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Inhibition of CYP450 family
1 subfamily B member 1
(CYP1B1) expression in
macrophage reduces the
inflammatory response in
type 2 diabetes mellitus
combined with tuberculosis
Qianqian Du †, Kun Liu †, Yanling Li †, Xinyan Wang, Xin Liu,
Jing Zhao and Xuemei Wang*

School of Public Health, Inner Mongolia Medical University, Huhhot, China
Type 2 diabetes (T2DM) and tuberculosis (TB) both regulate inflammation and

may exert synergistic or antagonistic effects through shared immune pathways.

Previous studies have demonstrated that T2DM is a risk factor for TB. However, at

the level of gene regulatory networks, it remains unclear whether there are key

interaction nodes linking these two diseases. In this study, we integrated

bioinformatic analysis from the Gene Expression Omnibus (GEO) database and

performed differential gene expression analysis and weighted gene co-

expression network analysis (WGCNA). Furthermore, we applied machine

learning techniques to identify key genes among the commonly differentially

expressed genes (DEGs). In addition, this study employed siRNA in THP-1 cells to

validate the cross-talk genes selected through bioinformatic analysis. The THP-1

cells were treated with high-concentration glucose (15.5 mM, Glu),

Mycobacterium tuberculosis ESAT-6, or Glu+ESAT-6. We identified a total of

23 common genes between TB and T2DM using DEGs and WGCNA.

Furthermore, expression patterns from external datasets revealed three key

cross-talk genes linking TB-T2DM: CYP1B1, SERPING1, and CHPT1. Notably,

only CYP1B1was significantly upregulated in the THP-1 detection test, compared

to the unstimulated (control) group (P < 0.05). Moreover, CYP1B1 significantly

reduced the expression of pro-inflammatory cytokines (TNF-a, IL-6, IL-1b, IL-
10), M2 macrophage polarization markers (CD163, Arg-1), and chemokines

(CXCL-10), and was associated with the NOD2 and TRAF6 signaling pathways

(P < 0.05). These findings elucidate the regulatory mechanisms underlying the

comorbidity of TB and T2DM, providing a theoretical basis for the development

of precise combination therapies and novel therapeutic targets.
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1 Introduction

Tuberculosis (TB) and Type 2 Diabetes Mellitus (T2DM) are

chronic diseases with significant public health implications

worldwide. The comorbidity of TB and T2DM (TB-T2DM)

represents a growing concern for public health, particularly in

countries with high disease prevalence, such as India, China, and

Indonesia (1). According to the latest data from the World Health

Organization (WHO), approximately 10.8 million new cases of TB

were reported worldwide in 2023, marking an increase of 0.93%

compared to 2022 (2). Simultaneously, the prevalence of T2DM is

rising sharply, largely due to unhealthy dietary habits and

increasing rates of obesity, particularly in developing countries

(3). The co-occurrence of these diseases not only severely impairs

patients’ quality of life but also imposes a considerable burden on

healthcare systems (4).

Epidemiologically, the interaction between T2DM and TB

results in a more severe clinical course for diabetic patients (5).

Individuals diagnosed with T2DM are at a threefold increased risk

of developing TB compared to those without diabetes. In high-

burden regions, approximately 21% of TB patients are comorbid

with T2DM (6). Studies have demonstrated that patients suffering

from both TB and T2DM experience higher rates of treatment

failure (RR=1.69, 95% CI 1.36–2.12), disease recurrence (RR=3.89,

95% CI 2.43–6.23), and all-cause mortality (RR=1.89, 95% CI 1.52–

2.36) when compared to individuals with TB alone (6–8). These

findings underscore the complex interplay between TB and T2DM

and the significant impact of this comorbidity on clinical outcomes.

Although significant progress has been made in understanding

the independent pathogenesis of TB and T2DM, research on their

interactions, particularly at the immunological and inflammatory

levels, remains limited. For instance, T2DM disrupts immune

function, resulting in dysregulated inflammatory responses.

Recent studies have shown that oxidative stress in patients with

T1DM leads to significant DNA damage and a concurrent

reduction in the efficacy of the antioxidant defense system (9).

Furthermore, it has been observed that individuals with diabetes

exhibit increased levels of pro-inflammatory cytokines, such as

interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a), which
contribute to chronic inflammation, exacerbating pancreatic b-cell
damage and insulin resistance (10, 11). T2DM impairs the immune

response to TB, reducing the ability to clear Mycobacterium

tuberculosis. These complications may be exacerbated by altered

inflammatory responses, as elevated levels of inflammatory

cytokines in T2DM can influence TB pathogenesis and hinder

effective treatment outcomes (12). Macrophages, which play a

crucial role in initiating immune responses by phagocytosing TB

bacteria and secreting key cytokines such as TNF-a and IL-6,

demonstrate impaired functionality in individuals with diabetes

due to the presence of chronic, low-grade inflammation (13, 14).

Restrepo et al. demonstrated that patients with TB-T2DM exhibit

more intense immune responses compared to patients with TB

alone, with elevated levels of interferon-g (IFN-g), interleukin-2 (IL-
2), TNF-a, and granulocyte-macrophage colony-stimulating factor

(GM-CSF) (15). Conversely, TB, caused by M. tuberculosis, elicits a
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strong immune response marked by the activation of immune cells

and increased production of pro-inflammatory cytokines such as

TNF-a, IL-1b, and IL-6. These cytokines are pivotal in immune

evasion and the chronicity of TB (16). Excessive inflammatory

responses can exacerbate TB lesions and compromise overall

immune function (17). Conversely, persistent TB-driven

inflammation and immune activation may exacerbate metabolic

dysregulation in T2DM, thereby worsening insulin resistance and

glycemic control. This bidirectional mechanism creates a vicious

cycle: T2DM-induced immunosuppression provides an ideal

environment for M. tuberculosis survival, while TB-related

chronic inflammation exacerbates diabetic metabolic disturbances

(18–23). Systems biology analyses have revealed significant

dysregulation of key immune pathways, including the Jak-STAT

and NF-kB pathways, in patients with comorbid diabetes and

tuberculosis (24). However, the interaction mechanisms between

these two diseases at the level of gene regulatory networks

remain unclear.

In summary, both T2DM and TB induce systemic

inflammatory responses, exhibiting either synergistic or

antagonistic interactions in their inflammatory pathways.

However, whether cross-talk genes within their gene expression

networks that may regulate TB-T2DM-associated inflammatory

and metabolic dysfunctions remains unexplored.

To address these questions, this study integrates bioinformatics

analysis with experimental validation to identify core genes

involved in inflammatory dysregulation and elucidate the

molecular mechanisms underlying the TB-T2DM. By utilizing

publicly available transcriptomic data from the GEO database,

WGCNA, and machine learning algorithms, we identify common

candidate genes associated with TB-T2DM. Functional enrichment

and immune infiltration analyses are employed to validate the

functions of these genes in inflammation and immune regulation,

supported by qPCR and Western blot experiments.

The novelty of this study lies in its integrative approach, which

combines bioinformatics analysis, machine learning techniques,

and experimental validation to systematically identify cross-talk

genes and pathways associated with inflammation in TB-T2DM.

