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Life Sciences, Ludong University, Yantai, Shandong, China, 3School of Exercise and Health, Shandong
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Background: Mild Cognitive Impairment (MCI), a transition between normal

aging and dementia, is linked to higher dementia risk and potential reversibility.

Type 2 Diabetes Mellitus (T2DM), affecting over 537 million adults worldwide,

increases susceptibility to MCI, with higher cognitive decline prevalence in

diabetic populations. Previous meta-analyses focused on isolated factors,

neglecting multidimensional interactions. This study synthesizes T2DM-MCI

risk factors across clinical, lifestyle, and biochemical dimensions to support

early identification and intervention of cognit ive dysfunction in

T2DM populations.

Materials and Methods: This systematic review and meta-analysis, following

PRISMA guidelines, searched five databases for articles published from January 1,

2014, to December 31, 2024. Studies were screened based on predefined criteria,

with data extracted independently by two researchers. Quality was assessed

using Newcastle-Ottawa Scale (NOS) and Joanna Briggs Institute (JBI) tools. Data

were analyzed using RevMan software, with odds ratio (OR) and 95% CI as effect

size measures. Heterogeneity was assessed using I² statistics, and subgroup

analyses were conducted for factors with ≥10 studies.

Results: 30 studies with 10,469 participants were included. Prevalence rate of

MCI in T2DM was 44.1%. Significant associations were found between T2DM-

MCI and age (OR = 1.06, P = 0.01), female sex (OR = 1.23, P = 0.05), diabetes

duration (OR = 1.07, P = 0.03), education (OR = 0.82, P = 0.0001), smoking (OR =

1.44, P = 0.003), hypertension (OR = 2.25, P < 0.001), cardiovascular disease

(CVD) (OR = 2.61, P < 0.001), glycated hemoglobin (HbA1c) (OR = 1.33, P =

0.001), and homeostasis model assessment of insulin resistance (HOMA-IR) (OR

= 1.95, P = 0.02).

Conclusion: This meta-analysis identifies advanced age (≥60 years), female sex,

prolonged Diabetes duration (8–9 years), elevated HbA1c (>9%), and low

education (≤6 years) as key predictors of MCI in T2DM, with significant dose-

response relationships. Vascular comorbidities, insulin resistance, and

inflammatory markers further exacerbate risks. Clinical priorities include
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rigorous glycemic control (HbA1c <7%), targeted cognitive screening for high-

risk subgroups, and multidisciplinary care for patients with microvascular

complications. However most of the studies included in this study come from

Chinese people, so the generalization of the results may be limited.

Systematic review registration: https://www.crd.york.ac.uk/prospero,

identifier CRD420250637336.
KEYWORDS

mild cognitive impairment, type 2 diabetes, risk factors, diabetes duration, HbA1c,
meta-analysis
1 Introduction

Mild Cognitive Impairment (MCI) represents a transitional

phase between normal cognitive aging and dementia, and it is

potentially reversible in nature (1). Individuals with MCI exhibit

significantly elevated risk of progressing dementia compared to

cognitively healthy populations (2). Type 2 Diabetes Mellitus

(T2DM), one of the most prevalent metabolic disorders globally,

continues to show escalating prevalence rates. According to

International Diabetes Federation (IDF), the global adult

population with diabetes exceeded 537 million in 2021, over 90%

of whom had T2DM, and this figure is projected to surpass 783

million by 2045 (3). Concurrently, cognitive health concerns in

T2DM patients, particularly MCI comorbidity, have gained

increasing attention. Studies indicated that T2DM not only serves

as a risk factor for MCI but also accelerates its progression to

dementia (4). Diabetic individuals have a 1.25 to 1.91 times higher

likelihood of developing cognitive impairment than non-diabetic

individuals (5). Epidemiological data suggest that the prevalence of

MCI among T2DM patients ranges from 19.9% to 45.0% (6, 7).

MCI manifests through impairments in core cognitive domains,

including memory (8) and executive function (9), and is associated

with multiple adverse clinical outcomes. For instance, a meta-analysis

revealed that older diabetic patients with comorbid MCI face a higher

risk of falling (10). Assessments using theWorld Health Organization

Quality of Life Assessment for Older Adults further demonstrated

significantly reduced quality-of-life scores among MCI patients

across dimensions such as autonomy, engagement in past/present

activities, and social participation (11). These findings collectively

highlight that MCI not only serves as an early indicator of cerebral
M, Type 2 Diabetes
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functional decline in T2DM patients but also exacerbates the disease

burden through multiple pathways.

Early intervention for MCI in T2DM patients is therefore

critical for preserving cognitive function and preventing

dementia. The pathophysiological mechanisms underlying

T2DM-MCI comorbidity involve complex interactions: chronic

hyperglycemia directly impairs cognitive function through the

deposition of advanced glycation end-products (12, 13), blood-

brain barrier disruption (14, 15), and hippocampal neuronal

apoptosis (16, 17). Notably, the MCI stage represents a reversible

therapeutic window (18, 19). Meta-analyses indicate that early

identification and control of risk factors significantly reduce

dementia conversion risks and subsequent healthcare

expenditures (20). Comprehensive management strategies could

potentially prevent or delay up to 40% of dementia cases (21),

underscoring the need for proactive preventive measures.

