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An explainable radiomics-based
machine learning model for
preoperative differentiation
of parathyroid carcinoma
and atypical tumors on
ultrasound: a retrospective
diagnostic study
Chunrui Liu1, Wenxian Li1, Baojie Wen1, Haiyan Xue1,
Yidan Zhang1, Shuping Wei1, Jinxia Gong2, Li Huang2, Jian He3*,
Jing Yao1* and Zhengyang Zhou4*

1Department of Ultrasound, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing, Jiangsu, China, 2Department of Ultrasound, Jinling Hospital, Affiliated
Hospital of Medical School, Nanjing University, Nanjing, China, 3Department of Nuclear Medicine,
Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing,
Jiangsu, China, 4Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of
Medical School, Nanjing University, Nanjing, Jiangsu, China
Background: Parathyroid carcinoma (PC) and atypical parathyroid tumors (APT),

constituting rare endocrine malignancies, demonstrate overlapping clinical-

radiological presentations with benign adenomas. This study aimed to

investigate the predictive performance of three radiomics-based machine

learning models for the identification of PC/APT from solitary parathyroid

lesions using ultrasound.

Methods: This retrospective diagnostic study analyzed 913 surgically-confirmed

parathyroid neoplasms (mean age 54.2 ± 13.7 years; 694 females, 219 male) from

Nanjing Drum Tower Hospital (n = 730) and Jinling Hospital (n = 183). The cohort

comprised 90 malignant lesions and 823 benign adenomas, divided into training

(Hospital I) and external test cohort (Hospital II). A radiomic signature derived

from 544 quantitative ultrasound features was developed using three machine

learning classifiers: Random Forest (RF), Support Vector Machine (SVM), and

Logistic Regression (LR). The performance of the predictive models was

evaluated based on the pathological diagnosis.

Results: The RF-based radiomics model showed excellent diagnostic

performance. The AUC of this model (0.933) was higher than that of SVM

(0.900, P < 0.05) and LR (0.901, P < 0.05). The accuracy, precision, recall, and

F1-score of RFmodel in distinguishing PA from APT/PC were 0.940, 0.683, 0.638

and 0.660. The explainable bar chart, heatmap and Shapley Additive exPlanations

(SHAP) values were used to explain and visualize the main predictors of the

optimal model.
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Conclusion: This radiomics framework provides a promising tool to support

doctors in the clinical management of parathyroid lesions.
KEYWORDS

parathyroid neoplasms, parathyroid carcinoma, radiomics, ultrasonography,
machine learning
1 Introduction

Parathyroid carcinoma (PC) and atypical parathyroid tumors

(APT) are relatively rare infiltrative lesions of primary

hyperparathyroidism (PHPT) (1). PC accounts for 0.5–5% (2).

The median overall survival from the time of diagnosis of PC is

14.3 years, with 5-year and 10-year survival rates is 78–91% and 60–

72%, respectively (3). APT is a newly proposed terminology to

replace “atypical parathyroid adenoma” in the WHO 2022

classification update to reflect the uncertain malignant potential

of these neoplasms (4). APTs have histological features suspicious

for PC but lacking evidence of unequivocal invasion and/or

metastasis which are the key morphological features of PC (5).

APT are comparatively rare that comprises less than 5% of

parathyroid tumors but up to 15% in some studies (4, 6, 7).

Although molecular analysis (e.g., CDC73 variants) remains

essential for definitive postoperative differentiation (8), the

preoperative distinction between APT and PC remains

challenging. Some study speculates that APT could represent an

early stage of PC (9). Unlike parathyroid adenoma (PA), which can

be treated by local parathyroidectomy, en bloc resection of the

invasive parathyroid tumor should be the preferred treatment

approach for APT/PC, particularly during the initial surgical

intervention. Hence, accurate preoperative identification of PC/

APT can facilitate appropriate surgical resection, which is beneficial

for improving patient prognosis (10, 11).

Due to its rarity, there is still no consensus on preoperative

identification of typical PA and parathyroid tumors (PC/APT).