These findings offer new scientific insights into the inflammatory

mechanisms underlying TB-T2DM comorbidity, laying the

groundwork for the development of novel diagnostic biomarkers

and targeted therapeutic strategies.
2 Materials and methods

2.1 Data collection and preparation

Transcriptomic datasets related to T2DM and TB were

downloaded from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). The TB dataset (GSE28623),

based on the GPL4133 platform, included blood samples from 46

TB patients and 37 control samples. The T2DM dataset

(GSE166502), based on the GPL10558 platform, comprised

myocyte samples from 13 T2DM patients and 13 controls. These
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datasets served as the training set. Additionally, GSE34608,

comprising 8 TB blood samples and 18 control samples, was

utilized as an independent validation cohort to evaluate the

reliability and accuracy of the findings.
2.2 Identification of DEGs

Raw expression matrices were normalized, and DEGs between

the TB and control groups in the GSE28623 dataset were identified

using the limma package in R (25). Genes were selected based on an

adjusted P < 0.05 and |logFC| ≥ 1. The “pheatmap” and “ggplot2”

packages in R were used to generate clustering heatmaps and

volcano plots of DEGs.
2.3 Weighted gene co-expression network
analysis and identification of key modules

WGCNA is a bioinformatics method used to characterize gene

co-expression patterns across different samples. This method

clusters genes with similar expression profiles and explores the

associations between identified modules and specific traits or

phenotypes (26). To identify gene clusters associated with T2DM

in the GSE166502 dataset, hierarchical clustering was performed

using the “Hclust” function in R to detect outliers. Subsequently, the

“pickSoftThreshold” function from the WGCNA package was used

to calculate the soft threshold and adjacency matrix, with a criterion

of R² > 0.8. The adjacency matrix was further converted into a

topological overlap matrix (TOM) to measure gene associations by

incorporating both direct and indirect interactions. The TOM

matrix was converted into a dissimilarity matrix to generate a

hierarchical clustering tree. Gene modules showing a statistically

significant correlation with T2DM (P < 0.05, correlation coefficient

> 0.6) were selected as key modules for further analysis.
2.4 Identification of shared genes and
pathway enrichment

Venn diagrams were employed to identify overlapping genes

between key T2DM modules and TB DEGs. Functional enrichment

analysis of these shared genes was performed using the

“ClusterProfiler” package in R for Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis (27).

The results were visualized using the Sangerbox biomedical platform

(28), with a P < 0.05 considered statistically significant.
2.5 Machine learning for key gene
screening

The study comprehensively employed four machine learning

algorithms—LASSO regression, random forest (RF), support vector

machine (SVM), and Gaussian mixture model (GMM)—to screen
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for pivotal genes. LASSO Regression: The glmnet package was used

with 10-fold cross-validation to determine the penalty parameter l
and identify significant genes (29). RF: The RF package was used to

rank genes based on feature importance scores (30). SVM Recursive

Feature Elimination (SVM-RFE): 5-fold cross-validation was used

to identify the optimal feature gene set (31). GMM: Core key genes

were identified through intersection analysis of the gene sets

selected by the aforementioned methods (32).
2.6 Receiver operating characteristic curve
and nomogram construction

The diagnostic performance of key genes was evaluated using

RNA microarray data from the training set (46 TB patients and 44

controls). ROC curves were plotted for each gene, and the area under

the curve (AUC) was calculated to evaluate diagnostic accuracy. The

GSE34608 dataset was used for validation. Key genes exhibiting

consistent expression profiles and an AUC greater than 0.7 in both

the training and validation datasets were selected as characteristic

biomarkers. Nomograms were constructed using the “RMS” package

to predict TB occurrence by summing scores from cross-talk genes

(33). The stability and predictive performance of the model were

further evaluated through ROC analysis.
2.7 Single-sample gene set enrichment
analysis

ssGSEA was performed using the “GSEA” R package to

investigate functional and signaling pathways associated with

diagnostic biomarkers. Significant pathways were selected based

on normalized enrichment scores (NES), NOM p-value < 0.05, and

FDR q-value < 0.05.
2.8 Immune infiltration analysis

The CIBERSORT algorithm was employed to estimate the

proportions of immune cells from RNA expression data (34).

GSE28623 datasets used whole-blood transcriptomes, meeting

CIBERSORT’s requirement for total cellular RNA. A Spearman

correlation analysis was conducted between the 22 immune cell

types and cross-talk genes using the “corrplot” package. The

correlation results were visualized through bar plots generated

with the “ggplot2” package.
2.9 Cell culture and construction of an in
vitro high-glucose TB infection model

The human monocytic leukemia cells (THP-1) were cultured in

DMEM (Gibco, China) supplemented with 10% fetal bovine serum

(FBS, Gibco, China) and 1% penicillin-streptomycin (Gibco, China) at

37°C under 5%CO2. The culturemediumwas replaced after 24 h. Based
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on previous studies by Baker and Alebel et al. (35, 36), THP-1 cells were

stimulated with glucose at concentrations of 15.5 mM and 5.5 mM,

ESAT-6 (an important pathogenic protein of M. tuberculosis, Gene

Optimal, China), and 15.5 mM glucose combined with ESAT-6, as well

as 5.5 mM glucose combined with ESAT-6, respectively.
2.10 siRNA transfection

THP-1 cells were placed in 6-well plates and differentiated into

macrophages using PMA (MedChemExpress, USA). Cells were

transfected with CYP1B1-siRNA or si-NC (MedChemExpress,

USA) using Lipofectamine 2000 (Thermo Fisher, USA) in Opti-

MEMmedium (Gibco, China). The transfected cells were incubated

for 24 hours before proceeding to further analysis.
2.11 qPCR for mRNA expression analysis

RNA extraction was carried out from cells after 8 hours of cell

treatment, following the protocol provided by the Axygen RNA kit

manufacturer (Axygen Scientific, USA). RNA (with an A260/A280

ratio between 1.8 and 2.1) was reverse transcribed into cDNA using

the Primer Script™ RT Master Mix Kit (Takara, China). qPCR was

performed using the ABI 7500 real-time PCR system (Bio-Rad, USA).

The reaction conditions were as follows: an initial denaturation at 95°

C for 10 minutes, followed by 40 cycles consisting of denaturation at

95°C for 15 seconds and annealing/extension at 60°C for 30 seconds

(37). The 2−DDCt method was used to calculate relative gene expression

levels. DCt1 was calculated as the difference between the b-actin CT

value in the sample and the b-actin CT value in the control. Similarly,

DCt2 was determined by subtracting the CT value of the target gene in

the control from that in the sample. DDCt was then calculated as DCt1
minus DCt2. (The RNA sequence fragments are presented in Table 1).
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2.12 Western blot for protein expression
analysis

Proteins were collected after 12 hours for Western blot. Western

blot was performed as previously described (38). Protein lysates (30

mg) were quantified using the Enhanced BCA Protein Assay Kit

(Beyotime, China) and subsequently separated by SDS-PAGE

(Solarbio, China) using a Mini-PROTEAN Tetra electrophoresis

system (Bio-Rad, USA). The 30 mg protein lysates were

standardized using the Enhanced BCA Protein Assay Kit

(Beyotime, China) and separated by SDS-PAGE (Solarbio,

China). Proteins were then transferred onto PVDF membranes

(Immobilon, Germany) and probed with antibodies against

CYP1B1, NOD2, TRAF-6, and b-actin (Proteintech, China). The

CYP1B1 and b-actin primary antibodies were diluted to 1:3000,

NOD2 primary antibodies to 1:1000, and the TRAF-6 primary

antibodies were diluted to 1:500 using the primary antibody

dilution reagent (Beyotime, China). The samples were left to

incubate overnight at 4°C. Afterward, the membranes underwent

three washes with TBST (Solarbio, China), each lasting 10 minutes.