Despite established evidence on T2DM-MCI determinants,

controversies persist regarding the heterogeneity of factors and

their relative contributions. Existing meta-analyses predominantly

focus on isolated factors, such as glycated hemoglobin (HbA1c) levels

(22),or diabetes duration (23), lacking systematic integration of

multidimensional elements, including demographic/clinical

characteristics, biochemical parameters, lifestyle factors, and disease

management. For example, while some studies have reported

significant associations between smoking history (24, 25) and

T2DM-MCI risk, others have fail to corroborate this relationship

(26, 27). Similarly, conflicting evidence exists fasting plasma glucose

(FPG) and HbA1c, with some studies finding no significant

association (28, 29) and others reporting clear links (30, 31). To

address these inconsistencies, the present study conducts a meta-

analysis to consolidate current evidence, systematically evaluating

risk factors and their weighted contributions across four dimensions:

demographic and clinical characteristics (including age, sex, and

diabetes duration), lifestyle factors (smoking and alcohol

consumption), disease management (hypertension and depression),

and biochemical indicators (HbA1c). The aim is to provide evidence-

based support for early identification and intervention of cognitive

dysfunction in T2DM populations.
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2 Methods

This study was conducted as a systematic review and meta-

analysis, with the study protocol prospectively registered in the

PROSPERO database (Registration ID: CRD420250637336). The

methodology strictly adheres to the 2020 Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA) guidelines

(32). Institutional ethics committee approval was waived due to the

exclusive use of aggregated data from previously published studies.
2.1 Search strategy

As of December 31, 2024, we systematically searched five

databases (PubMed, Embase, Web of Science, Google Scholar, and

Elsevier) for articles published from January 1, 2014, to December 31,

2024. The search strategy combined the following terms using

Boolean operators: (Diabetes Mellitus, Type 2 OR T2DM OR type

2 diabetes) AND (Cognitive Dysfunction OR Mild Cognitive

Impairment OR MCI) AND (risk factors OR predictors OR

determinants). In addition, manual searches of reference lists from

identified articles and relevant reviews were performed to supplement

the electronic search.
2.2 Study selection

One researcher (H.L.W.) performed the initial literature search and

removed duplicates. Two researchers (Y.Z. and G.H.T.) independently

screened titles and abstracts against predefined inclusion and exclusion

criteria. Full texts were retrieved if either reviewer deemed an article

potentially eligible. The reviewers then independently assessed the full-

text articles for final inclusion. Discrepancies were resolved through

consultation with the corresponding author (R.L.).

The inclusion criteria were as follows (1): study involving

patients diagnosed with T2DM and MCI (2); case-control, cohort,

or cross-sectional designs (3); data convertible to odds ratio (OR)

with a 95% confidence interval (CI) (4); reporting at least one risk

factor (5); use of multivariable logistic regression to identify T2DM-

MCI determinants; and (6) clear diagnostic criteria for MCI. The

exclusion criteria were (1): duplicate publications (2); reviews,

letters, or non-research articles; and (3) non-English publications.
2.3 Data extraction

Data extraction was independently performed by two

investigators (Y.Z. and L.L.W.) using standardized forms. The

following parameters were recorded: first author’s name, mean age,

sex distribution, publication year, study location, sample size,

prevalence of T2DM-MCI comorbidity, and reported risk factors.

Quantitative measures, including OR with corresponding 95%CI,

were extracted for each determinant. The extracted variables were

stratified into four etiological domains: 1) Demographic and Clinical

Characteristics: age, sex, diabetes duration, body mass index (BMI),
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and educational attainment. 2) Lifestyle Factors: alcohol consumption,

smoking status. 3) Comorbidity Management: depression,

hypertension, cardiovascular disease (CVD), and diabetic

retinopathy (DR). 4) Biochemical Indicators: HbA1c, homeostasis

model assessment of insulin resistance (HOMA-IR), low-density

lipoprotein cholesterol (LDL-C), high-sensitivity C-reactive protein

(HS-CRP), FPG, and high-density lipoprotein (HDL).
2.4 Quality assessment

Methodological quality was assessed using the Newcastle-

Ottawa Scale (NOS) for cohort and case-control studies (33) and

the Joanna Briggs Institute (JBI) Critical Appraisal Tool for cross-

sectional studies (34). The NOS evaluates three domains: selection,

comparability, and exposure/outcome ascertainment, with a

maximum score of 9 points. Studies scoring ≤ 5 points were

classified as low quality, scoring between 5–7 points were

classified as medium quality, and scoring > 8 were classified as

high quality. The JBI tool employs a percentage-based scoring

system, with a maximum score of 8 points, categorizing studies as

high quality (≥ 7), moderate quality (5, 6), or low quality (≤4). Only

studies meeting quality thresholds (NOS ≥ 5 or JBI ≥5) were

retained. Two investigators (G.H.T. and H.L.W.) independently

conducted quality assessments. Discrepancies in scoring were

resolved through consultation with the corresponding author (R.L.).
2.5 Data analysis

