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The blood-retinal barrier (BRB) comprises the inner blood-retinal barrier (iBRB)

and the outer blood-retinal barrier (oBRB). The integrity of the BRB is essential to

maintaining stability of the retinal microenvironment. Mitophagy plays a crucial

role in maintaining organellar integrity by regulating mitochondrial quality and

quantity. High glucose-induced mitophagy dysfunction contributes to diabetic

retinopathy (DR) by damaging the BRB. This review presents mitophagy

mechanisms under physiological conditions and examines changes across

different cell types under DR-related pathological conditions that damage the

BRB. It also summarizes drugs and targets that regulate mitophagy to stabilize the

BRB and alleviate DR, offering new therapeutic insights.
KEYWORDS
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inflammation, oxidative stress, therapeutic strategy
1 Introduction

In 2015, approximately 415 million people worldwide were affected by diabetes, and

this number is expected to reach 642 million by 2040 (1). DR is the most common

microvascular complication of diabetes, with a prevalence of approximately 34.6% among

patients with diabetes (2). Diabetic macular edema (DME), a complication of DR, affects

6.8% of patients with diabetes mellitus (DM) and is a leading cause of visual impairment

and blindness. Clinically, DR is classified as proliferative (PDR) or non-proliferative

(NPDR). NPDR is characterized by retinal capillary basement membrane thickening,

increased retinal vascular permeability, and tissue ischemia, whereas PDR involves

pathological neovascularization, potentially leading to vitreous hemorrhage or retinal

detachment (3). The potential mechanisms causing these vascular issues include the

breakdown of BRB. The integrity of the BRB helps keep the retinal microenvironment
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separate from the systemic circulation, reducing the impact of

oxidative stress on this microenvironment, thereby maintaining

its homeostasis under hyperglycemic conditions (4).

The BRB is composed of an inner layer and an outer layer. The

iBRB mainly consists of a microvascular network that nourishes the

retina’s inner layer. Its primary structure is vascular endothelial

cells. These endothelial cells interact with neurons, pericytes, and

glial cells to form the neurovascular unit (NVU) (5). The oBRB

consists of a monolayer of retinal pigment epithelial (RPE) cells that

interact with the fenestrated choroidal capillaries and Bruch’s

membrane, whereas adjacent RPE cells are connected by tight

junctions (6). The integrity of the BRB is essential for protecting

the retina from harmful substances, clearing metabolic waste,

regulating angiogenesis, and maintaining visual signal transmission.

Intravitreal anti-vascular endothelial growth factor (anti-VEGF)

therapy is the established first-line treatment for center-involved

DME (7). However, only 29% of patients show significant visual

improvement after 2 years of treatment (8). Moreover, antibody-

based therapies impose a significant economic burden on patients,

making anti-VEGF therapy unlikely to be widely used for the routine

treatment of NPDR. Given the limitations of current DR therapies,

there is a need to explore new strategies targeting the core

pathophysiological mechanisms. The disruption of the BRB, a

critical event in the progression of DR, has molecular mechanisms

that remain inadequately targeted by current therapies. Recent

studies have shown that mitophagy dysfunction is a key factor in

the destruction of the BRB during the progression of DR (9, 10).

Focusing on the BRB, this review first analyzes the composition and

molecular mechanisms underlying high glucose-induced BRB

damage in DR, including mitochondrial dysfunction, inflammation,

oxidative stress, and related pathways. Subsequently, it explores the

regulatory mechanisms of mitophagy—a selective autophagy process

that eliminates damaged mitochondria—and finally reviews potential

drugs and targets aimed at ameliorating BRB damage through

mitophagy modulation in DR, offering novel mechanistic insights

and therapeutic strategies for targeting BRB lesions.
2 Composition and damage of the
BRB

2.1 Composition of the BRB

The BRB consists of the iBRB and oBRB, which separate the

systemic circulation from the retina (11). This unique structure not

only helps transport nutrients and oxygen but also blocks large

molecules, pathogens, and toxins from the blood. It also selectively

regulates molecular flow between the systemic circulation and the

retina, therefore maintaining homeostasis of the retinal

microenvironment (12).