Patients with PC may present with severe hyperparathyroidism,

hypercalcemia, and severe osteoporosis. Nevertheless, in rare cases,

PC presents as normocalcemic hyperparathyroidism (12). Due to

similar clinical manifestations, some parathyroid tumors are often

misdiagnosed as benign parathyroid diseases before surgery. As a

result, doctors may mistakenly identify a parathyroid tumor as a less

serious parathyroid problem when examining a patient before

performing surgery. Preoperative fine needle aspiration (FNA)

and intraoperative biopsy are insufficient for diagnosis PC or

APT. Moreover, FNA in patients increases the risk of tumor cell

seeding along the needle tract (13). Consequently, it is of particular

importance to develop non-invasive imaging indicators that can

predict the malignant potential of parathyroid lesions prior to the

manifestation of serious clinical symptoms.
02
Ultrasound is the primary imaging modal i ty for

hyperparathyroidism, effectively differentiating benign from

malignant parathyroid lesions. In the reviewed studies, parathyroid

malignant lesions manifest internal heterogeneity differing from benign

adenomas, including tumor irregularity and heterogeneity,

intratumoral calcification, and parathyroid tumor length exceeding 3

cm (13, 14). Our research has found intact parathyroid hormone

(iPTH) (OR:1.019), shape (OR: 16.625), and relation with the thyroid

capsule (OR: 3.422) were independent predictive factors associated with

the risk of APT/PC (15). Research findings also indicated that DR (two

diameters’ ratio of the lesion) and tumor infiltration were independent

predictors of malignancy (14). Additionally, emerging ultrasound

technologies, such as elastography, provide supplementary diagnostic

value in distinguishing adenomas from APT/PC (10, 16). However,

ultrasound examinations largely depend on the experience and skill

level of the operators, and there may be certain discrepancies in the

examination results among different operators, lacking good

consistency. As a consequence, the macroscopic visual assessment in

ultrasound remains a challenge.

Radiomics, as a quantitative image analysis methodology, has

exhibited substantial clinical utility in pathological condition

identification, molecular profile classification, and therapeutic

outcome prognostication (17, 18). For hand-crafted radiomic, the

regions of interest (ROI) are segmented manually by experienced

radiologists or experts (19). Feature screening serves to trim down

the dimensionality of features, singling out a subset of features that

are optimal for the given task. By extracting and analyzing high-

dimensional features from imaging data, radiomics can provide

more objective and quantitative assessments of parathyroid lesions.

This advanced approach could potentially overcome the limitations

of traditional ultrasound evaluation, enhance the diagnostic

accuracy and reproducibility of ultrasound-based evaluation (20).

Zhou et.al (21) developed a machine learning model using high-

frequency ultrasound images to differentiate hyper-functioning

parathyroid glands in secondary hyperparathyroidism (SHPT)

patients. The study used PyRadiomics to extract seven radiomics

feature categories, combining them with ultrasound visual features

and refining via LASSO regression to select 12 key predictors.

Among four machine learning algorithms, the Random Forest

(RF)-based model achieved optimal performance (AUC = 0.859).

Krupinova et.al (22) developed a mathematical model using

CatBoost gradient boosting algorithm based factor such as for the
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noninvasive preoperative differential diagnosis of PC, APT, and

adenoma. To our knowledge, there is limited studies based on

ultrasound radiomics for identifying benign and malignant

parathyroid lesions.

This study aims to investigate the explainable radiomics models

for the preoperative identification of potentially parathyroid tumors

in ultrasound.
2 Materials and methods

2.1 Patients

In this retrospective diagnostic study, a total of 1057 PHPT

patients with parathyroid neoplasms who underwent surgical

treatment from the two hospitals (Nanjing Drum Tower Hospital

and Jinling Hospital) between January 01, 2016 and December 30,

2024 were consecutively enrolled. All patients underwent a

standardized dual-modality localization protocol comprising

99mTc-sestamibi SPECT/CT and parathyroid ultrasound. Surgery

was indicated only with concurrence of: (1) biochemical

confirmation (hypercalcemia + elevated PTH) and (2) positive

localization on either SPECT/CT or ultrasound. Cases with

discordant/non-localizing imaging underwent further evaluation

(e.g., 4D-CT). This retrospective study was approved by the ethics

committee of the participating hospital (2024-611-01) and adhered

to the principles outlined in the Declaration of Helsinki and Good

Clinical Practice guidelines. The requirement for informed consent

from patients was waived.