All statistical analyses were performed using Review Manager

(RevMan) software, version 5.4. OR with corresponding 95% CI

served as effect size measures. Heterogeneity was quantified using I²

statistics and P-values, with thresholds set at P < 0.1 or I² > 50%

indicating substantial heterogeneity. The fixed-effects model assumes

consistent effect sizes across studies, suitable for low heterogeneity (I²

≤50%) and calculates pooled effect size through weighted averages. The

random-effects model assumes variability in effect sizes and is used when

significant heterogeneity exists (I² >50%), incorporating study differences

through weighted averages. Therefore, a random-effects model is chosen

when I² >50%, and a fixed-effects model is used otherwise. Subgroup

analyses were conducted for factors with≥ 10 studies. Sensitivity analyses

were performed by switching between fixed-effects and random-effects

models for outcomes demonstrating I² > 50%. Publication bias was

assessed through funnel plot symmetry evaluation and Egger’s linear

regression test, which was restricted to factors with ≥10 studies. A

significance level of P < 0.05 was defined for all inferential analyses.
3 Results

3.1 Search results

The systematic search initially identified 4,689 citations.

Following duplicate removal, 3,326 records were subjected to

preliminary screening. Title/abstract screening excluded 2,956 non-
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eligible studies, leaving 212 articles for full-text assessment.

Ultimately, 30 studies met the inclusion criteria and were included

in the meta-analysis of T2DM-MCI determinants. The complete

screening protocol is presented in the PRISMA flowchart (Figure 1).
3.2 Study characteristics

Table 1 summarizes the characteristics of the included studies.

The pooled analysis comprised 30 studies conducted across five

countries, involving 10,469 participants with T2DM, including

4,516 cases with comorbid MCI (prevalence rate = 44.1%). These

investigations, published between 2014 and 2024, had sample sizes

ranging from 103 to 1,278 participants. The mean age of the study

populations ranged from 50 to 84 years, with female participants

representing 41.8% of the total cohort.
3.3 Methodological quality assessment、
sensitivity analyses and publication bias
assessment

The included studies were of moderate to high quality. Overall

quality assessment showed that 8 articles (35–42) were classified as
Frontiers in Endocrinology 04
high quality, while 22 articles (6, 26, 27, 43–61) were categorized as

medium quality, For specific scores, see Supplementary Table S1

and Supplementary Table S2. The included studies demonstrated

stability in sensitivity analyses. Funnel plots indicated no significant

publication bias (Figure 2). Table 2 presents the results of Egger’s

test, confirming no substantial publication bias. For the sensitivity

analysis, see Supplementary Table S3.
3.4 Comprehensive results analysis

3.4.1 Demographic and clinical characteristics
Significant heterogeneity was observed across studies for age,

sex, diabetes duration, educational attainment, and BMI (Figure 3).

Pooled effect sizes demonstrated the following outcomes: Age (13

studies; c² = 80.47, P < 0.001, I² = 85%): OR = 1.06 (95% CI: 1.01–

1.11, P = 0.01); Female sex (8 studies; c² = 21.27, P = 0.03): OR =

1.23 (95% CI: 1.00–1.50, P = 0.05), I² = 67%,; Diabetes duration (11

studies; c² = 53.57, P < 0.001, I² = 81%): OR = 1.07 (95% CI: 1.01–

1.13, P = 0.03); and Educational attainment (17 studies; c² = 116.98,

P < 0.001, I² = 86%): OR = 0.82 (95% CI: 0.73–0.91, P = 0.0001).

Forest plots for these factors showed 95% CI that did not overlap

with the null line, indicating statistically significant associations

with T2DM-MCI comorbidity. In contrast, BMI (6 studies; c² =
FIGURE 1

Flow chart of PRISMA selected for the study.
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33.81, P < 0.001, I² = 85%) showed a non-significant pooled effect

size (OR = 1.18, 95% CI: 0.94–1.49, P = 0.15), with the CI ranges

overlapping the null line. For age (I² = 85%), sex (I² = 67%), diabetes

duration (I² = 81%), educational attainment (I² = 86%), and BMI (I²
Frontiers in Endocrinology 05
= 85%), the heterogeneity was greater than 50%, so a random-effects

model was used for all.

Moderate heterogeneity was observed across studies for

smoking and alcohol consumption (Figure 4). Key findings were
TABLE 1 Study characteristics.