2.1.1 Composition of the iBRB
Retinal endothelial cells (RECs), the principal components of

the iBRB, constitute the retinal microvascular endothelium. These

cells form a selective barrier via tight junctions between adjacent
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cells, regulating the transport offluids and macromolecules between

the blood and neural retina (13). The formation, maturation, and

stability of retinal microvessels depend on the interactions between

pericytes and endothelial cells. Specifically, RECs are interconnected

by tight junction proteins and ensheathed by pericytes and glial cells

(e.g., Müller cells and astrocytes) (14). Furthermore, endothelial

cells within the retinal microvasculature rely on vascular endothelial

(VE)-cadherin-mediated, calcium-dependent adherens junctions

between the cells, which are essential for maintaining barrier

integrity (15). Although the iBRB specifically reflects the

specialized properties of RECs, the integrated functions of all

NVU components, including neurons (ganglion, bipolar,

horizontal, and amacrine cells), glial cells (astrocytes and Müller

cells), immune cells (microglia), and vascular cells (RECs and

pericytes), are essential for maintaining iBRB integrity and

dynamically coordinating local blood flow to meet the metabolic

demands of retinal neurons (16). Bidirectional signaling among

these NVU cells constitutes a complex, dynamic network. The

retinal vascular network regulates blood flow, angiogenesis, and

permeability in response to the dynamic demands of retinal

neurons. By providing oxygen and nutrients, recycling

neurotransmitters, and clearing metabolic waste, the retinal

vasculature plays a crucial role in fine-tuning vascular function to

maintain retinal homeostasis (17). The endothelial cell population,

specifically RECs, plays an important role in retinal diseases. Early

intervention targeting RECs can help reduce the progression of

retinal lesions and visual impairment.

2.1.2 Composition of the oBRB
The oBRB consists of the choroid, Bruch’s membrane (BM),

and RPE cells. The RPE is closely associated with the oBRB and

directly constitutes the foundation of the neural retina (11). The

RPE contributes to barrier function by forming tight junction

complexes and providing metabolic support to the neural retina

(18). This cell layer is essential for maintaining visual function by

creating a selective barrier between the choroidal capillaries and the

neural retina and regulating bidirectional solute transport,

including nutrient delivery and metabolic waste clearance (11).

Therefore, understanding RPE function is vital for developing

effective prevention and treatment strategies for DR.

However, in the diabetic state, persistent pathological factors,

including chronic hyperglycemia, severely disrupt the integrity and

precise regulatory functions of both the iBRB and oBRB. This BRB

dysfunction is one of the core pathophysiological bases for the onset

and progression of DR (19) Figure 1.
2.2 Damage to the BRB in DR

The damage to the BRB in DR results f rom the

multimechanistic synergy of four core pathways: inflammatory

activation, oxidative stress, dysregulation of vascular growth

factors, and mitochondrial homeostatic imbalance. These

mechanisms are intertwined and mutually reinforcing, collectively

driving disease progression.
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2.2.1 Inflammation
DR is a chronic, low-grade inflammatory disease involving