Subsequently, the membranes were incubated with secondary

antibodies (Cell Signaling Technology, USA) at a dilution of

1:3000 for 1 hour at room temperature, followed by four

additional washes with TBST, each lasting 5 minutes. Finally, the

immune-reactive proteins were visualized using an enhanced

chemiluminescence reagent (ECL Western Blotting, Affinity

Biosciences, USA) according to the manufacturer’s instructions.
2.13 ELISA for cytokine quantification

Cell culture supernatants were collected after 12 hours of cell

treatment, and the concentrations of IL-6, IL-1b, and TNF-a were

measured using ELISA kits (Lunchangshuo, China).
TABLE 1 PCR primers.

Gene Forward primer sequence Reverse primer sequence

CHPT1 CCAGTTCTTGGATTTCTAGGTGG CCTATGTGGAGTCCAGGTGACA

SERPING1 GCATCAAAGTGACGACCAGCCA GTCTCTGTCAGTTCCAGCACTG

CYP1B1 GCCACTATCACTGACATCTTCGG CACGACCTGATCCAATTCTGCC

IL6 ACTCACCTCTTCAGAACGAATTG CCATCTTTGGAAGGTTCAGGTTG

IL10 GACTTTAAGGGTTACCTGGGTTG TCACATGCGCCTTGATGTCTG

IL1b ATGATGGCTTATTACAGTGGCAA GTCGGAGATTCGTAGCTGGA

TNF-a GAGGCCAAGCCCTGGTATG CGGGCCGATTGATCTCAGC

CXCL-10 TTCCTGCAAGCCAATTTTGT ATGGCCTTCGATTCTGGATT

b-ACTIN CTGAACCCCAAGGCCAAC AGCCTGGATAGCAACGTACA

CD163 ATTGCAGTCGGGATCCTTGG CGCTGTCTCTGTCTTCGCTT

Arg-1 AACACTCCCCTGACAACCA CATCACCTTGCCAATCCC
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2.14 Statistical analysis

Bioinformatics analyses were performed using R version 4.3.3.

Experimental data were analyzed using GraphPad Prism 6.1.

Multiple group comparisons were conducted using one-way

ANOVA with Tukey’s HSD test. For comparisons between two

groups, either an independent samples t-test (for normally

distributed data) or the Wilcoxon rank-sum test (for non-

normally distributed data) was applied. A two-tailed P < 0.05 was

considered statistically significant. The flow chart of this research is

shown in Supplementary Figure S1.
3 Results

3.1 Identification of DEGs

In the TB dataset GSE28623, a total of 192 DEGs were

identified, including 131 upregulated DEGs and 61 downregulated

DEGs. The heatmap (Figure 1A) displays the top 60 DEGs in TB,

and the volcano plot (Figure 1B) illustrates the expression patterns

of DEGs in TB.
3.2 Identification of key modules using
WGCNA

Sample clustering was performed to detect outliers, and no samples

were removed from the GSE166502 dataset. As shown in Figure 1C,

the optimal soft-thresholding power value, which yields an R² value of

approximately 0.9, indicates that the network closely approximates a

scale-free topology. The mean connectivity plateaued as the adjacency

function gradually approached zero. According to the dynamic tree cut

algorithm, nine modules were identified in the co-expression network

constructed from the T2DM samples (Figure 1D). The correlation

between modules and sample traits was calculated, and the resulting

correlation matrix is shown in Figure 1E. In the matrix, the vertical axis

represents different modules, and the horizontal axis represents various

traits. Each square indicates the correlation coefficient and statistical

significance (P-value) between a module and a trait. Correlation

analysis revealed that the brown module (cor = 0.89, P < 0.05),

turquoise module (cor = -0.61, P < 0.05), and blue module (cor =

-0.61, P < 0.05) exhibited the most significant correlations with T2DM.
3.3 Identification of shared genes and
pathway enrichment

A total of 23 genes (GAS6, SERPING1, PLSCR1, CYP1B1,

CTNNAL1, ATF3, TNFSF10, ADM, S100A8, C1QB, BPGM,

GADD45G, FGF13, MYOM2, JAK2, SOCS3, KCNJ2, CLEC2B,

C1QA, CHPT1, KREMEN1, C1QC, CMBL) were identified as

Shared cross-talk genes between TB and T2DM based on the
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intersection of WGCNA modules and DEGs (Figure 1F). These 23

genes were further subjected to GO and KEGG enrichment analyses

to explore shared regulatory pathways. The biological processes and

cellular components are illustrated in Figure 1G; Supplementary

Table S1. The biological processes encompass classical complement

activation, humoral immune response mediated by immunoglobulin,

synaptic pruning, complement activation, adaptive immune response

based on somatic recombination of immune receptors built from

immunoglobulin superfamily domains, cell junction disassembly,

regulation of endopeptidase activity, positive regulation of apoptotic

signaling pathway, regulation of peptidase activity, and regulation of

cysteine-type endopeptidase activity involved in apoptotic processes.

Cellular components include collagen-containing extracellular

matrix, collagen trimer, blood microparticles, intercalated discs,

platelet alpha granule lumen, cell-cell contact zone, platelet alpha

granule, secretory granule lumen, cytoplasmic vesicle lumen, and

vesicular lumen. The shared genes were primarily associated with the

following pathways: pertussis, complement and coagulation cascades,

prion diseases, Staphylococcus aureus infection, Chagas disease

(American trypanosomiasis), systemic lupus erythematosus,

influenza A, adipocytokine signaling pathway, prolactin signaling

pathway, and EGFR tyrosine kinase inhibitor resistance (Figure 1H).
3.4 Machine learning for key gene
identification

Four machine learning algorithms—LASSO regression, RF,

SVM, and GMM—were employed to screen the 23 shared genes

and identify potential key genes related to the mechanisms by which

T2DM impacts TB.

LASSO regression identified 10 non-zero coefficients when the

minimal mean squared error was selected at log (l). These 10 genes

were MYOM2, GADD45G, ATF3, CMBL, CLEC2B, GAS6, CHPT1,

C1QC, SERPING1, and CYP1B1 (Supplementary Figures S2A, B). The

RF model achieved the highest accuracy when the number of selected

genes was set to N=17 (Supplementary Figure S2C), identifying the

following 17 genes: GADD45G, KREMEN1, SERPING1, CHPT1, GAS6,

CYP1B1, SOCS3, ATF3, JAK2, C1QC, CMBL, TNFSF10, BPGM, C1QB,

KCNJ2, C1QA, and CTNNAL1. Using the SVM-RFE method, the

model reached the highest accuracy of 0.878 with the lowest cross-

validation error of 0.122 when selecting 22 genes (Supplementary

Figures S2D, E). The 22 selected genes were GAS6c, SERPING1,

PLSCR1, CYP1B1, CTNNAL1, ATF3, TNFSF10, ADM, S100A8,

C1QB, GADD45G, FGF13, MYOM2, JAK2, SOCS3, KCNJ2, CLEC2B,

C1QA, CHPT1, KREMEN1, C1QC, and CMBL.

