LPS group it was 5/5 
(100%), and in the PQQ group it was 4/7 (57.14%), indicating that 
PQQ supplementation inhibited LPS-induced preterm birth in some 
Frontiers in Endocrinology 04
degree. Strikingly, fetal survival in the PQQ group was significantly 
higher compared to the LPS group, and fetal and placental size and 
weight were significantly increased (Figures 1B–E). These results 
collectively demonstrated a protective effect of PQQ in alleviating 
LPS-induced complications in pregnant mice. 
3.2 Pre-conditioning with PQQ improves 
placental structure in pregnant mice 
treated with LPS 

We then examined placental morphological changes among 
groups. We found that LPS treatment induced placental 
calcification and infarction, disrupted tissue architecture, and 
caused the absence of red blood cells in the labyrinth region 
(Figure 2A). These abnormalities were barely observed in the 
PQQ-treated group (Figure 2A). CK7 is primarily expressed in 
trophoblasts within the mouse placental labyrinth, where it 
supports vascular development and maternal-fetal exchange (28). 
We found that the expression of CK7 was significantly reduced in 
the placenta following LPS treatment when compared to the control 
(Figures 2B, C). However, PQQ treatment significantly increased 
CK7 expression (Figures 2B, C), indicating that PQQ treatment 
protected the placenta against LPS-induced damage to trophoblasts. 
These results collectively demonstrated that PQQ treatment can 
largely prevent the structural abnormalities of the placenta caused 
by LPS. 
3.3 Pre-conditioning with PQQ improved 
vascular condition and vessel instability in 
placenta treated with LPS 

The vessels in the placental labyrinth play a critical role in 
facilitating efficient maternal-fetal exchange of oxygen, nutrients, 
and waste products, thereby ensuring proper fetal development. It 
is known that acute inflammation can lead to vascular dysfunction 
(29). Our results showed that LPS treatment induced prominent line-
like CD31-positive staining, indicating vessel regression (Figure 3A). 
Quantification of CD31 immunohistochemistry by Angio tool 
revealed that LPS also reduced the overall vessel area and the 
number of branch points, while increasing the mean E lacunarity 
value reflecting greater heterogeneity, irregularity, and gaps in vessel 
architecture (Figures 3A, C, D, F). However, LPS treatment had no 
significant effect on the number of endpoints (Figures 3A, E). In 
addition, LPS treatment significantly increased the number of 
Prussian blue-positive cell clusters in the placenta, indicative of 
vascular instability (Figures 3B, G). Compared to the LPS group, 
the PQQ-treated group exhibited more normal vascular morphology, 
with increased overall vessel area and branch points, and reduced 
mean E lacunarity and Prussian blue-positive clusters (Figures 3A– 
G). Collectively, these findings demonstrated that PQQ treatment 
largely rescues the vascular abnormalities induced by LPS. 
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3.4 Pre-conditioning with PQQ largely 
corrected the gene expression alternations 
in placenta treated with LPS 

To comprehensively investigate the protective effect of PQQ on the 
placenta at the gene expression level, we performed RNA sequencing on 
samples from the Control, LPS, and PQQ (Rescue) groups. Principal 
component analysis (PCA) of the RNA-seq data revealed that samples 
from the Control and PQQ groups clustered closely together, whereas 
samples from the LPS group were clearly separated, indicating distinct 
transcriptomic changes induced by LPS (Figure 4A). Compared to the 
Control group, the LPS group exhibited 351 upregulated and 527 
downregulated genes, while the PQQ group showed 151 upregulated 
and 110 downregulated genes (Figure 4B). When compared to the LPS 
group, the PQQ group showed 646 upregulated and 639 downregulated 
genes (Figure 4B). Volcano plots highlighted the most significantly 
differentially expressed genes in both LPS vs. Control and LPS vs. PQQ 
comparisons (Figure 4C). Further analysis revealed a total of 526 
differentially expressed genes shared between the LPS vs. Control and 
LPS vs. PQQ comparisons (Figure 4D). Among these, 230 genes were 
commonly upregulated and 290 genes were commonly downregulated 
Frontiers in Endocrinology 05 
(Figure 4D). KEGG pathway analysis of differentially expressed genes in 
the LPS vs. Control comparison revealed multiple significantly altered 
biological processes, we showed 15 representative biological processes here 
(Figure 4E). From these, eight pathways closely related to infection or 
pregnancy were selected for further analysis. We then examined the 
expression patterns of genes involved in nuclear division, regulation of 
body fluid levels, female pregnancy, receptor signaling pathway via JAK-
STAT, extracellular matrix organization, regulation of blood pressure, 
positive regulation of inflammatory response, and gas transport across the 
three groups. In all eight pathways, gene expression patterns in the PQQ 
group were similar to those in the Control group and clearly different from 
the LPS group (Figures 4F–M). Collectively, these transcriptomic data further 
supported that PQQ treatment mitigates LPS-induced placental damage. 
3.5 PQQ Pre-conditioning improves 
inflammation and oxidative stress status in 
placentas of LPS-treated mice 