various inflammatory mediators and adhesion molecules, with

chronic hyperglycemia serving as the main trigger (20). Studies

have shown that levels of interleukin-1b (IL-1b) and tumor necrosis

factor-a (TNF-a) are elevated in the serum and vitreous of DR

patients (21). IL-1b and TNF-a act as inducers of adhesion

molecule expression by binding to their respective receptors (IL-1

receptor and TNF receptor), thereby promoting the activation of

nuclear factor kappa-B (NF-kB). This activation leads to increased

expression of IL-6 and IL-8, and it also triggers caspase-1 activation

(22). Furthermore, IL-1b activates NF-kB, which enhances the

adhesion of retinal capillary cells to the endothelium and induces

their apoptosis. These events, therefore, increase vascular

permeability (22, 23). TNF-a promotes leukocyte adhesion to

RECs, directly impairing BRB integrity (24, 25). These pro-

inflammatory cytokines stimulate RECs to upregulate intercellular

adhesion molecules, thereby facilitating leukocyte recruitment and

capillary adhesion. Adherent leukocytes obstruct capillaries and

disrupt tight endothelial junctions. Consequently, BRB dysfunction

manifests as acellular capillary formation, vascular leakage, and

DME (25). Furthermore, hyperglycemia (HG) activates the NLRP3

(NOD-, LRR-, and pyrin domain-containing protein 3)
Frontiers in Endocrinology 03
inflammasome, contributing to inflammation. Activation of the

NLRP3 inflammasome mediates cytokine secretion, which

downregulates tight junction protein expression and exacerbates

BRB damage (26).

2.2.2 Oxidative stress
In the hyperglycemic state of diabetes, chronic hyperglycemia

causes oxidative stress through four main pathways, generating

reactive oxygen species (ROS) and exacerbating damage to the BRB.

One such pathway is the activation of the polyol pathway of glucose

metabolism (27), where aldose reductase (AR) converts glucose into

sorbitol, which is then oxidized by sorbitol dehydrogenase into

fructose. During this process, the cofactor nicotinamide adenine

dinucleotide (NAD+) is reduced to NADH (28, 29). This leads to an

abnormal increase in the NADH/NAD+ ratio, with excess NADH

acting as a substrate for NADPH oxidase, thereby promoting ROS

generation within retinal cells (30). Products generated by fructose

phosphorylation and degradation can serve as precursors for the

formation of advanced glycation end products (AGEs) (31). HG-

induced accumulation of diacylglycerol activates the protein kinase

C (PKC) pathway and promotes the expression of VEGF in retinal

tissues (32). The upregulation of VEGF contributes to endothelial

dysfunction, increased vascular permeability, and pathological
FIGURE 1

The image shows the structure of the blood-retinal barrier (BRB). The inner blood-retinal barrier (iBRB) is a functional barrier composed of retinal
endothelial cells (RECs), which form retinal capillaries that traverse the inner layer of the retina. It is produced by vascular endothelial cells and
features a double basement membrane, tight junctions between adjacent cells, and interactions with surrounding pericytes, microglia, and neurons.
The retinal neurovascular unit (NVU), composed of vascular endothelial cells, pericytes, Müller glial cells, astrocytes, neurons, and microglial cells,
contributes to the integrity of the iBRB. The outer blood-retinal barrier (oBRB) consists of the choroid, Bruch’s membrane (BM), and retinal pigment
epithelium (RPE), with the RPE being most relevant to the oBRB, directly forming the foundation of the neuroretina. PL, Photoreceptor Layer; OLM,
Outer Limiting Membrane; ONL, Outer Nuclear Layer; OPL, Outer Plexiform Layer; INL, Inner Nuclear Layer; IPL, Inner Plexiform Layer; GCL,
Ganglion Cell Layer; NFL, Nerve Fiber Layer.
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neovascularization in DR (33). Additionally, PKC enhances the

activity of NADPH oxidase, thereby promoting ROS production in

various vascular cells (34). Prolonged hyperglycemia significantly

increases the non-enzymatic glycation of proteins and lipids,

ultimately leading to AGEs accumulation (35). The interaction of

AGEs with their receptor RAGE promotes NF-kB activation,

triggering retinal pericyte apoptosis and upregulating VEGF,

wh i ch inc r e a s e s va s cu l a r endo the l i a l p e rmeab i l i t y

(36).Additionally, this AGEs-RAGE axis stimulates Müller cells to

release VEGF and MCP-1 (monocyte chemoattractant protein-1),

further disrupting the BRB and inducing inflammatory infiltration

(37). Furthermore, AGEs-RAGE interaction activates NADPH

oxidase, enhancing intracellular ROS generation (38, 39). Elevated

ROS levels, in turn, contribute to AGEs formation, further

amplifying AGEs-mediated damage (40). AGEs stimulation can

also lead to the upregulation of proteases, which cleave VE-cadherin

on RECs, resulting in BRB breakdown and increased vascular

permeability (41). After activation of the hexosamine pathway,

the resulting high concentrations of glucosamine accumulate,

stimulating excessive ROS generation in mitochondria and

damaging mitochondrial respiratory function. This process

further exacerbates oxidative stress, increases vascular

permeability, and promotes angiogenesis (42, 43).