The intersection of the genes selected by the three algorithms

resulted in 8 genes: GADD45G, ATF3, CMBL, GAS6, CHPT1,

C1QC, SERPING1, and CYP1B1 (Supplementary Figure S2F).

Finally, the GMM model was employed to classify and refine the

set of shared key genes, ultimately identifying the subset with the

highest AUC combination: GADD45G, GAS6, CHPT1, SERPING1,

and CYP1B1 (Supplementary Figure S2G).
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FIGURE 1

Identification and Pathway Enrichment of Shared Genes in TB and T2DM: (A) Heatmap of the top 60 DEGs in GSE28623. Pink grids represent
upregulated genes, purple grids represent downregulated genes, and the color intensity indicates expression levels. (B) Volcano plot of DEGs in
GSE28623. The x-axis represents log2 fold change (TB/Con), and the y-axis represents -log10(P-value). Pink and purple points represent significantly
differentially expressed genes (pink: upregulated, purple: downregulated), while gray points represent non-significant genes. Con, control; TB,
tuberculosis. (C) Soft-thresholding power plot for WGCNA analysis of key T2DM modules, showing scale-free topology. (D) Hierarchical clustering
dendrogram of modules. (E) Correlation matrix between modules and traits. (F) Venn diagram showing the intersection of TB DEGs and T2DM key
module genes. (G) GO enrichment analysis of shared genes. (H) KEGG pathway enrichment analysis of shared genes.
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3.5 Expression levels of key genes and
construction of predictive models

The relative expression levels of the five key genes in the

training and validation sets are shown in Figures 2A, B. Among

these, CHPT1, SERPING1, and CYP1B1 exhibited consistent
Frontiers in Endocrinology 07
expression patterns in both the training and validation sets. To

assess the predictive ability of these five key genes for TB

progression, ROC curves were constructed based on individual

characteristics and gene expression levels. The AUC and

corresponding 95% confidence intervals (CIs) for each gene were

determined in both the test and validation datasets.
FIGURE 2

Relative expression levels, predictive performance, and nomogram construction of five key genes in the training and validation cohorts: (A) Relative
expression levels of the five key genes in the test dataset GSE28623. (B) Relative expression levels of the five key genes in the validation dataset
GSE34608. (C) ROC curves of the five key genes (CHPT1, CYP1B1, GADD45G, GAS6, and SERPING1) in the test dataset GSE28623. (D) ROC curves of
the five key genes in the validation dataset GSE34608. (E) Nomogram model constructed based on cross-talk genes (CYP1B1, SERPING1, and
CHPT1). (F) ROC curve of the nomogram. Statistical significance was denoted as follows: ns (not significant, P > 0.05), *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001.
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In the test dataset, the AUC values were as follows: CHPT1

(AUC = 0.786, 95% CI: 0.682-0.890), CYP1B1 (AUC = 0.784, 95%

CI: 0.688-0.881), GADD45G (AUC = 0.874, 95% CI: 0.802-0.946),

GAS6 (AUC = 0.845, 95% CI: 0.758-0.931), SERPING1 (AUC =

0.856, 95% CI: 0.775-0.937) (Figure 2C). For the GSE34608

validation dataset, the results were: CHPT1 (AUC = 0.924, 95%

CI: 0.818-1), CYP1B1 (AUC = 0.868, 95% CI: 0.713-1), GADD45G

(AUC = 0.66, 95% CI: 0.426-0.893), GAS6 (AUC = 0.854, 95% CI:

0.707-1), SERPING1 (AUC = 0.868, 95% CI: 0.724-1) (Figure 2D).

Based on the expression patterns and AUC values, three genes—

CHPT1, SERPING1, and CYP1B1—were selected as cross-talk genes

critical for TB progression in T2DM patients and used to construct a

nomogram model. In the nomogram (Figure 2E), the relative

expression levels of each gene were quantitatively marked, enabling

the calculation of a total score to evaluate the risk of TB progression

in individuals with T2DM. Moreover, the AUC for the nomogram

was 0.938 (95% CI 0.885–0.990), highlighting the superior

performance of the model (Figure 2F).
3.6 Immune infiltration analysis

CIBERSORT was used to evaluate the proportion of 22 immune

cell types in the TB dataset (Figure 3A). In the TB samples,

significant upregulation was observed in the abundance of

memory B cells, plasma cells, monocytes, macrophages (M0), and
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neutrophils. In contrast, downregulation was observed in naive B

cells, CD8 T cells, naive CD4 T cells, activated memory CD4 T cells,

resting NK cells, resting dendritic cells, and eosinophils (Figure 3B).

Further correlation analysis between the three key genes and the

proportions of immune cells in the TB samples revealed interesting

associations. CYP1B1 demonstrated positive correlations with

neutrophils, monocytes, macrophages (M0), and T cells gamma

delta, while showing negative correlations with T cells follicular

helper, CD8+ T cells, and resting NK cells. SERPING1 was

positively correlated with monocytes, neutrophils, macrophages

(M0), T cells gamma delta, and B cells memory, while negatively

correlated with B cells naive, CD4 T cells naive, dendritic cells resting,

T cells CD4 memory activated, eosinophils, NK cells resting, and T

cells CD8. CHPT1 exhibited positive correlations with neutrophils, B

cells memory, and T cells CD4 memory resting, and negative

correlations with T cells CD4 memory activated, B cells naive, T

cells CD8, NK cells resting, and T cells CD4 naive (Figures 3C–E).
3.7 qPCR detection of cross-talk genes
expression levels

Given the pivotal role of macrophages in the immune responses to

both T2DM and TB, we employed a human acute monocytic leukemia

cell (THP-1) model to investigate the regulatory effects of the cross-talk

genes CHPT1, SERPING1, and CYP1B1 in inflammatory responses. To
FIGURE 3

Immune Cell Infiltration Analysis: (A) Stacked plot showing the relative proportions of 24 immune cell types in different samples from the TB and control groups.
(B–D) Correlation between the three key genes (CYP1B1, SERPING1, and CHPT1) and immune cells. (E) Boxplot comparing immune cell expression between the
TB and control groups. Statistical significance was denoted as follows: ns (not significant, P > 0.05), *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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simulate the distinct pathological conditions of T2DM and TB, cells

were subjected to six treatment regimens: Control (unstimulated), 15.5

mM glucose (Glu-15.5), 5.5 mM glucose (Glu-5.5), ESAT-6, 15.5 mM
glucose + ESAT-6 (Glu-15.5+ ESAT-6), and 5.5 mM glucose + ESAT-6

(Glu-5.5+ ESAT-6). The results revealed significant differences in

CYP1B1 expression across the treatment groups, as detailed below:

Compared to the control group, CYP1B1mRNA expression in the

Glu-5.5 group showed no significant change, indicating that

physiological glucose concentrations do not significantly modulate

CYP1B1 expression. In contrast, CYP1B1 mRNA expression was

significantly upregulated in the Glu-15.5 group (P < 0.05), suggesting

that a high glucose state activates CYP1B1 expression. Under ESAT-6

treatment, CYP1B1 expression also significantly increased (P < 0.01).