Inclusion criteria: 1) preoperative ultrasonographic evaluation

conducted within 7 days preceding parathyroidectomy; 2)

comprehensive clinical documentation including calcium and

phosphate metabolism parameters; 3) histopathological
Frontiers in Endocrinology 03
verification per 2022 WHO classification (PA/APT/PC subtypes);

4) minimum 6-month postoperative surveillance. Exclusion

criter ia :1) secondary hyperparathyroidism or genetic

predisposit ion syndromes (MEN1/2A); 2) incomplete

biochemical/imaging records; 3) ambiguous histodiagnosis; 4)

suboptimal sonographic visualization preventing lesion

characterization; 5) metastatic parathyroid carcinoma; 6) prior

fine-needle aspiration potentially altering tissue architecture. The

data of the participants were manually obtained from medical

records, imaging repositories, as well as pathology findings

reports. A flowchart outlining the study design is shown in

Figure 1. A schematic overview of the study design is illustrated

in Figure 2.
2.2 Image segmentation, feature extraction
and selection

The region of interest (ROI) of each parathyroid lesion was

segmented on ultrasound images by reader 1 (L. C., with over 7

years of thyroid and parathyroid US interpretation experience)

using ImageJ software (http://imagej.net), blinded to pathological

outcomes. To assess reproducibility, 60 random selected cases were

independently resegmented by both Reader 1 and Reader 2 (X.H.,

with 10 years of thyroid and parathyroid US interpretation

experience) after a 1-month washout period.

Handcrafted features were extracted in MATLAB (vision 2021b)

following standard feature extraction protocols (23). The extracted

features in this study include computing morphological and texture

features. Inter- and intra-observer agreement was quantified using

intraclass correlation coefficients (ICC) for both ROI segmentation

and feature extraction, with ICC > 0.80 indicating excellent

reproducibility, according to Cicchetti’s guidelines.
FIGURE 1

Flowchart of the included subjects. PA, Parathyroid adenoma; APT, Atypical parathyroid tumors; PC, Parathyroid cancer.
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2.3 Model construction and evaluation

To address the data imbalance between APT/PC and PA, a

synthetic minority oversampling technique (SMOTE) was applied

exclusively to the training dataset after the train-test split, thereby

ensuring that no synthetic samples were introduced into the test set

and preventing any risk of data leakage (24). Three different

machine learning algorithms were employed to establish a binary

classification model, i.e., RF, Support Vector Machine (SVM), and

Logistic Regression (LR). The radiomics features were used as input

to each of these models. All features were standardized prior to

model training to ensure uniform scale. Model performance was

evaluated using 10-fold cross-validation. In details, the dataset was

randomly partitioned into ten equally sized folds. In each iteration,

one-fold was reserved as the validation set, while the remaining nine

were used for training. This process was repeated ten times to

ensure robust performance metrics of model performance. The area

under the receiver operating characteristic curve (AUC), accuracy,

precision, recall, and the F1 Score were used to assess of the models’

ability to differentiate between PA and APT/PC.
2.4 Interpretability

In this case, the RF model yielded the highest AUC, to refine the

RF model and identify the most informative features, a stepwise

feature selection process was implemented. The process involved

the following steps: 1) All features were initially fed into the RF
Frontiers in Endocrinology 04
model, and feature importance was ranked using the Gini impurity

criterion. 2) Starting from the highest-ranked feature, increasing

numbers of features (ranging from 1 to 200) were iteratively fed into

the RF model. For each feature subset, 10-fold cross-validation was

applied to evaluate model’s accuracy. This process was repeated five

times to ensure reproducibility and mitigate the effects of random

variability. 3) The accuracy scores for each subset were plotted

against the number of features. The feature subset yielding the

highest cross-validated accuracy with the smallest number of

features was identified to construct the final model. The selected

features were standardized to a 0–1 scale to facilitate comparison

across samples. A heatmap was generated to visualize the

normalized feature set, which provide an intuitive representation

of feature patterns across the dataset. The proportion of each feature

in these two groups was also calculated to assess its relative

prevalence and contribution to the classification process. To

enhance model interpretability, significant features were ranked

and visualized by SHAP (Shapley Additive exPlanations)

values (25).
2.5 Statistical analysis

Statistical analysis of basic clinical information was performed

using SPSS package (version 23.0). A two-sided chi-square test was

performed to determine significant differences in sex between the

two groups. Differences in age distribution were evaluated using the

student t-test. All model development, performance evaluation, and
FIGURE 2

Flowchart of radiomics model proposed in this study. (a) Ultrasound image acquisition and Region of Interest (ROI) segmentation of parathyroid
lesions. (b) Extraction of handcrafted radiomic features. (c) Feature selection using statistical methods. (d) Model construction employing Random
Forest, Support Vector Machine, and Logistic Regression algorithms. (e) Model performance evaluation. (f) Interpretability analysis: Feature
contribution assessment for the optimal model.
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data visualization were implemented using Python (version 3.8.5).