ROS are continuously produced in all cells to support normal

cellular functions. However, under hyperglycemic conditions, the

activation of the four pathways mentioned above stimulates

excessive production of mitochondrial ROS, further exacerbating

oxidative stress. First, elevated ROS levels activate the NLRP3

inflammasome in RECs, as induced by AGEs in diabetic rats.

This activation leads to the caspase-1-dependent release of the

pro-inflammatory cytokine IL-1b (44). These inflammatory

cytokines damage RECs, impairing their ability to maintain BRB

integrity. Second, heightened oxidative stress potently activates NF-

kB, which regulates the transcription of numerous genes. The

expression of zonula occludens-1 (ZO-1), a critical tight junction

protein, is suppressed by NF-kB, thereby disrupting the normal

structure of the BRB (45). Furthermore, oxidative stress, which is

exacerbated by excess ROS, contributes to mitochondrial

dysfunction. Notably, mitochondrial DNA (mtDNA) is

particularly vulnerable to extensive and persistent damage

induced by oxidative stress (46). Damaged mtDNA impairs

transcription and protein synthesis, resulting in further

production of ROS.

2.2.3 Elevated vascular endothelial growth factor
Elevated VEGF levels are positively correlated with DR severity,

particularly in PDR. Studies have demonstrated significantly higher

serum VEGF concentrations in patients with PDR than in patients

with NPDR and healthy controls (47). Similarly, the aqueous humor

VEGF levels in patients with PDR substantially exceed those in non-

DR individuals (48). Firstly, in a vitro co-culture model of the BRB

based on primary RECs, pericytes and astrocytes, VEGF treatment

disrupts the junctional assembly of tight junction proteins

(occludin, claudin-5, ZO-1), adherens junction protein (VE-

cadherin), directly compromising BRB structural integrity
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(49).Elevated VEGF levels also induce the expression of urokinase

plasminogen activator receptor (uPAR), leading to activation of

matrix metalloproteinase-9 (MMP-9), which degrades the

extracellular matrix and further disrupts junctional complexes

(50). Secondly, VEGF significantly increases the expression of

plasmalemma vesicle-associated protein (PLVAP), promoting

endothelial cell vesicular transport activity. This facilitates plasma

protein leakage into retinal tissue via the transcellular route (49, 51).

Furthermore, VEGF induces RECs proliferation, promoting retinal

neovascularization, which ultimately progresses to PDR (52).

2.2.4 Imbalance in mitochondrial dynamics and
mitophagy

Mitochondria are key organelles responsible for energy

production and serve as central hubs for nutrient metabolism.

They play vital roles in metabolism, signal transduction and are

essential for cellular processes including growth, differentiation,

aging, and death. Within the mitochondrial inner membrane,

NADH and flavin adenine dinucleotide (FADH2) act as electron

donors, transferring electrons to the electron transport chain (ETC).

During electron transfer, protons (H+) are pumped into the

intermembrane space, generating an electrochemical gradient.