The combination of 5.5 mM glucose and ESAT-6 further upregulated

CYP1B1 expression (P < 0.05). The highest expression of CYP1B1 was

observed under the combined treatment of 15.5 mM glucose and

ESAT-6 (P < 0.001) (Figure 4A). This significant upregulation

suggests that CYP1B1 may serve vital functions in the co-existing

pathological conditions of T2DM and TB. No significant differences in

gene expression were observed for SERPING1 and CHPT1 under the

aforementioned treatment conditions (Figures 4B, C).
3.8 Transfection of CYP1B1 siRNA reduced
CYP1B1 expression

The function of CYP1B1 in the comorbidity of T2DM and TB was

further investigated by knocking down its expression in macrophages

through siRNA transfection and observing the changes in cytokines

and key pathway molecules before and after transfection.

The qPCR results demonstrated that compared to the negative

control and the plasmid transfection group (Si-NC), the CYP1B1

siRNA transfection group exhibited significantly reduced mRNA

expression levels (P < 0.05). No statistically significant difference was

observed between the CYP1B1 siRNA group and the GAPDH plasmid

transfection group (Si-GAPDH) (P > 0.05) (Supplementary Figure

S3A). Thus, the siRNA, along with its transfection concentration and

duration in this experiment, effectively silenced CYP1B1 expression,

highlighting its suitability for subsequent experiments.

Western blot analysis further confirmed a significant decrease in

CYP1B1 protein levels. Compared with the Si-NC group, CYP1B1

siRNA transfection markedly suppressed CYP1B1 protein expression

(P < 0.05). These results demonstrated that the reduced mRNA levels

directly led to decreased protein expression. No significant difference was

detected in the protein expression levels between theCYP1B1 siRNA and

Si-GAPDH groups (P > 0.05) (Supplementary Figures S3B, C). The WB

results were consistent with qPCR data, confirming transfection efficacy.
3.9 CYP1B1 expression is associated with
inflammatory responses and immune
regulation

Following CYP1B1 siRNA transfection, we further evaluated the

impact of CYP1B1 knockdown on various inflammatory and immune
Frontiers in Endocrinology 09
regulatory factors. The protein and mRNA levels of pro-inflammatory

cytokines, e.g., TNF-a, IL-6, and IL-1b, and the anti-inflammatory

cytokine IL-10were analyzed using ELISA and qPCR. Additionally, the

mRNA expression levels of characteristic macrophage polarization

markers, e.g., CD163 and Arg-1, and the chemokine CXCL10

were assessed.

After CYP1B1 siRNA transfection, the protein and mRNA

expression levels of key inflammatory mediators decreased

significantly. According to the ELISA and qPCR measurements, the

pro-inflammatory cytokines TNF-a, IL-6, and IL-1b showed decreased

expression across the treatment groups with 15.5 mM glucose, ESAT-6,

and their combination, with the most notable suppression observed

under combined stimulation (P < 0.01, Figures 4D–F, H–J). Similarly,

the anti-inflammatory cytokine IL-10 demonstrated reduced expression

at both protein and transcript levels (Figures 4G, K). These results

demonstrate a significant positive correlation between the expression

levels of the above inflammatory factors and CYP1B1 expression.

As detailed in Figures 4L–N, the expression of macrophage

polarization markers CD163 and Arg-1 paralleled these findings,

showing significant downregulation following CYP1B1 knockdown

(P < 0.05). The chemokine CXCL10 also exhibited comparable

reductions (P < 0.05).
3.10 Single-sample gene set enrichment
analysis

M. tuberculosis infection triggers complex immune responses,

particularly in the context of T2DM, and the altered immune

responses may influence the clinical manifestation of TB. We

performed ssGSEA to further investigate the potential KEGG

pathways involved in TB progression, with a focus on the role of

CYP1B1. The ten most significant pathways are presented in

Figures 5A, B. The results revealed that CYP1B1 is involved in

multiple pathways, such as autophagy, NOD-like receptor signaling,

phagosome format ion, TNF signal ing , and Tol l - l ike

receptor signaling.
3.11 Western blot validation of NOD2 and
TRAF-6 signaling pathways

The ssGSEA results indicated that CYP1B1 is significantly

associated with the NOD-like receptor signaling pathway and the

TNF signaling pathway. Preliminary experiments on the expression

of NOD2 in macrophages found that the upregulation of CYP1B1

might be related to NOD2 activation. Western blot analysis of

NOD2 protein expression levels across different treatment groups

revealed the following results. Compared to the control group,

NOD2 protein expression was significantly upregulated in the 5.5

mM glucose + ESAT-6 and 15.5 mM glucose + ESAT-6 treatment

groups (P < 0.05, Figures 5C, D). In the 15.5 mM glucose + ESAT-6

treatment group, the synergistic effects of a high glucose level and

TB infection significantly activated NOD2 expression, resulting in

the highest level of NOD2 protein expression.
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FIGURE 4

(A) Expression of CYP1B1 in THP-1 cells under different treatments with various glucose levels and ESAT-6 stimulation. (B) Expression of CHPT1 in
THP-1 cells under different treatments. (C) Expression of SERPING1 in THP-1 cells under different treatments. (D–F) ELISA analysis of pro-
inflammatory cytokines TNF-a, IL-6, and IL-1b protein levels following CYP1B1 siRNA transfection under different treatments. (G) ELISA analysis of IL-
10 protein levels after CYP1B1 knockdown. (H–J) qPCR analysis of mRNA expression levels of pro-inflammatory cytokines TNF-a, IL-6, and IL-1b
after CYP1B1 siRNA transfection. (K) qPCR analysis of IL-10 mRNA expression following CYP1B1 knockdown. (L, M) qPCR assay of the expression of
M2 macrophage markers CD163 and Arg-1 after CYP1B1 knockdown. (N) qPCR analysis of CXCL10 expression following CYP1B1 siRNA transfection.
Control: Untreated control group; Glu-transfer positive plasmid: Positive plasmid transfection control + 15.5 mM glucose stimulation; Glu-transfer
CYP1B1 siRNA: CYP1B1 siRNA transfection + 15.5 mM glucose stimulation; ESAT6-transfer positive plasmid: Positive plasmid transfection control +
ESAT6 stimulation; ESAT6-transfer CYP1B1 siRNA: CYP1B1 siRNA transfection + ESAT6 stimulation; GE-transfer positive plasmid: Positive plasmid
transfection control + 15.5 mM glucose + ESAT6 co-stimulation; GE-transfer CYP1B1 siRNA: CYP1B1 siRNA transfection + 15.5 mM glucose + ESAT6
co-stimulation. Statistical significance is denoted as follows: ns, non-significant (P > 0.05); #P < 0.05, ##P < 0.01, ###P < 0.001, ####P < 0.0001
(vs. control); *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (vs. transfer positive plasmid).
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TRAF6, a downstream adapter protein of NOD2, is critical in

initiating downstream immune responses. Considering the

enrichment results of the TNF signaling pathway and the close

relationship between the NOD2 signaling pathway and TRAF6, we

further investigated the changes in NOD2 and TRAF6 expression after

CYP1B1 siRNA transfection. Compared to the control group with

siRNA transfection, the protein expression levels of both NOD2 and

TRAF6 were elevated in the CYP1B1 siRNA transfection group (P <

0.05). In the treatment group with 15.5 mM glucose, the expression of

NOD2 and TRAF6 was significantly reduced compared to the group

with CYP1B1 siRNA transfection (P < 0.05). In the ESAT-6 treatment

group, knocking down CYP1B1 led to a significant reduction in the

expression of both NOD2 and TRAF6 (P < 0.05). Under the combined
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treatment of 15.5 mM glucose + ESAT-6, the expression of NOD2 and