The machine learning algorithms were executed using the scikit-

learn library (version 1.3.2), and data visualization, including the

heatmap, was generated using Matplotlib (version 3.4.1) and

Seaborn (version 0.12.2). AUC, accuracy, precision, recall, and the

F1 Score were used for evaluating model performance. All P values

< 0.05 were considered statistically significant.
3 Results

3.1 Clinical characteristics

Table 1 summarizes the clinical parameters and pathological

subtypes of 913 patients with parathyroid neoplasms from the two

hospitals between January 01, 2016 and December 30, 2024.

Overall, 694 (76.0%) patients were female, 219 (24.0%) patients
Frontiers in Endocrinology 05
were male, and the mean age was 54.2 ± 13.7 years. Ninety (9.9%)

malignant lesions of the 913 lesions were PC (n = 3) and APT (n =

87), while 823 (90.1%) lesions were benign adenomas. The patients

were classified into a training cohort (n = 730) and a test cohort (n =

183), respectively. The rates of APT/PC in the training and test

cohorts (10.7% and 6.6%, respectively) were not significantly

different (P = 0.098). The serum iPTH showed a significant

difference between the training and test cohorts (P = 0.015), and

other indicators showed no difference between the two groups (P

> 0.05).
3.2 Model performance based on
radiomics

A total of 544 radiomic features were extracted from each

ultrasound image. All the radiomic features with high
TABLE 1 Baseline characteristics of study sets.

Characteristic Total (n = 913) Training cohort (n = 730) Test cohort (n = 183) P value

Sex, n (%) 0.323

Male 219 (24.0%) 170 (23.3%) 49 (22.4%)

Female 694 (76.0%) 560 (80.7%) 132 (19.3%)

Age at diagnosis, yr 54.2 ± 13.7 54.3 ± 14.0 53.8 ± 12.5 0.312

serum iPTH, pmol/L [M (Q1, Q3)] 17.3 (11.9,23.6) 19.0 (8.0,22.6) 16.1 (9.6,22.8) 0.015

serum calcium, mmol/L [M (Q1, Q3)] 2.6 (2.5,3.0) 2.6 (2.5,2.9) 2.8 (2.5,2.9) 0.066

serum phosphate, mmol/L [M (Q1, Q3)] 0.5 (0.6,0.9) 0.5 (0.6,0.9) 0.5 (0.3,0.9) 0.167

Pathological subtype 0.098

PA 823 (90.1%) 652 (89.3%) 171 (93.4%)

APT/PC 90 (9.9%) 78 (10.7%) 12 (6.6%)
PA, Parathyroid adenoma; APT, Atypical parathyroid tumors; PC, Parathyroid cancer.
FIGURE 3

The construction of the radiomics model (A) In the training cohort, the area under the receiver operating characteristic curve (AUC) of Random
Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR) models were 0.990, 0.946 and 0.935, respectively. (B) In the test cohort, the
AUC of RF, SVM, and LR models were 0.933, 0.900 and 0.901, respectively. (C) The accuracy-feature number plot showed that the top 70 features
were sufficient to build an optimal model without significant gains from adding additional features.
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reproducibility and stability (ICC > 0.80). Three machine learning

models including RF, SVM, and LR were evaluated for their

performance based on the AUC (Figures 3A, B). Table 2

summarizes the predictive performance of radiomic models for

parathyroid tumor estimation across training and test cohorts. In

the training cohort, the RF model had the highest predictive

performance in the test cohort, with an AUC of 0.933, higher

than that of SVM (0.900, P < 0.05) and LR (0.901, P < 0.05). Its
Frontiers in Endocrinology 06
accuracy, precision, recall, and F1-score for distinguishing PA from

APT/PC were 0.940, 0.683, 0.638, and 0.660. SVM and LR had

lower performance metrics compared to RF. RF’s accuracy,

precision, and F1-score were statistically better than SVM’s (P <

0.05). While LR had the highest recall (0.770) in the test group, its

precision was only 0.345.