This gradient drives ATP synthesis by ATP synthase, producing

chemical energy stored in ATP molecules that fuel cellular

processes. Maintaining mitochondrial homeostasis critically

depends on the precise regulation of dynamic processes, namely

mitochondrial fusion, fission, and mitophagy. Fusion preserves

mitochondr ia l network integr i ty and fac i l i t a tes the

complementation of damaged mtDNA (53, 54). Fission segregates

damaged or dysfunctional mitochondria, enabling their subsequent

incorporation into autophagosomes (55). Furthermore,

mitochondria that exhibit a reduced membrane potential

following fission are selectively engulfed by autophagosomes and

degraded via mitophagy (56), thereby ensuring mitochondrial

quality control and homeostasis (57). Mitophagy specifically

targets and degrades damaged mitochondria through a lysosome-

dependent pathway (58, 59). This extensive clearance of damaged

mitochondria prevents ROS generation and accumulation, halts the

propagation of mitochondrial damage, and confers cytoprotection

(60). Under conditions of cellular damage or stress, mitophagy

reduces the burden of mitochondria harboring pro-death signals

through targeted elimination, thereby delaying the onset of

apoptosis. Furthermore, mitophagy regulates apoptotic cascades

via cytochrome c release, which activates caspase-family cysteine

proteases to initiate programmed cell death (61). Mitophagy also

modulates inflammatory responses and oxidative stress.

Inflammatory diseases are primarily mediated by inflammasome

activation such as NLRP3 (62, 63). By controlling the release of

mitochondrial-derived damage-associated molecular patterns

(mtDNA and ROS), mitophagy regulates inflammasome

activation. It also exhibits cell-intrinsic anti-inflammatory

mechanisms by suppressing excessive production of IL-1b and

IL-18. Therefore, mitochondrial fusion, fission, and mitophagy

collectively maintain efficient ATP generation while constraining

ROS accumulation (64).
frontiersin.org

https://doi.org/10.3389/fendo.2025.1617797
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2025.1617797
Mitochondrial number, size, structure, and physiological

functions are typically altered under pathological conditions,

including ischemia, hypoxia, nutrient deficiency/imbalance,

endotoxin exposure, and calcium overload (32). In DR,

imbalanced mitochondrial dynamics manifest as enhanced fission

and suppressed fusion, promoting the intracellular accumulation of

damaged or dysfunctional mitochondria (65). Concurrently,

hyperglycemia may initially elevate mitophagic flux; however,

when mitophagic activity exceeds the lysosomal degradative

capacity, lysosomal enlargement occurs, accompanied by

diminished enzyme activity, resulting in impaired clearance of

damaged mitochondria (66). In addition, other studies have

indicated that sustained high-glucose conditions ultimately

suppress mitophagy and cellular proliferation (67). This

mitophagy inhibition amplifies ROS overproduction (68), induces

mtDNAmutations, disrupts cellular architecture, impairs metabolic

homeostasis, and potentiates apoptosis (69, 70). Oxidative stress

and calcium overload can trigger mitochondrial permeability

transition (mPT) through the mitochondrial permeability

transition pore (mPTP), facilitating the efflux of cytochrome c

and other mitochondrial components. This process initiates

apoptotic cascades and inflammatory responses (71). Persistent

mPTP opening depletes NADH reserves, damages respiratory

chain complex I, and further exacerbates oxidative injury (72, 73).

Notably, chronic hyperglycemia may drive TXNIP-mediated

sustained ROS accumulation and progressive ATP depletion,

ultimately causing excessive mitochondrial elimination and

worsening cellular dysfunction (74).

In the aforementioned mitochondrial dynamics disorders and

related pathological cascades, mitophagy is the core mechanism for

clearing damaged mitochondria, and its function directly affects

cellular homeostasis. Under normal circumstances, it maintains

mitochondrial population homeostasis by degrading abnormal

mitochondria; however, in the hyperglycemic environment of DR,

mitophagy may become functionally imbalanced due to flux

overload, pathway inhibition, or excessive activation, which not

only fails to prevent the accumulation of damaged mitochondria

but also amplifies oxidative stress and exacerbates BRB damage.

Therefore, clarifying the molecular mechanisms and pathological

changes of mitophagy is crucial for understanding the progression

of DR and developing targeted therapeutic strategies.
3 Mechanisms of mitophagy

Under mitochondrial damage conditions, mitophagy becomes

an essential cellular quality control mechanism and includes two

main categories: the ubiquitin (Ub)-dependent and Ub-

independent pathways.