TRAF6 was markedly decreased (P < 0.0001) (Figures 5E–G). These

findings suggest that CYP1B1 regulates the expression of NOD2 and

TRAF6 in response to the dual stress of high glucose and M.

tuberculosis infection.
4 Discussion

This study systematically unveils the potential molecular

mechanisms underlying the TB-T2DM comorbidity, particularly

the key regulator CYP1B1 in the inflammatory response of

this comorbidity.
FIGURE 5

CYP1B1 regulation of NOD2 and TRAF6 signaling in macrophages under various treatments: (A, B) KEGG pathway enrichment analysis showing the top
ten pathways associated with TB progression. (C, D) Western blot analysis of NOD2 protein expression under different treatments. (E–G) Western blot
analysis of NOD2 and TRAF6 expression following CYP1B1 knockdown using siRNA transfection under various treatments. Statistical significance is
denoted as follows: ns, not significant (P > 0.05), *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. The control lane shown in panel (E) was
derived from the same experimental blot. Reusing this control data allows for direct comparison across experiments under identical conditions. The
polyclonal anti-NOD2 antibody may produce non-specific bands due to its broad reactivity. The band of interest (indicated by the arrow) was selected
based on its expected molecular weight (~110 kDa).
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Bioinformatics methods like DEGs and WGCNA were

employed to identify multiple potential key genes and their

associated modules. Further refinement using machine learning

methods revealed the cross-talk genes CYP1B1, SERPING1, and

CHPT1, which are closely related to the inflammatory response in

TB-T2DM comorbidity.

Differential gene expression analysis identified 192 DEGs in TB

patients. WGCNA revealed three modules significantly associated

with T2DM. A comparison between the DEGs in TB patients and

the key module genes associated with T2DM identified 23 shared

genes. Functional enrichment analysis provided the biological

context for these shared genes. GO analysis indicated that the

shared genes were enriched in biological processes like

complement activation and immunoglobulin-mediated humoral

immune responses. KEGG pathway analysis highlighted key

pathways like the complement and coagulation cascades and

circulating immunoglobulin-mediated humoral immune responses.

The significant enrichment of complement activation,

immunoglobulin-mediated humoral immune responses, and the
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complement-coagulation cascade in TB-T2DM comorbidity

demonstrated their key functions in inflammatory imbalance and

immune dysfunction. Excessive complement activation may serve

as a key driver of TB and T2DM progression. The high-glucose

environment of T2DM may induce abnormal expression of

coagulation factors and complement components, potentially

ampli fy ing inflammatory responses and exacerbat ing

microvascular complications (39). The activation of the

coagulation system in TB patients is closely associated with the

formation of tuberculous granulomas and tissue necrosis. Excessive

activation of the complement system may exacerbate pulmonary

damage by inducing localized coagulation (40). Declined

immunoglobulin function may further weaken the host’s immune

clearance capacity. Immunoglobulins serve as essential effector

molecules in B cell-mediated humoral immunity, facilitating

infection combating by binding to pathogen surface antigens,

activating the complement system, and promoting pathogen

clearance. In diabetic patients, the high-glucose environment may

impair B cell function and alter the glycosylation of
FIGURE 6

Discussion diagram: (A) The left portion (green section) summarizes the experimental results of this study: Transcriptome data from T2DM and TB
patients were analyzed using WGCNA and machine learning methods, identifying CYP1B1, SERPING1, and CHPT1 through enrichment analysis. As
immune infiltration results exhibited an association with M0 macrophages, this study employed THP-1 M0 macrophages for experiments. However,
only CYP1B1 mRNA levels were upregulated in THP-1 macrophages (highlighted in red), while the other two genes remained unchanged (highlighted
in yellow). Further experiments using CYP1B1 siRNA demonstrated downregulation of inflammation-related factors and receptors (highlighted in
green). (B) The right portion (blue section) presents hypotheses based on experimental findings: High glucose concentrations and M. tuberculosis-
secreted ESAT-6 stimulate TNF and Toll-like receptors (TLRs). The resulting cascade signals are regulated by CYP1B1, subsequently transmitting to
NOD2 receptors and TRAF6, ultimately affecting macrophage autophagy. Additionally, these signals induce polarization of M0 macrophages, which
differentiate into M1 macrophages that secrete TNF-a, IL-6, and IL-1b while activating CD163 and Arg-1 to polarize into M2 macrophages that
secrete IL-10 and CXCL-10.
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immunoglobulins, thereby reducing their effector functions (41).

Specific immunoglobulins, such as IgM, are vital in the early

clearance of M. tuberculosis and the regulation of late-stage

disease progression (42). In TB-T2DM comorbidity, dysregulation

of humoral immunity may further impair the host’s ability to clear

M. tuberculosis, thus prolonging the infection and increasing the

disease burden.

The four machine learning methods, expression pattern

analysis, and ROC curve evaluation across multiple dimensions

identified three key genes from the 23 shared genes: CYP1B1,

SERPING1, and CHPT1. Pathway enrichment analysis of the

three genes revealed their potential roles in immune responses,

inflammation, lipid metabolism, cell growth, and immune evasion

in both T2DM and TB. Immune infiltration analysis revealed the

cellular-level immunopathological characteristics of TB-T2DM

comorbidity. In TB patients, the neutrophils, monocytes, and M0

macrophages increase significantly, while the CD8+ T cells and

natural killer (NK) cells decrease markedly. Neutrophils protect the

host via the oxidative killing of mycobacteria and serve as critical

innate immune cells for combating TB infection (43), and elevated

absolute neutrophil counts are a hallmark of TB-T2DM (44).