Inclusion Of Studies
Year of

Publication
Country

Number of cases MCI Diagnostic
basis

Factors
Case Group Control Group

Malgorzata Gorska-
Ciebiada (45)

2014 Polish 87 189 C G ⑦⑨⑩⑬⑯

San-Shan Xia (46) 2020 China 174 76 E G H ⑤⑫⑬

Malgorzata Gorska-
Ciebiada (44)

2016 Polish 62 132 C G ⑦⑨⑬

Arpita Chakraborty (6) 2021 India 458 820 A G ①②③⑦⑬⑯

Dan Guo (26) 2019 China 57 69 C G H ⑬

Yun Jeong Lee (48) 2014 Korea 74 152 A G ①③⑦⑫⑱

Yuanyuan Jiang (47) 2024 China 186 120 A G ②③④⑦⑬

Wei (35) 2024 China 40 208 B H ①

Tao Luo (49) 2024 China 50 53 E G ⑭

Minli Liu (36) 2024 China 125 183 F H ②③⑦

Hui Zhang (51) 2023 China 58 85 C G ①③⑬⑭

Sai Tian (50) 2018 China 94 108 C G ⑬⑭

Hongjun Zhao (53) 2019 China 48 30 A G ⑬⑭⑮

Haoqiang Zhang (52) 2021 China 235 262 C G ①②⑦⑫

Wei Li (37) 2019 China 56 200 B G H ④⑦

Zhichun Sun (54) 2018 China 151 564 A G ①③⑦⑧⑬

Miaoyan Zheng (39) 2019 China 63 63 A H ⑪

Fanyuan Ma (38) 2023 China 280 224 A G ⑦

Yaoshuang Li (55) 2024 China 204 320 A G H ①⑦⑧⑨

Jie Sun (56) 2016 China 75 71 C G ⑬

Li Ma (40) 2024 China 94 242 A G H ①⑤⑥⑦⑧⑩⑬⑱

Xuewei Tong (57) 2023 China 313 303 E G ①③⑤⑥⑦⑧⑱

Haina Zhang (27) 2023 China 91 201 C G ③⑦⑭

Ruonan Gao (41) 2024 China 44 31 F G ①③⑫⑯⑰

Xueyan Liu (60) 2024 China 451 447 A G ①②③④⑤⑦⑱

Malgorzata Gorska-
Ciebiada (43)

2020 China 62 132 A G ⑦⑨⑩⑪

Johanda Damanik (58) 2019 China 47 50 A G ⑧

Jingcheng Ding (59) 2023 China 112 110 A G H ①⑥⑬⑮

Lina Ma (61) 2017 China 100 112 A G H ⑦⑧⑭

Yuxia Gao (42) 2016 China 690 287 B G ③⑥⑬⑮⑯
Diagnostic criteria for MCI were categorized as follows: A: Mental Status Examination, B: 1999 Petersen criteria, C: Diagnostic protocol proposed by the European Alzheimer’s Disease
Consortium MCI Working Group (2006), D: 2001 Petersen criteria, E: Core Clinical Criteria for Dementia Diagnosis by the National Institute on Aging-Alzheimer’s Association, F: Chinese
Guidelines for Diagnosis and Treatment of Dementia and Cognitive Impairment, G: Montreal Cognitive Assessment, H: Mini-Mental State Examination.
Factors:① Age ② Female ③ Diabetes duration ④ Depression ⑤ Alcohol ⑥ Smoking ⑦ Educational attainment ⑧ BMI ⑨ CVD⑩ Hypertension ⑪ Hs-CRP⑫ LDLC⑬ HbA1c⑭ HOMA-IR⑮

FPG ⑯HDL ⑰ DR ⑱ Male.
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as follows: Smoking (4 studies; c² = 5.55, P = 0.14, I² = 46%): Pooled

OR = 1.44 (95% CI: 1.18–1.75, P = 0.003), When I² <50%, a fixed-

effects model was used. Forest plot analysis showed non-

overlapping 95% CI with the null line, indicating a statistically

significant association with T2DM-MCI comorbidity. Alcohol

consumption (4 studies; c² = 10.42, P = 0.02, I² = 71%): Pooled

OR = 0.81 (95% CI: 0.36–1.80, P = 0.61), When I² >50%, a fixed-

effects model was used. The 95% CI ranges overlapped the null line,

suggesting no statistically significant association.
Frontiers in Endocrinology 06
3.4.2 Comorbidity management
Variable heterogeneity was observed across studies for

hypertension, CVD, and DR (Figure 5). The pooled effect sizes

were as follows: hypertension (4 studies; c² = 5.79, P = 0.12, I² =

48%): OR = 2.25 (95% CI: 1.49–3.40, P < 0.001); CVD (4 studies; c²
= 3.00, P = 0.39, I² = 0%): OR = 2.61 (95% CI: 1.99–3.43, P < 0.001);

and DR (3 studies; c² = 2.57, P = 0.28, I² = 22%): OR = 1.50 (95% CI:

1.12–2.01, P = 0.006). Forest plots for these comorbidities showed

non-overlapping 95% CI with the null line, indicating statistically

significant associations with T2DM-MCI comorbidity. In contrast,

depression (3 studies; c² = 22.49, P < 0.001, I² = 91%) exhibited a

non-significant pooled effect size (OR = 2.04, 95% CI: 0.42–9.79, P =

0.38), despite its 95% CI range overlapping the null line.