Ub-dependent pathway: This primarily involves the PINK1/

Parkin pathway (75). Parkin is a cytosolic E3 ubiquitin ligase that

links Ub molecules to substrate proteins. The identification of

cytosolic ubiquitinated substrates of Parkin has advanced, and

studies have demonstrated that Parkin plays a protective role in

stabilizing mitochondrial function and morphology (76). Early
Frontiers in Endocrinology 05
studies regarded PINK1 as a protein homologous to PTEN, which

is believed to be associated with tumors and Parkinson’s disease

(77). PINK1 is widely recognized as a highly conserved

mitochondrial protein involved in various cellular and

physiological processes, primarily regulating mitochondrial

function (78). PINK1 is autophosphorylated in the outer

mitochondrial membrane (OMM), which is crucial for its

activation and accumulation in mitochondria (79). In healthy

mitochondria, PINK1 is degraded by other proteins after entering

the inner membrane, resulting in low detectable levels (80).

However, when mitochondria are damaged, changes in

membrane structure or potential (DYm) inhibit PINK1

degradation, blocking its entry into the inner membrane, leading

to increased accumulation of PINK1 on the OMM (81). The

accumulation of PINK1 in the OMM promotes the translocation

of Parkin to the mitochondria, thereby inducing mitophagy in

dysfunctional mitochondria (82). Additionally, PINK1

phosphorylates ubiquitin at the Ser65 site to activate Parkin’s

ubiquitin ligase activity, recruiting more autophagy receptors. The

recruitment of receptors such as NDP52 and OPTN can facilitate

mitophagy (83). Subsequently, light chain 3 (LC3) is recruited to

damaged mitochondria through DFCP1, allowing OPTN to

mediate the initiation of autophagosomes through LC3

interaction regions (LIR) (84, 85). Ubiquitinated mitochondria

can be recognized by the ubiquitin-binding protein P62.

Subsequently, P62 binds to microtubule-associated LC3, allowing

damaged mitochondria to be engulfed by autophagosomes and

ultimately degraded by lysosomes. This process promotes

mitophagy (86).

Unlike the PINK1/Parkin pathway, the BNIP3/Nix pathway

mediates mitophagy independently of ubiquitination.Bcl-2 and

adenovirus E1B 19-kDa interacting protein 3 (BNIP3) and

BNIP3-like protein (BNIP3L, also known as Nix) are homologous

members of the Bcl-2 family of proteins (87). They are located on

the OMM and were initially classified as apoptotic proteins,

functioning as engulfment receptors under cellular developmental

or pathological conditions.BNIP3 is present at low abundance in

cells but is upregulated under hypoxia. Hypoxia-inducible factor-1a
(HIF-1a), an important transcription factor affecting mitophagy,

can upregulate BNIP3 and NIX under hypoxic conditions, thereby

clearing excessive mitochondria and maintaining cell viability (88).

BNIP3 acts as a hypoxia-induced mitochondrial connector that

directly targets mitochondrial structures (89). The NIX protein

directly binds LC3 through its BH3 domain and induces mitophagy

(90, 91). Both BNIP3 and NIX contain LC3 interaction regions

(LIRs) at their N-termini, which bind to the homolog of autophagy-

related gene 8 and induce mitophagy (92). NIX and BNIP3 also

interact with Bcl-2, thereby increasing the cytoplasmic levels of free

Beclin-1 and promoting the activation of autophagy-related gene 5,

ultimately initiating mitophagy (92). Fun14 domain-containing

protein 1 (FUNDC1) is another protein located on the OMM

that, similar to BNIP3/NIX, can induce mitophagy by binding to

LC3 through its LIR under hypoxic conditions (93) (Figure 2).