Inflammation and oxidative stress are key mediators of LPS-induced 
placental damage. We showed that LPS treatment significantly increased 
FIGURE 1 

Pre-conditioning with PQQ improves fetal survival in pregnant mice treated with LPS. (A) Mice received either normal saline or LPS (3 µg/mouse), 
and the time to labor after treatment was recorded. n=4 pregnant mice for control group, n=5 pregnant mice for LPS group and n=7 pregnant mice 
for PQQ group. (B) Twenty-four hours post-treatment, for mice that had delivered, the number of surviving and deceased fetuses was recorded; for 
still-pregnant mice, the animals were sacrificed, and fetuses were collected to assess survival in utero. Twenty-four hours post-treatment, the still-
pregnant mice were sacrificed, n=5 pregnant mice in Control group, n=10 pregnant mice in LPS group, and n=7 pregnant mice in PQQ group. 
(C) The representative image of the placenta and fetus among groups, (D) Fetal weight and (E) placental weight were assessed. n=60 fetuses in 
control group from 5 pregnant mice, n=54 in LPS group from 5 pregnant mice, and n= 64 in PQQ group from 6 pregnant mice. Statistical 
significance: ***p < 0.001 vs. Control group; ###p < 0.001 vs. LPS group. 
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the expression of IL-6 and the nuclear expression of p65 in the placental 
decidual and labyrinth regions (Figures 5A, B, D–G). Compared to the 
LPS group, PQQ treatment significantly decreased the expression of IL-6 
and nuclear p65 in both the decidual and labyrinth regions of the placenta 
(Figures 5A, B, D–G). 8-OHdG, a marker of oxidative stress and DNA 
oxidation, was significantly increased in the placental labyrinth region 
following LPS treatment, compared to the control group (Figures 5C, H). 
However, PQQ treatment significantly reduced the percentage of 8-
OHdG-positive cells in the placental labyrinth region (Figures 5C, H). 
Together, these results suggested that PQQ treatment alleviates placental 
inflammation and oxidative stress induced by LPS. 
4 Discussion 

In this study, we demonstrated that Pre-conditioning with PQQ 
significantly alleviated LPS-induced complications in a murine 
Frontiers in Endocrinology 06
model of intrauterine infection, including fetal demise, as well as 
reduced fetal and placental growth. Our findings highlight the 
potential of PQQ as a protective agent during pregnancy under 
conditions of mild to moderate intrauterine inflammation. 
Although it appears that PQQ prolonged the time to labor 
following LPS treatment, the difference was not statistically 
significant. It is known that the fetal membrane plays a more 
direct role in the initiation of preterm birth (30, 31). Therefore, 
the protective effect of PQQ on the fetal membrane may not be as 
very pronounced. Additionally, the protective efficacy of PQQ is 
limited under severe inflammatory conditions. 

The placenta is a crucial organ that supports pregnancy by 
facilitating nutrient and gas exchange between the mother and fetus, 
producing hormones essential for fetal development and maternal 
adaptation, and providing immune protection (32). Indeed, the 
placenta can be directly damaged by infection during pregnancy. It 
has been reported that maternal LPS exposure leads to placental 
FIGURE 2 