Hypertension (I² = 48%), CVD (I² = 0%), and DR (I² = 22%) had

I² < 50%, so a fixed-effects model was used. Depression (I² = 91%)

had I² > 50%, so a random-effects model was used.

3.4.3 Biochemical indicators
Substantial heterogeneity was observed across studies for

HbA1c, HOMA-IR, FPG, and HS-CRP (Figure 6). Pooled effect

sizes demonstrated: HbA1c (15 studies; c² = 97.09, P <0.001, I² =

86%): OR = 1.33 (95% CI: 1.12–1.58, P = 0.001)、HOMA-IR(5
FIGURE 2

Funnel plot (A)Level of education; (B) Duration; (C) Age; (D) HbA1c.
TABLE 2 Egger’s test results.

Dimensions
Egger’s test

Bias
T-value P-value

Age 0.7114, 0.4931 No

Diabetes duration 4.4954 0.0020 Yes

Educational
attainment

-1.0545 0.3083 No

HbA1c 2.0632 0.0597 No
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studies; c² = 23.86, P < 0.001, I² = 83%): OR = 1.95 (95% CI: 1.14–

3.35, P = 0.02)、FPG (3 studies; c² = 0.65, P = 0.06, I² = 0%): OR =

1.15 (95% CI: 1.01–1.32, = 0.04); and HS-CRP (3 studies; c² = 1.65,

P = 0.44, I² = 0%): OR=2.85 (95% CI: 2.09–3.89, P < 0.001). Forest

plots showed non-overlapping 95% CI with the null line for these

parameters, confirming statistically significant associations with

T2DM-MCI comorbidity. HDL (3 studies; c² = 5.71, P = 0.06, I²
Frontiers in Endocrinology 07
= 65%) and LDL-C (3 studies; c² = 10.17, P = 0.006, I² = 80%)

exhibited non-significant pooled effect sizes: HDL: OR = 1.07 (95%

CI: 0.79–1.43, P = 0.68); and LDL-C: OR = 0.99 (95% CI: 0.52–1.89,

P = 0.99). The overlapping 95% CI with the null line indicated no

statistically significant associations for these lipid parameters.

HbA1c (I² = 86%), HOMA-IR (I² = 83%), HDL (I² = 65%), and

LDL-C (I² = 80%) had I² > 50%, so a random-effects model was
FIGURE 3

Forest map of demographic and clinical characteristics (A) Age; (B) Sex; (C) Duration; (D) Level of education; (E) BMI.
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used. FPG (I² = 0%) and HS-CRP (I² = 0%) had I² < 50%, so a fixed-

effects model was used.

3.4.4 Subgroup analysis
According to the American Diabetes Association guidelines,

diabetes patients aged ≥70 are generally at higher risk for

complications, particularly in terms of cognitive function and

cardiovascular health (62). Based on the dataset, we divided age

into three categories: ≥70 years, 60–69 years, and <60 years.

Significant heterogeneity was observed across these subgroups (I²

= 74%; Figure 7A), so a random-effects model was used. The

American Diabetes Association points out that patients with a

diabetes duration of ≥10 years have a significantly increased risk

of cognitive decline (62). Based on the dataset, we categorized

diabetes duration into ≥10 years, 8–9 years, and <8 years, with

substantial heterogeneity between subgroups (I² = 81%; Figure 7B).

Subgroup analyses identified the following independent risk factors

for MCI development in T2DM patients: advanced age (≥ 70 years:

OR = 1.06, 95% CI: 1.04-1.08, P < 0.001); prolonged diabetes

duration (≥10 years: OR = 1.04, 95% CI: 1.01-1.07, P = 0.02) as

independent risk factors for MCI development in T2DM patients.

Sex was stratified into male and female subgroups,

demonstrating significant between-group heterogeneity in effect

sizes (I² = 81.5%; Figure 8A), so a random-effects model was

used. According to the American Diabetes Association guidelines,

an HbA1c level above 9%, typically indicates poor diabetes control,

with a higher risk of complications. An HbA1c level <7% is the

treatment goal for most diabetes patients to reduce the risk of

diabetes-related complications (62). Therefore, we categorized

HbA1c into >9%, 8-9%, and <7%, with substantial heterogeneity

across subgroups (I² = 86%; Figure 8B), so a random-effects model

was used. Educational attainment was stratified into ≤6 years, 7–9
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years, and ≥10 years, demonstrating marked heterogeneity (I² =