Mitophagy plays a central role in clearing damaged

mitochondria through both ubiquitin-dependent (PINK1/Parkin
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pathway) and -independent (BNIP3/Nix and FUNDC1 pathways)

mechanisms, maintaining cellular homeostasis and regulating

apoptosis and inflammation. In DR, metabolic disorders induced

by hyperglycemia directly interfere with the normal functioning of

these mechanisms in cells, leading to mitophagy dysfunction and

subsequent BRB damage. This article specifically elaborates on the

pathological changes in mitophagy in the core constituent cells of

the BRB (such as RPE cells, RECs, pericytes, and Müller cells) under

DR conditions and their impact on barrier integrity.
4 Mitophagy dysfunction in BRB
constituent cells: a mechanism
underlying barrier injury in DR

Increasing evidence suggests that mitochondrial dysfunction

plays a key role in the pathogenesis of DR. Specifically, excessive

mtROS production, mtDNA damage, ETC damage, and inefficient

mtDNA repair mechanisms caused by mitochondrial dynamic

imbalance all contribute to DR (94). In particular, mitophagy, as

the core mechanism for clearing damaged mitochondria, is crucial

for maintaining the homeostasis of BRB constituent cells. Under

high-glucose conditions, mitophagy in cells may undergo

bidirectional changes. Excessive mitophagy can remove essential

organelles and proteins, leading to a loss of compensatory capacity

and ultimately resulting in apoptosis (95). Conversely, a decrease in
Frontiers in Endocrinology 06
mitophagy can lead to the accumulation of damaged mitochondria,

resulting in BRB degradation (10).
4.1 BRB damage caused by excessive
activation of mitophagy

RECs are the main components of the iBRB, and their

dysfunction plays an important role in the pathogenesis of DR.

Hyperglycemia disrupts mitochondrial homeostasis in RECs,

leading to their dysfunction. The destruction of connections

between adjacent RECs and the apoptosis of RECs are the

primary drivers of the acellular capillary formation and the

subsequent destruction of the iBRB during NPDR (96). Studies

on HG intervention in rat RECs revealed that HG upregulates

dynamin-related protein 1 (Drp1). Following its activation, Drp1

induces excessive mitochondrial fission, generating numerous

fragmented mitochondria. These fragmented mitochondria are

prone to damage, releasing ROS and triggering mitophagy, which

ultimately leads to an elevated apoptosis rate in RECs (97). This

directly disrupts the BRB, increasing vascular permeability.

Additionally, oxidative stress further damages intercellular tight

junctions, exacerbating vascular leakage of the BRB. Similarly,

another study showed that mitophagy increased in retinal Müller

cells cultured under HG conditions. The possible mechanism is that

TXNIP induces mitochondrial oxidative stress and dysfunction,
FIGURE 2

Schematic diagram of the mechanisms of mitophagy: Mitophagy is regulated through both ubiquitin (Ub)-dependent and -independent pathways.
The Ub-dependent pathway is dominated by the PINK1/Parkin pathway: When mitochondria are damaged, PINK1 accumulates on the outer
mitochondrial membrane (OMM) and phosphorylates Ub, activating Parkin’s ubiquitin ligase activity, promoting the ubiquitination of OMM proteins;
the ubiquitination signal recruits autophagy receptors (NDP52, OPTN), connecting to autophagosomes through LC3 interaction regions (LIR), which
are ultimately degraded by lysosomes. The Ub-independent pathway includes BNIP3/Nix and FUNDC1 pathways: BNIP3 and NIX interact with Atg8
on autophagosomes through their LIR, thereby inducing mitophagy. NIX and BNIP3 can also interact with Bcl-2, increasing the cytoplasmic levels of
free Beclin-1 and promoting the activation of Atg5, ultimately initiating mitophagy. Furthermore, FUNDC1 is another protein located on the OMM
that can induce mitophagy by binding to LC3 under hypoxic conditions.
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promoting Drp1-mediated fission and Parkin-mediated

ubiquitination. Simultaneously, TXNIP inhibits ATG4B,

enhancing autophagosome formation and inducing excessive

mitophagy (98),ultimately leading to Müller cell dysfunction. As

critical BRB supporting cells, their dysfunction impairs the

metabolic and trophic support to RECs and retinal neurons,

further compromising BRB integrity.
4.2 BRB damage caused by inhibition of
mitophagy