Pre-conditioning with PQQ improves placental structure in pregnant mice treated with LPS. Twenty-four hours post-treatment, for still-pregnant 
mice, the placentas were collected for further analysis. (A) HE staining displayed the placenta structure. The lower magnified images displayed 
regions of labyrinth layer. Blue rectangle indicates region of placental calcification, yellow rectangle indicates region of placental infarction. Green 
triangle indicates absence of red blood cells. For each group, N = 5 placentas from 5 pregnant mice. (B) Immunohistochemistry staining of CK7 in 
placenta labyrinth layer. For each group, N = 5 placentas from 5 pregnant mice. (C) Quantification of CK7 positive areas. *p < 0.05 vs. Control group; 
#p < 0.05 vs. LPS group. 
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mal-perfusion, increased fetal vessel resistance, and histological 
changes in the placental structure, including infarctions, 
calcifications, and increased intervillous spaces (33–35). The 
placental alterations caused by infection are considered a primary 
cause of fetal and neonatal morbidity and mortality (36). In the 
present study, we also observed that LPS treatment significantly 
induced changes in placental structure, including infarctions and 
calcifications. CK7 predominantly mark trophoblast lineages within 
the labyrinth region of the mouse placenta (28). These cells 
contribute to the development and maintenance of the labyrinth’s 
vascular architecture, thereby facilitating efficient exchange of 
nutrients, gases, and waste products between the mother and 
fetus. A previous study has showed that conditional mutation of 
Hand1 significantly reduced CK7-positive syncytial trophoblasts, 
leading to fewer fetal vessels, misorganization of maternal blood 
spaces, and impaired labyrinth structure (28). Consistently, we also 
Frontiers in Endocrinology 07 
observed a decreased CK7 positive cells in LPS-treated placenta. 
However, all these placental abnormalities caused by LPS were 
largely rescued by Pre-conditioning with PQQ. These results 
demonstrate that PQQ treatment improve placental structure in 
pregnant mice treated with LPS. 

Placental vasculature is essential for supporting the development 
of embryos. Previous studies have shown that systemic maternal 
infection and subsequent inflammation can disrupt placental 
vasculogenesis and angiogenesis (3). Placental vascularization, 
vascular remodeling, and oxygen transport are severely affected by 
maternal infection (37–40). Consistent with these findings, in the 
present study, we observed massive irregular and short, line-shaped 
CD31-positive staining, indicating vessel regression in LPS-treated 
placentas. Moreover, LPS treatment also induced a decrease in vessel 
area, branching points, and led to a heterogeneous and disordered 
vascular network. It has been reported that inflammation causes 
FIGURE 3 

PQQ Pre-conditioning improves vascular condition and reduces vessel instability in placentas of LPS-treated mice. Twenty-four hours after 
treatment, placentas from still-pregnant mice were collected for further analysis. (A) Upper panels: Immunohistochemical staining of CD31 in the 
placental labyrinth layer. The red arrow indicates prominent, line-like CD31-positive staining, suggestive of vessel regression. Lower panels: The 
corresponding images were analyzed using AngioTool based on CD31 immunohistochemical staining. Green lines outline placental microvessels; 
blue dots indicate branch points. For each group, N = 5 placentas from 5 pregnant mice. (B) Prussian blue staining of placental sections. For each 
group, N = 5 placentas from 5 pregnant mice. Quantification of vascular parameters: (C) Vessel area, (D) Number of branch points, (E) Number of 
end points, (F) Mean lacunarity. (G) Number of Prussian blue clusters. *p < 0.05, **p < 0.01 vs. Control group; ##p < 0.01 vs. LPS group. 
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FIGURE 4 

PQQ Pre-conditioning largely corrects gene expression alterations in placentas of LPS-treated mice. Twenty-four hours after treatment, placentas 
from still-pregnant mice were collected for further analysis. (A) Principal component analysis (PCA) of RNA sequencing samples. (B) Differentially 
expressed genes between the Case (LPS) and Control (C), Case (LPS) and Rescue (PQQ), and Control (C) and Rescue (PQQ) groups. (C) Volcano plot 
showing differentially expressed genes between the LPS and Control, and LPS and PQQ groups. (D) Number of common up-regulated and down-
regulated genes in the Control and PQQ groups compared to the LPS group. (E) Bubble chart showing KEGG analysis of the top biological 
processes (LPS vs. Control). Gene expression involved in specific biological processes: (F) Nuclear division, (G) Regulation of body fluid levels, (H) 
Female pregnancy, (I) Receptor signaling pathways via JAK-STAT, (J) Extracellular matrix organization, (K) Regulation of blood pressure, (L) Positive 
regulation of inflammatory response and (M) Gas transport, among the Control, LPS, and PQQ groups. N=3 placentas from 3 pregnant mice for 
each group. 
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FIGURE 5 