87%; Figure 8C), so a random-effects model was used. Key subgroup

analyses identified the following independent risk factors for MCI

in T2DM populations: female sex: OR = 1.48 (95% CI: 1.15-1.91, P

= 0.003); HbA1c >9%: OR = 3.17 (95% CI: 2.35-4.28, P <0.001);

educational attainment ≤ 6 years: OR = 1.29 (95% CI: 0.80-0.97, P =

0.007) as independent risk factors for MCI in T2DM populations.
4 Discussion

This study systematically evaluated the influencing factors of

MCI comorbidity in patients with T2DM through meta-analysis,

revealing multidimensional interactions among demographic/

clinical characteristics, lifestyle factors, disease management, and

biochemical indicators. The results indicate that age and

educational attainment exhibit the highest predictive weights

among demographic and clinical characteristics. For lifestyle

factors, smoking demonstrates the strongest association with

T2DM-MCI comorbidity. In disease management, CVD and

hypertension emerge as core risk factors. Among biochemical

indicators, HbA1c is identified as the most significant factor,

followed by the heavily weighted HOMA-IR.
4.1 Demographic and clinical determinants
of T2DM-MCI comorbidity

Subgroup analysis in this study demonstrated that T2DM

patients aged ≥ 70 years face an elevated MCI risk (OR = 1.06,

95% CI: 1.04-1.08, P < 0.001), while those with diabetes aged 60–69

years showed a higher risk (OR = 1.07, 95%CI:1.01-1.14, P = 0.005).
FIGURE 4

Lifestyle Forest map (A) Smoking; (B) Alcohol Consumption.
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These findings align with Sun et al. (63), confirming age as a non-

modifiable risk factor for MCI. Potential mechanisms include age-

related neurodegeneration (e.g., neuronal loss, reduced synaptic

density, and impaired cerebral energy metabolism) (64),

compounded by elevated advanced glycation end products

(AGEs) and oxidative stress in elderly T2DM patients (65), which

synergistically accelerate vascular dysfunction and cognitive

deterioration (66).

Female sex was identified as a significant risk factor for MCI in

T2DM patients (OR = 1.48 vs. 0.91 in men), consistent with You

et al. (67). While gender differences remain debated (68, 69),

emerging evidence suggests that the postmenopausal decline in
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estrogen may attenuate neuroprotective pathways (68, 70).

Additionally, sex-specific disparities in cardiovascular risks

profiles (71), adiposity distribution patterns (72), and chronic

inflammatory states (73) likely contribute to this association.

Although these mechanisms are not fully understood, existing

studies support the significant role of sex in diabetes-related

cognitive impairment.

The present study highlights a strong relationship between

diabetes duration and MCI risk. Subgroup analyses revealed

significantly elevated risks in patients with longer disease

duration: those with ≥ 10 years of diabetes exhibited an adjusted

OR of 1.04 (95%CI:1.01-1.07, P = 0.02), while those with 8–9 years
FIGURE 5

Comorbidity management forest map (A) Hypertension; (B) CVD; (C) Depression; (D) DR.
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diabetes showed a higher risk (OR = 2.56, 95%CI:2.13-3.08, P <

0.001). These findings suggest that prolonged hyperglycemia

accelerates cognitive dysfunction through cumulative metabolic

insults. Longitudinal studies indicate that patients with ≥ 20 years

of diabetes have a 3.32-fold increased risk of information processing

deficits, a 1.72-fold risk of immediate recall impairment, and a 1.76-

fold risk of executive dysfunction compared to those with shorter
Frontiers in Endocrinology 10
disease duration (74). Mechanistically, chronic hyperglycemia

drives insulin resistance, intermittent hypoglycemia, and

microvascular complications (75). Furthermore, extended disease

duration may induce structural and functional brain changes (e.g.

accelerating cerebral atrophy and reduced synaptic density) and

functional neurodegeneration (76), which collectively contribute to

cognitive decline.
FIGURE 6

Biochemical Indicators Forest map (A) HbA1c; (B) HOMA-IR; (C) FPG; (D) HDL; (E) LDL-C (2).
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Low educational attainment (≤ 6 years) was associated with an

increased risk of MCI (OR = 1.29, 95% CI: 0.80–0.97, P = 0.007),

supporting the cognitive reserve hypothesis (77). Higher

educational attainment may enhance neural plasticity and

compensatory mechanisms, potentially delaying cognitive decline.

Additionally, greater education may optimize neural network
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efficiency, helping maintain cognitive resilience despite chronic

metabolic conditions such as diabetes (36).

No significant association was found between BMI and MCI

risk in patients with T2DM (OR = 1.18, 95% CI: 0.94–1.49, P =

0.15). Although elevated BMI is associated with insulin resistance

(78), adiposity-related inflammation (79), and cardiovascular risks
FIGURE 7

Subgroup analysis (A) Age; (B) Duration.
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(80)—factors that may indirectly impair cerebral metabolism and

cognition— BMI was not independently associated with MCI in this

cohort. This finding may reflect interactions between BMI and

confounding variables (e.g., age, glycemic control, sex). Future

research should clarify BMI’s role through stratified analyses and

longitudinal studies.
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4.2 Lifestyle factors and T2DM-MCI
comorbidity

It was demonstrated that smoking increases the MCI risk in

patients with T2DM (OR = 1.44, 95% CI: 1.18–1.75, P = 0.0003).