According to the accuracy-feature number plot, the model’s

accuracy was 0.70 when using only one feature. As additional
TABLE 2 The prediction power of the radiomic model for estimating parathyroid tumors.

Cohort Model AUC Accuracy Precision Recall F1-score

Training cohort Random Forest 0.990*‡ 0.952*‡ 0.952*‡ 0.951* 0.952*‡

Support
Vector Machine

0.946 0.896 0.838 0.983‡ 0.905

Logistic Regression 0.935 0.878 0.827 0.956 0.887

Test cohort Random Forest 0.933*‡ 0.940*‡ 0.683*‡ 0.638 0.660*‡

Support
Vector Machine

0.900 0.848 0.286 0.769 0.417

Logistic Regression 0.901 0.880 0.345 0.770‡ 0.476
AUC area under the receiver operator characteristics curve; *P < 0.05; ‡, the highest metric among all three models.
FIGURE 4

Feature contribution analysis for the Random Forest Model. (A) Feature importance scores ranked in descending order (top 70 features shown).
(B) SHAP values for each feature, ranked by descending importance. (C) Bar chart visualizing feature importance. (D) Heatmap visualizing feature
contributions.
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features were included, the accuracy steadily improved, reaching a

plateau around 0.93 when approximately 70 features were used

(Figure 3C). Hence, the top 70 features (as described in

Supplementary Table S1) were sufficient to build an optimal

model without significant gains from adding additional features.

The diagram of the 70 most important features contributing to

Random Forest were shown in Figure 4. The 70 important features

are ranked by relative importance scores and shown in Figure 4A.

The feature importance ranked in descending order is presented in

Figure 4A, which illustrates the relative importance of each feature.

Specifically, sENS is the most influential feature. LBP_XX features

are commonly found among the top 70 features. sAX_MN,

AutoCorr, hAHg, and hMSD are also important features. SHAP

was used to calculate their individual contributions to the model’s

predictions (Figure 4B). A positive SHAP value signifies a positive

association with the model output, whereas a negative value

indicates a negative association. The distribution of features was

then visualized using a heatmap, and the average standardized

values were calculated through statistical analysis (Figures 4C, D).

Most features exhibited proportions around 50 ± 10%, with only

five features (sENS, hAHg, hMSD, hMEtp and hMSk) showing a

preference of approximately 70%.
4 Discussion

In this study, we developed an explainable radiomics model

derived from parathyroid sonographic images to accurately

diagnose APT/PC in PHPT patients. Three different ML

classifiers were initially applied, and the RF classifier was shown

to outperform others in both training and testing datasets.

Regarding the interpretation of selected features, the 70 important

features ranked by relative importance scores revealed that sENS

and LBP_XX had a greater impact on identifying APT/PC. The

constructed model provides a cost-effective tool for assessing

potentially parathyroid tumors that can intelligently provide

guidance to surgical strategy and long-term monitoring.

Firstly, this study established a radiomics-based RF model with

high accuracy in distinguishing parathyroid adenomas from

neoplastic lesions. The RF model achieved higher AUC than LR

and SVM models, attributed to its ability to capture complex, non-

linear relationships between features. We visualized the top 70

features contributing to the RF model, representing diverse

radiomic characteristics including intensity-based, shape-based,

and texture-based descriptors. sENS, representing texture

intensity of small image areas, is the most influential feature,

indicating image intensity-based values correspond to underlying

physiological properties of the tissue. LBP_XX features, extracted by

the Local Binary Pattern operator, are common among the top 70

features and represent local textural information by comparing

pixel grayscale values with surrounding neighborhoods (26).

sAX_MN is a shape-based characteristic. hAHg and hMSD are

GLCM-based features. AutoCorr, the autocorrelation feature,

quantifies the correlation between pixel values in an image and

describes repetitive patterns and periodicity of textures. These
Frontiers in Endocrinology 07
radiomic features, assessing spatial relationships between voxel

intensities within a region of interest or between voxels and their

surroundings, may indicate varying patterns of heterogeneity in

parathyroid masses. This addresses the poor interpretability of

“black-box” nature of AI models.