PQQ Pre-conditioning improves inflammation and oxidative stress status in placentas of LPS-treated mice. Twenty-four hours after treatment, 
placentas from still-pregnant mice were collected for further analysis. (A) Immunohistochemical staining of IL-6 in the placenta. N=5 placentas from 
5 pregnant mice for each group. The upper panel indicates the DE region located above the dashed line. The lower panel indicates LB. 
(B) Immunohistochemical staining of p65 in the placenta. The upper panel indicates the DE located above the dashed line. The area within the red 
rectangle is shown at higher magnification in the inset. The lower panel indicates LB. Red arrows indicate p65-positive staining. N=5 placentas from 
5 pregnant mice for each group. (C) Immunohistochemical staining of 8-OHdG in the DE region of the placenta. N=5 placentas from 5 pregnant 
mice for each group. Quantification of IL-6 expression in the (D) decidual area and (E) labyrinth layer. Quantification of p65-positive cells in the (F) 
decidual area and (G) labyrinth layer. (H) Quantification of 8-OHdG-positive cells in the labyrinth layer. *p < 0.05, ***p < 0.001 vs. Control group; 
# p < 0.05 vs. LPS group. DE, Decidual area; LB, labyrinth layer. 
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endothelial cell injury and disrupts vascular integrity, thereby inducing 
bleeding (41–43). Consistently, we also observed Prussian blue 
staining in LPS-treated placentas, further supporting the instability 
of the vessels. These vascular abnormalities in the placenta were 
largely corrected by Pre-conditioning with PQQ. This is consistent 
with previous studies reporting a protective effect of PQQ on 
endothelial cells from high glucose- or doxorubicin-induced damage 
(44, 45). Therefore, PQQ treatment improves vascular damage in 
placenta caused by LPS. 

Our transcriptional data revealed that the transcriptional 
landscape of PQQ-treated placentas resembled that of unchallenged 
controls, in stark contrast to the divergent gene profile observed in the 
LPS group. Further analysis showed that PQQ treatment normalized 
gene expression patterns across key biological processes, including 
nuclear division, regulation of body fluid levels, female pregnancy, 
receptor signaling pathway via JAK-STAT, extracellular matrix 
organization, regulation of blood pressure, positive regulation of 
inflammatory response, and gas transport. This raises a critical 
question: did PQQ directly modulate the molecules involved in such 
a broad range of biological processes, or are the transcriptional 
changes observed a consequence of PQQ’s ability to mitigate LPS-
induced damage? Theoretically, it is unlikely that PQQ directly targets 
such a broad range of molecules. For instances, we found that LPS 
treatment significantly upregulated genes involved in cell proliferation 
and gas transport. We speculate that, moderate infection induced 
placental damage may trigger inflammation-induced proliferation and 
increased expression of oxygen-related genes, serving as a defensive 
mechanism to repair the damaged structures and enhance oxygen-
carrying efficiency. Interestingly, PQQ treatment suppressed the 
expression of all these genes, which may suggest an inhibition of the 
defensive system. However, if PQQ were indeed suppressing the 
defensive system,  it  would be expected to exacerbate LPS-induced

placental damage. Clearly, this is not the case. On the contrary, PQQ 
treatment improves fetal outcomes and alleviates placental damage. 
Therefore, the transcriptional changes likely reflect an overall 
improvement in LPS-induced placental injury by PQQ, providing 
compelling evidence for the protective role of PQQ. However, this 
prompted us to further investigate the mechanisms by which PQQ 
prevents LPS-induced placental damage. 

It is well established that LPS-induced placental damage is 
primarily mediated by inflammation. Besides the direct damage 
caused by inflammation, it has been reported that inflammation-

induced oxidative stress also contributes to infection-induced 
placental damage (4, 46, 47). Therefore, it is likely that PQQ 
treatment limits the spread of inflammation and alleviates LPS-
induced oxidative stress at an early stage, thereby preventing 
subsequent placental damage. In addition, mountains of studies 
have demonstrated the protective effect of PQQ against various 
diseases via its anti-inflammatory and antioxidant properties (9). As 
expected, our data revealed significant suppression of IL-6 expression, 
p65 nuclear translocation, and 8-OHdG accumulation in PQQ-treated 
placentas. Additionally, a recent study has highlighted the crucial role 
of mitochondrial dysfunction in LPS-induced inflammation and 
damage (48). PQQ is known as a mitochondrial optimizer (15), 
playing a powerful role in promoting mitochondrial biogenesis. 
Frontiers in Endocrinology 10 
Therefore, we speculate that the protective role of PQQ against 
intrauterine infection may also be attributed to its protective effect 
in preserving mitochondrial function. 

The mechanisms by which PQQ combats inflammation have 
been increasingly explored in recent years. It has been reported that 
PQQ can inhibit p65 nuclear translocation and MAPK activation, 
thereby suppressing inflammatory responses (49, 50). Min et al. has 
demonstrated that PQQ alleviates allergic airway inflammation in 
mice by modulating the immune microenvironment and regulating 
the JAK-STAT signaling pathway (51). In addition, Wu et al. 
identified CUL3 as a key effector through which PQQ exerts its 
anti-inflammatory effects (52). However, despite these findings, the 
precise molecular mechanisms by which PQQ, as a nutritional 
factor, regulates such diverse signaling pathways remain to be fully 
elucidated and warrant further investigation. 