These findings align with previous studies (81, 82), confirming
frontiersin.org
FIGURE 8

Subgroup analysis (A) Sex; (B) HbA1C; (C) Educational attainment.
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smoking as a critical risk factor for T2DM-MCI comorbidity. For

instance, Hagger-Johnson et al. (83) reported accelerated cognitive

decline in middle-aged and elderly smokers, while Xia et al. (84)

identified an inverse correlation between smoking intensity and

serum brain-derived neurotrophic factor levels—a key mediator of

neurogenesis and synaptic plasticity. Mechanistically, nicotine may

impair cognition through interactions with nicotinic acetylcholine

receptor subunits (e.g., a4, b2, and a7) [ (85). Although precise

pathways require further elucidation, the robust association

between smoking and cognitive deterioration is well-established.

In contrast, alcohol consumption showed no significant

association with T2DM-MCI comorbidity in this study (OR =

0.81, 95% CI: 0.36–1.80, P = 0.61). However, existing evidence

(86) suggests a complex dose-response dynamic, including U-

shaped or J-shaped relationships. A Finnish cohort study of 1,464

adults aged 65–79 years found that midlife heavy drinking patterns

significantly increased MCI risk (OR = 5.08, P = 0.020) (87), while

another study reported elevated cognitive decline risks in both

heavy drinkers (OR = 1.44, 95% CI: 1.02–2.10) and abstainers (OR

= 1.94, 95% CI: 1.10–3.44) compared to moderate drinkers (88).

The non-significant association observed here may reflect

limitations of the cross-sectional design or population

heterogeneity, necessitating longitudinal studies to clarify the role

of alcohol in T2DM-related cognitive dysfunction.
4.3 Comorbidity management and T2DM-
MCI comorbidity

Hypertension was identified as a significant risk factor for MCI

in patients with T2DM (OR = 2.25, 95% CI: 1.49–3.40, P < 0.001),

consistent with prior research (89, 90). Chronic hypertension

induces structural and functional cerebrovascular damage through

ischemic white matter injury and microvascular pathology,

reducing cerebral blood flow and accelerating cognitive decline

(91). Similarly, CVD significantly elevates MCI risk (OR = 2.61,

95% CI: 1.99–3.43, P < 0.001), corroborating Xie et al. (92). Post-

stroke cerebrovascular injuries—particularly those involving

extracranial carotid or intracranial vascular lesions (93)—are

strongly associated with cognitive impairment in diabetic

populations. Notably, diabetic stroke survivors with larger infarct

volumes exhibit pronounced cognitive deficits, substantially

increasing post-stroke cognitive impairment (PSCI) risk (94).

These findings underscore the need for intensified CVD

management in T2DM patients to mitigate cognitive deterioration.

Interestingly, depression showed no significant association with

MCI risk (OR = 2.04, 95% CI: 0.42–9.79, P = 0.38), contrasting with

Carr et al. (95) and Chow et al. (96). While depression-related

neurodegeneration in brain regions such as the hippocampus and

prefrontal cortex may drive cognitive dysfunction (97),

confounding factors [e.g. glycemic control (98), systemic

inflammation (99)] and regional population differences likely

explain this discrepancy.

DR emerged as a significant MCI predictor (OR = 1.50, 95% CI:

1.12–2.01, P = 0.006), corroborating Gorska-Ciebiada et al. (45). As
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a microvascular complication, DR shares pathophysiological

mechanisms with cerebral microangiopathy [e.g. chronic

hyperglycemia-induced endothelial dysfunction (100)], suggesting

its potential role as a biomarker for concurrent brain microvascular

damage (101). Proactive DR screening and management may thus

help reduce MCI risk in T2DM patients.
4.4 Biochemical indicators and T2DM-MCI
comorbidity

It was found that HbA1c >9% significantly elevates MCI risk in

patients with T2DM (OR = 1.33, P = 0.001), with residual risks

persisting even within the conventional glycemic target range

(HbA1c <7%: OR = 1.38, P = 0.002). Chronic hyperglycemia

impairs glial cell function, inducing cerebrovascular pathology

and neuronal damage that ultimately compromise cognition

(102). Zheng et al. (103) reported that each 1 mmol/mol increase

in HbA1c exacerbates declines in cognitive, memory, and executive

functions. Hyperglycemia-driven cognitive deterioration involves

multiple mechanisms, including disrupted neurotransmitter

metabolism (104), aggravated oxidative stress (105), and altered

neuronal energy homeostasis (106), solidifying HbA1c’s role as a

critical biomarker for T2DM-MCI comorbidity.