In our study, the importance of each feature in our study was

visualized in the output of heatmap, where the majority of features

exhibited proportions around 50 ± 10%, with only five features (sENS,

hAHg, hMSD, hMEtp, and hMSk) showing a preference of

approximately 70%. This highlights the intrinsic complexity and

multifactorial nature of tumor classification, where no single feature

provides a decisive binary classification. Instead, the radiomic data

unveils a nuanced pattern of contributions, where the interplay of

multiple features influences the model’s prediction. Even the most

distinguishing features showed only a modest preference for positive

or negative contributions, reinforcing the notion that tumor

classification relies on an integrated assessment of diverse

characteristics. This complexity mirrors the biological heterogeneity

of tumors, which often exhibit varying textures, shapes, and intensities

across different regions and between different samples. The variability

within and between tumor samples underscores the necessity of

leveraging comprehensive radiomic analyses, rather than isolating

individual features, to capture the full spectrum of tumor

characteristics. Furthermore, the SHAP framework interprets RF

models by quantifying feature contributions to predictions, where

the higher the SHAP value of the feature, the stronger the correlation

of parathyroid pathological classification. This method identifies key

predictors and their impact on outcomes, enhancing model

transparency in clinical decision-support systems. To sum up, this

multi-dimensional explainable approach aligns with the clinical

understanding of tumor biology, where no single imaging

characteristic can accurately capture the full complexity of tumor

behavior. Thus, the integration of multiple imaging features through

advanced radiomics offers a more robust and reproducible diagnostic

framework, paving the way for more precise clinical decision-making.

Although radiomics and machine learning have been widely used

in ultrasound image analysis and disease prediction, few research

reports exist on their application in diagnosing parathyroid cancer.

Valavi et al. (27) investigated radiomics-based differentiation of

parathyroid adenomas from normal tissue using delayed-phase

SPECT/CT scans in 92 patients (58 adenomas, 34 normal). After

extracting 65 radiomic features, three selection methods (MRMR,

RFE, Boruta) were combined with six machine learning models. The

RFE+XGB combination achieved peak AUC (0.76 ± 0.08), while

MRMR+GB showed optimal accuracy (72 ± 7.2%). Sensitivity and

specificity maxima were attained through RFE+SVM (94 ± 5.5%) and

Boruta+SVM (82 ± 12%), respectively. Yeh and colleagues (28)

developed a novel machine learning algorithm (MLCDA) utilizing

random forest to localize 458 hyperfunctioning parathyroid glands

via 4D-CT/MIBI SPECT/CT in PHPT patients. The model identified

three critical predictors: 4D-CT/MIBI sensitivity, specificity, and

calcium × PTH product, achieving 91% training and 90%

validation accuracy across five probability categories. To our

knowledge, this represents the first investigation employing

ultrasound radiomics for preoperative differentiation of APT/PC.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1617032
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2025.1617032
There are several limitations in this study. Firstly, this was a

retrospective analysis, and prospective multicenter cases are needed

to confirm our findings. Secondly, the cohort exhibited marked

class imbalance (90 APT/PC vs. 823 PA cases), a clinically

ubiquitous phenomenon in parathyroid lesion studies. This

imbalance, while reflecting real-world disease prevalence patterns,

poses inherent challenges for radiomics-based AI models through

potential majority-class bias amplification. Hence, we used SMOTE

to address the data imbalance problem in radiomics (24). Thirdly,

the models depend on specific features and data partitioning

methodologies chosen by our researchers. These models are not

fully autonomous, requiring human intervention in their design.

Their performance is influenced by design choices made during

development. While these models may show efficacy when applied

to data used in their creation (retrospective data), their performance

may be suboptimal when applied to novel, external datasets.

Fourthly, the feature importance plot in our study only reflects

the magnitude of feature importance and fail to distinguish the

specific directional impact of features on prediction outcomes,

necessitating additional manual labeling of positive/negative

influences. These constraints reduce their reliability for medical

image analysis.

In conclusion, the system developed offers a promising tool to

support doctors in managing parathyroid lesions clinically. Timely

identification of potentially malignant parathyroid tumors and

subsequent surgical intervention are of considerable clinical

significance. To enhance the model’s clinical applicability, future

investigations should explore the integration of radiomics with

clinical decision-making tools, such as biomarkers like iPTH and

calcium levels. Additionally, incorporating clinical and

demographic predictors into the decision-making process could

further improve diagnostic accuracy and provide a more

comprehensive approach to patient management.
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