Following initial M. tuberculosis infection, monocytes rapidly

migrate to the lungs and differentiate into macrophages and

dendritic cells for antigen presentation and cytokine secretion

(45). The significant increase in M0 macrophages may result from

the M. tuberculosis infection-induced shift toward the M0

phenotype, enabling the bacteria to evade host immune clearance

(46). CD8+ T cells also produce pro-inflammatory cytokines,

including type 1 and type 17 cytokines in TB (47). Upon

stimulation by M. tuberculosis antigens, CD8+ T cells exhibit

increased expression of type 1 (IFN-g and IL-2) and type 17 (IL-

17F) cytokines, but their expression of cytotoxic markers such as

perforin, granzyme B, and CD107a is significantly reduced. These

findings suggest a critical link between CD8+ T cells and the

pathogenesis of TB-T2DM comorbidity (48). NK cells are effector

cells of innate immunity, serving vital functions in early infection by

activating phagocytes at the infection site. The production of IFN-g,
IL-17, and IL-22 by NK cells is crucial for the host’s defense against

M. tuberculosis. Studies indicated that M. tuberculosis suppresses

NK cell activation receptors and reduces cytokine production,

leading to decreased NK cells or impaired function during TB

infection (49). Interestingly, CYP1B1 expression positively

correlated with the infiltration levels of neutrophils, monocytes,

and M0 macrophages, while negatively correlating with CD8+ T

cells and NK cells. Thus, CYP1B1 may regulate the activity of

monocytes and neutrophils, thereby enhancing innate immune

responses while suppressing adaptive immune functions. This

dual regulatory function of CYP1B1 in immune modulation may

explain the heightened inflammatory responses and reduced anti-

infective capacity in diabetic patients with TB infection.

The experimental validation focused on the expression of the

cross-talk genes CYP1B1, CHPT1, and SERPING1 in in vitromodels

of T2DM-TB comorbidity as well as their impact on inflammatory

responses and immune regulation. The results showed that CYP1B1

was significantly upregulated in response to the combined
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stimulation of high glucose and ESAT-6. Further siRNA

transfection successfully knocked down CYP1B1 expression,

leading to a significant reduction in inflammatory cytokines.

Thus, CYP1B1 may influence the intensity of inflammatory

responses by regulating the activity of immune cells. Silencing

CYP1B1 also resulted in decreased expression of M2 macrophage

markers CD163 and Arg-1, indicating its potential involvement in

the anti-inflammatory polarization of macrophages. Further studies

revealed that knocking down CYP1B1 significantly affected the

expression of NOD2 and TRAF-6. Stimulated by high glucose

levels and ESAT-6, the protein levels of NOD2 and TRAF-6 were

markedly reduced, suggesting the crucial function of CYP1B1 in

regulating the inflammatory response of the TB-T2DM

comorbidity via the modulation of NOD2 and TRAF-6.

CYP1B1 is a member of the cytochrome P450 superfamily and

is primarily involved in the metabolism of fat-soluble substances

such as fatty acids and steroids (50, 51), particularly omega-3 and

omega-6 fatty acids (52). Such fatty acids are fundamental for

constructing cell membranes and regulating lipid signaling

pathways. As a result, CYP1B1 may influence cell membrane

fluidity, immune cell function, and the intensity of immune

responses by modulating lipid metabolism (53). In T2DM-TB

comorbidity, the dysregulation of lipid metabolism is often

accompanied by heightened inflammatory responses (54). In

T2DM, lipid metabolism imbalance is a key manifestation of

insulin resistance and chronic low-grade inflammation (55).

High-fat diets and obesity can trigger inflammatory responses in

adipose tissue, which affect the systemic immune environment

through the secretion of adipokines (e.g., adipocytokines and pro-

inflammatory cytokines), thereby exacerbating immune

dysregulation in diabetic patients (56). Studies have reported that

with high-fat diet-induced obesity, mice lacking CYP1B1 were

leaner and more resistant to obesity than the control (57).

Meanwhile, studies have linked CYP121, CYP125, and CYP128

closely to the growth and survival of M. tuberculosis. High-

throughput screening and fragment-based drug discovery

methods have identified selective CYP inhibitors, thus providing a

foundation for developing novel anti-tuberculosis drugs (58). The

lipid metabolism disorders in TB patients also impair the immune

function of macrophages, which typically clear pathogens through

phagocytosis afterM. tuberculosis infection (59). In T2DM patients,

the metabolic reprogramming of fatty acids may lead to

macrophage dysfunction, reducing their ability to clear M.

tuberculosis (60). CYP1B1 may exacerbate immune dysregulation

by affecting the lipid metabolism pathways, further delaying the

immune response to TB in diabetic patients (61).

SERPING1, in particular, is important in the complement system

(62). The complement system is a vital component of the immune

system, protecting against infections by lysing bacteria, clearing

immune complexes, and regulating immune responses (63).

Research reported that the impaired monocyte function in diabetic

patients may weaken their role in M. tuberculosis infection. The

reduced binding capacity of monocytes toM. tuberculosis in diabetic

individuals may be linked to the altered complement system.

SERPING1 overexpression could lead to abnormal complement
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system activation, triggering excessive inflammation and immune

responses, thereby promoting immune evasion by M. tuberculosis

(64). However, research on its specific function in the shared

pathological mechanisms of T2DM and TB remains insufficient,

warranting further exploration. CHPT1 is a member of the choline

phosphotransferase family and primarily catalyzes the synthesis of

phosphatidylcholine, which is crucial for maintaining the structure

and function of cell membranes. By promoting phosphatidylcholine

production, CHPT1 contributes to cell membrane renewal and

stability (65). Blocking choline uptake with pharmacological

inhibitors and CTL1-specific antibodies was found to alter cytokine

secretion patterns, with increased levels of TNF-a and IL-6 but

decreased levels of IL-10 (66). In TB-T2DM comorbidity,

phosphatidylcholine synthesis may be important in processes such

as cell interactions and cytokine release during inflammatory

responses (67). The in vitro models in this study exhibited no

statistically significant differences in the expression levels of CHPT1

and SERPING1 across treatments compared to controls. CHPT1 is

primarily associated with lipid metabolism and cell membrane

modifications, which may be upregulated in adipocytes. SERPING1

is mainly involved in complement system activation, likely requiring

complement participation or a more complex in vivo immune

microenvironment to fully manifest its regulatory effects. However,

this does not imply their irrelevance in the pathogenesis of T2DM

and TB. On the contrary, they may play indirect or synergistic roles in

complex biological systems. Thus, future studies may modify the

experimental conditions or construct more sophisticated animal

models to reach definitive conclusions.

siRNA transfection effectively suppressed CYP1B1 expression,

leading to significant downregulation of both pro-inflammatory and

anti-inflammatory cytokines. These results establish a positive

correlation between CYP1B1 expression and the production of

inflammation-related factors. Silencing CYP1B1 also affected the

expression of M2 macrophage markers (CD163 and Arg-1). CD163

is a prominent marker of M2 macrophages, typically associated with

anti-inflammatory and tissue repair functions. It reduces oxidative

stress and inflammatory responses by clearing hemoglobin-

haptoglobin complexes (68). Arg-1 is another key marker of M2

macrophages, which converts arginine into ornithine and polyamines

to promote cell proliferation and tissue repair (69). Knocking down

CYP1B1 significantly reduced the expression of CD163 and Arg-1 in

TB-T2DM comorbidity. Thus, CYP1B1 may influence the anti-

inflammatory polarization of macrophages by regulating the

expression of CD163 and Arg-1, thereby exacerbating

inflammatory responses. CXCL10 is a chemokine that, upon

binding to the CXCR3 receptor, participates in immune cell

recruitment and inflammatory response regulation. Its recruitment

of Th1 cells and NK cells to sites of inflammation enhances immune

reactions (70). The experimental results also showed significantly

decreased mRNA expression of CXCL10 after CYP1B1 knockdown,

indicating that the absence of CYP1B1 in TB-T2DM comorbidity

suppresses immune cell recruitment. In summary, CYP1B1

knockdown reduced both M1 and M2 macrophage polarization.