In the present study, the timing of PQQ administration, 
prior to LPS insult, may be a critical determinant of its efficacy. 
This raises an important biological and translational question: 
Is PQQ acting as a Pre-conditioning agent, “priming” the 
placenta and maternal immune system to a more tolerant or 
resilient state? Pre-conditioning strategies, well-studied in 
ischemia-reperfusion injury and cardioprotection (53, 54), 
have only recently been considered in obstetrics (55). PQQ 
may represent a molecular bridge between metabolic Pre-
conditioning and placental protection. 

The present study holds clinical significance. As a nutritional 
factor, PQQ is recommended for dietary supplementation in 
humans. Clinical studies have shown that supplementation with 
PQQ offers multifaceted benefits, including improvement of age-
related mild cognitive decline (56, 57), enhancement of brain 
function in both younger and older individuals (58), increased 
cerebral blood flow and oxygen metabolism (59), and decreased 
LDL cholesterol levels (60). Clinical studies have also indicated the 
antioxidant, anti-inflammatory, and mitochondrial biogenesis-
promoting effects of PQQ (61, 62). The use of PQQ is quite safe, 
as evidenced by the no-observed-adverse-effect-level (NOAEL) of 
100 mg/kg body weight per day from a 90-day repeated-dose oral 
toxicity study with BioPQQ™ (16). However, it remains uncertain 
whether dietary supplementation with PQQ is appropriate for 
pregnant women. Animal studies, however, have shown beneficial 
effects of PQQ supplementation, including increased cardiomyocyte 
endowment in spontaneous IUGR guinea pigs (63),improvements 
in offspring liver bioactive lipid profiles and protection against the 
development of adult NAFL in mice (64, 65), amelioration of L-
NAME-induced preeclampsia-like symptoms in rats (66), 
mitigation of MK-801-induced schizophrenia-like behaviors in 
mice (67), and improved intestinal health of offspring in mice 
(68, 69). Therefore, PQQ holds promise for future clinical 
applications in the treatment of intrauterine infections. 

Despite these promising results, the effective protective effects of 
PQQ were not observed in mice exposed to a high dose of LPS. All 
fetuses were non-viable regardless of PQQ treatment, and placental 
damage was severe. Our findings suggest a threshold model in 
which the degree of inflammatory burden dictates the reversibility 
of placental pathology. Once structural collapse is triggered, 
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antioxidant intervention may be insufficient. Clinically, this 
underscores the urgent need for early diagnostic tools to identify 
pregnancies at risk before irreversible damage occurs. 

Another important consideration is that in the present study, we 
used LPS to mimic infection, rather than live bacteria. This model differs 
from actual bacterial infection, as it does not account for the expansion 
of bacterial populations. It is important to recognize that the in vivo anti-
inflammatory effects of PQQ alone may not be sufficient. In a true 
infection, the host’s inflammatory response plays a critical role in 
bacterial clearance. We observed that PQQ may alleviate the 
inflammatory response; however, if bacterial expansion is not 
controlled, the protective effects of PQQ may ultimately be lost. For 
this reason, combining PQQ with antibacterial strategies may be 
necessary for the effective treatment of intrauterine infections. 
Although a recent study showed that PQQ exhibited notable 
antibacterial activity against Gram-positive and -negative bacteria 
(70). Future work should explore the translational potential of PQQ 
in higher-order models, its pharmacokinetics during pregnancy, and its 
combinatorial effects with antimicrobial agents. Additionally, future 
studies should investigate whether PQQ acts primarily through 
modulation of mitochondrial function, suppression of innate immune 
sensors, or preservation of endothelial-trophoblast crosstalk. Delineating 
the precise molecular targets of PQQ may yield novel strategies to 
safeguard pregnancy against inflammatory disruption. 
5 Conclusion 

In summary, our preliminary data indicate that Pre-
conditioning with PQQ during pregnancy can protect against 
inflammation-induced placental damage and improve fetal 
survival and growth under moderate inflammatory conditions in 
mice. This study provides compelling proof-of-concept that PQQ 
buffers the placenta against maternal systemic inflammatory insults. 
However, its efficacy appears limited in the context of 
severe inflammation. 
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