Elevated HOMA-IR was independently associated with MCI

risk (OR = 1.95, 95% CI: 1.14–3.35, P = 0.02). As a surrogate marker

of insulin resistance, HOMA-IR reflects compensatory

hyperinsulinemia, which is closely linked to cognitive decline.

Kim et al. (107) identified strong associations between

hyperinsulinemia and impairments in memory and executive

function. Pharmacological interventions improving insulin

sensitivity have shown potential to enhance memory performance

(108), suggesting therapeutic relevance. Although insulin

resistance-MCI relationships are empirically supported (108, 109),

underlying mechanisms remain incompletely elucidated,

necessitating further investigation of HOMA-IR’s predictive utility.

A potential association between elevated FPG and MCI risk in

T2DM patients was also identified (OR = 1.15, 95% CI: 1.01–1.32, P

= 0.04). Comparative analysis revealed lower FPG levels in non-

MCI groups, suggesting that sustained hyperglycemia may

contribute to cognitive dysfunction. Chronic hyperglycemia not

only exacerbates microvascular complications but also induces

long-term neurological detriment, oxidative stress, and blood-

brain barrier disruption (110, 111). Thus, FPG serves dual roles

as a glycemic control biomarker and a predictor of cognitive decline

in T2DM.

HDL levels showed no significant association with MCI risk in

T2DM patients (OR = 1.07, 95% CI: 0.79–1.43, P = 0.68), diverging

from studies suggesting HDL’s neuroprotective effects via anti-

inflammatory and antioxidant pathways (112, 113). Moderate

heterogeneity across studies (I² = 65%, P = 0.06) may stem from

methodolog ica l var ia t ions in HDL measurement or

population characteristics.

No significant association was found between LDL-C levels and

MCI risk in the current study (OR = 0.99, 95% CI: 0.52–1.89, P =
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0.99). Despite proposed U-shaped relationships between LDL-C

and cognitive function (114), significant heterogeneity (I² = 80%, P

= 0.006) suggests confounding effects from diabetes control status

or inflammatory mediators, necessitating further investigation into

these complex interactions.

Finally, elevated HS-CRP was strongly associated with MCI risk

(OR = 2.85, 95% CI: 2.09–3.89, P <0.001). As a sensitive

inflammatory biomarker (115), elevated HS-CRP reflects systemic

inflammation that synergizes with oxidative stress to amplify free

radical generation, damaging cellular membranes, DNA, and

neuronal function (116, 117). These findings highlight HS-CRP’s

dual roles as an inflammatory marker and a predictor of early

cognitive decline in T2DM.
5 Limitations

This study has several limitations. First, the generalizability of the

findings may be constrained by geographical and population

homogeneity, as most of the included studies focused on Chinese

populations, with limited representation of other ethnic or regional

groups. Second, methodological heterogeneity—including variability

in study designs (e.g., cross-sectional vs. cohort), sample sizes, and

quality—likely contributed to substantial heterogeneity, which

introduces a cautious interpretation of pooled estimates. Third, the

predominance of cross-sectional designs (which constitute a high

proportion of the included studies) precludes causal inference or

longitudinal trajectory analysis. To address these limitations, future

research should prioritize large-scale, multi-center cohort studies

with extended follow-up periods to validate the identified risk

factors. Additionally, a systematic investigation of unexplored

confounders (e.g., genetic predisposition, lifestyle interactions) and

mechanistic pathways is warranted to comprehensively elucidate

T2DM-MCI pathophysiology.
6 Conclusions

This meta-analysis identified advanced age (≥ 60 years), female

sex, prolonged diabetes duration (8–9 years), elevated HbA1c (>

9%), and low educational attainment (≤ 6 years) as significant

independent predictors of MCI in patients with T2DM,

demonstrating clear dose-response relationships. Smoking,

hypertension, CVD, insulin resistance (as measured by the

HOMA-IR), FPG, and HS-CRP were also significantly associated

with increased MCI risk.

These findings underscore the need for integrated clinical

strategies. Regular cognitive assessments should target high-risk

subgroups, including elderly patients with long-standing diabetes

(8–9 years), females with poor glycemic control (HbA1c > 9%), and

individuals with vascular comorbidities. Glycemic management

aiming for HbA1c < 7% may offer cognitive protection, while

population with limited education warrant tailored health literacy
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in tervent ions to mit iga te se l f -management barr iers .

Multidisciplinary collaboration across endocrinology, neurology,

and ophthalmology is critical for patients with microvascular

complications, such as diabetic retinopathy.

This study advances the understanding of T2DM-MCI

determinants but highlights key research gaps. Future

investigations should prioritize longitudinal designs to establish

causality, validate biomarkers across diverse populations, and

explore mechanistic interactions between metabolic dysregulation

and neurodegeneration. Such efforts will be essential for developing

precision prevention frameworks against diabetic cognitive decline.

Since the results of this study are mainly based on Chinese

populations, their applicability to other regions or races may be

limited. Follow-up research should include more diverse samples to

enhance the external validity of the research.
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