Bioinformatics analysis of immune infiltration revealed that TB

patients exhibited upregulated M0 macrophages, while their M1/
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M2 polarization remained unchanged compared to healthy controls.

Therefore, whileM. tuberculosis alters host metabolism, the metabolic

reprogramming is not affected. Likewise, our experimental results

demonstrated that although CYP1B1 influences the metabolism, it

does not affect the reprogramming in macrophages.

The above research found that silencing CYP1B1 reduces the

polarization of both M1 and M2 macrophages, indicating the

significant involvement of CYP1B1 in the immune function of

macrophages. The underlying mechanisms are explored based mainly

on the ssGSEA results of CYP1B1 in bioinformatics analysis, particularly

the NOD-like receptor and TNF signaling pathways. NOD2 is a crucial

pattern recognition receptor involved in sensing pathogens and activating

immune responses (71). RIP2-mediated ubiquitination ofNOD2 interacts

with TRAF6, thus activating the NF-kB signaling pathway and initiating

downstream immune responses (72). This pathway is key to immune cell

activation, inflammatory response regulation, and immune evasion in TB

(73). Additionally, TRAF6, as an E3 ubiquitin ligase, mediates the

polyubiquitination of itself and downstream signaling molecules, further

enhancing inflammatory responses (74). Our experimental results showed

significantly downregulated expression of NOD2 and TRAF6 after

silencing CYP1B1, suggesting that they may be regulated by CYP1B1,

which is consistent with the ssGSEA results from bioinformatics analysis.

However, in the control group with CYP1B1 siRNA transfection, the

protein expression levels of NOD2 and TRAF6 showed an increasing

trend relative to the control group with siRNA transfection. A possible

explanation is that with CYP1B1 knockdown, cells may activate other

inflammatory pathways to compensate for the resultant metabolic stress.

As CYP1B1 knockdown leads to intracellular metabolic disturbances,

NOD2, as an important pattern recognition receptor, may be upregulated

to enhance immune responses. Similarly, the basal expression level of

TRAF6 significantly increased after CYP1B1 knockdown. TRAF6 is vital

in inflammatory signaling, and its upregulation may be related to the

activation of the NOD2 pathway, further indicating that cells maintain

downstream signaling and inflammatory responses by increasing TRAF6

expression after CYP1B1 knockdown.

Based on the above findings, we reasonably speculate that

CYP1B1 may be a key regulator in the inflammatory response of

TB-T2DM comorbidity through the following mechanisms. The

reasoning process is illustrated in Figure 6.
1. CYP1B1 enhances inflammatory responses via the NOD2-

TRAF6-NF-kB pathway: CYP1B1 may regulate NOD2 and

TRAF6, promoting NF-kB activation and amplifying

immune responses triggered by TB infection. The high-

glucose environment may further induce CYP1B1

expression, exacerbating NF-kB activation and causing

excessive inflammatory responses and tissue damage.

2. CYP1B1 disrupts the dynamic balance between pro-

inflammatory and anti-inflammatory responses: Silencing

CYP1B1 reduces the expression of both pro-inflammatory

cytokines (TNF-a, IL-6, and IL-1b) and anti-inflammatory

cytokines (IL-10). Meanwhile, the expression of M2

macrophage markers (CD163, Arg-1) and the chemokine

CXCL-10 is suppressed. This imbalanced immune

regulation may increase the susceptibility of diabetic
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patients to TB infection and exacerbate the severity of

inflammatory responses.

3. Metabolic dysregulation affects immune function

modulation: CYP1B1 participates in lipid metabolism,

influencing fatty acid metabolism and cell membrane

fluidity and, in turn, regulating immune cell function. In

TB-T2DM comorbidity, CYP1B1-induced lipid metabolism

dysregulation may impair the ability of macrophages to

clear M. tuberculosis, creating a vicious cycle of

inflammation and metabolic abnormalities.
A limitation of this study is that in vitro models may not fully

reflect the complex inflammatory and immune regulatory

mechanisms in vivo. T2DM is a chronic process, and which is a

risk factor for Mycobacterium tuberculosis infection (6). Although

ESAT-6/glucose disease models were used in the researches,

however, treated glucose or ESAT-6 in macrophage does not fully

reflect the inflammation entire process of for T2DM or

Mycobacterium tuberculosis infection. Nevertheless, the

mechanism found in this study may reflect an early response via

macrophage. In the future study, we will utilize diabetes model

mouse and live Mycobacterium tuberculosis, e.g. Ra or Rv strain to

explore the further mechanism following this research results.
5 Conclusion

This study identified CYP1B1, SERPING1, and CHPT1 as cross-

talk genes between TB and T2DM. Experimental results showed

that CYP1B1 was significantly upregulated in response to the

combined stimulation of high glucose concentration and ESAT-6.

CYP1B1 knockdown markedly reduced the expression of

inflammatory cytokines (TNF-a, IL-6, IL-1b, and IL-10), M2

macrophage polarization markers (CD163 and Arg-1), and

chemokine CXCL-10 and suppressed the expression of NOD2

and TRAF6. These findings demonstrate that in the macrophage

inflammatory responses mediated by ESAT-6, high glucose, or

combined stimulation, the expression of NOD2, TRAF6, and

cytokines positively correlates with CYP1B1 levels, indicating

CYP1B1 as a crucial regulator in TB-T2DM inflammation by

modulating inflammatory factors and NOD2/TRAF6 expression.
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SUPPLEMENTARY FIGURE 1

Flow chart of this research.

SUPPLEMENTARY FIGURE 2

Machine learning algorithms identifying key genes related to the mechanisms
by which T2DM affects TB. (A) LASSO coefficient distribution plot. (B) LASSO
coefficient profile plot, where the vertical dashed lines indicate the log(l)
values corresponding to the minimum mean squared error and one standard
error away from the minimum mean squared error. The plot also shows the

number of variables with non-zero coefficients in LASSO regression. (C) RF
Frontiers in Endocrinology 16
model achieving the highest accuracy at N=17. (D, E) SVM-RFE feature: 5-fold
cross-validation accuracy plot and error plot. (F) Venn diagram showing the

intersection of genes selected by LASSO, RF, and SVM-RFE. (G) Gaussian
mixture model determining the logistic regression model pattern related to

AUC values.

SUPPLEMENTARY FIGURE 3

(A) qPCR analysis of CYP1B1 mRNA expression following transfection with
CYP1B1 SiRNA. (B, C) Western blot analysis showing the reduction of CYP1B1

protein expression after SiRNA-mediated knockdown. Note: Statistical
significance is denoted as follows: ns, not significant (P > 0.05), *P < 0.05,

**P < 0.01, and ***P < 0.001. The polyclonal anti-CYP1B1 antibody may

produce non-specific bands due to its broad reactivity. The band of interest
(indicated by the arrow) was selected based on its expectedmolecular weight

(52~61 kDa).

SUPPLEMENTARY TABLE 1

Detailed results of GO enrichment analysis.
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