However, many scholars have observed the inhibitory effects of

mitophagy pathways in DR. HG induces mitochondrial fission by

activating PKCd/Drp1 in RECs, resulting in damaged

mitochondria. Additionally, HG phosphorylates Drp1 via PKCd,
triggering the dissociation of HK-II from the outer mitochondrial

membrane and blocking HK-II-mediated activation of the PINK1/

Parkin pathway. As a result, HK-II-mediated PINK1/Parkin

mitophagy is inhibited, leading to RECs apoptosis and subsequent

damage to the barrier (99). Moreover, in microglia treated with HG

(BV2 cell model), HG upregulated Poldip2 expression, promoting

the ubiquitination degradation of Pink1 and inhibiting mitophagy,

leading to the accumulation of dysfunctional mitochondria that

cannot be cleared (100). Damaged mitochondria accumulated in

microglia trigger oxidative stress and endoplasmic reticulum stress.

These stress responses activate microglia to polarize toward the pro-

inflammatory M1 type, releasing large amounts of inflammatory

cytokines including IL-6 and TNF-a. These cytokines damage the

tight junctions of the BRB, increasing vascular permeability and

leading to pathological changes such as BRB dysfunction, vascular

leakage, and neovascularization. Research using AGEs to simulate

the diabetic microenvironment in rat Müller cells observed similar

trends in mitophagy changes. Specifically, levels of TOM20, LC3II/

LC3I, PINK1, and Parkin proteins were significantly

downregulated, whereas P62 levels were elevated. These changes

indicate that AGEs inhibit the mitophagy function of Müller cells

(101). Excessive ROS production induces apoptosis and glial

activation in Müller cells. As key supporting cells of the BRB,

Müller cell glial activation disrupts the physical connections and

functional synergy of retinal vascular endothelial cells, weakening

the structural stability of the BRB. Increased oxidative stress and the

release of inflammatory cytokines enhance retinal vascular leakage,

ultimately leading to BRB functional collapse.

Treatment with HG (50 mM) reduces PINK1/Parkin signaling

in the RPE by elevating ROS levels, leading to increased apoptosis of

the RPE, reduced proliferation, and exacerbated oxidative stress,

ultimately compromising the integrity of the BRB (67). Sirtuin 3

(SIRT3) is a mitochondrial NAD+-dependent deacetylase that plays

a key role in mitochondrial metabolic regulation (102). Studies have

found that HG leads to decreased SIRT3 expression, inhibiting the

AMPK/mTOR/ULK1 pathway and resulting in reduced mitophagy

(103). Inhibition of mitophagy triggers ROS accumulation and

apoptosis in RPE, potentially compromising the integrity of the

BRB. HG causes the accumulation of Telomeric Repeat-Binding
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Factor 1 (TRF1)-interacting protein 2 (TIN2) in mitochondria in

RPE cells. The accumulation of TIN2 reduces the expression of

mitophagy-related proteins Microtubule-associated protein 1 light

chain 3 beta(LC3B), PINK1, and Parkin, thereby inhibiting

mitophagy. The inhibition of mitophagy disrupts the tight

junctions of RPE cells, leading to structural damage of the BRB

(104). The accumulation of AGEs caused by hyperglycemia is a

major factor in the development of DR, and Methylglyoxal(MGO)

is a precursor of AGEs (105). MGO levels in diabetic patients are

higher than those in healthy controls (106), potentially leading to

impaired retinal blood flow regulation in patients with DR (107)

MGO suppresses protein and gene expression of mitochondrial

fusion protein-1, peroxisome proliferator-activated receptor

gamma coactivator 1-alpha, and mitochondrial transcription

factor A, thereby reducing mitochondrial biogenesis and fusion.

Concurrently, MGO inhibits AMP-activated protein kinase

(AMPK) activity, decreases LC3-II accumulation, and impairs

mitophagy in RPE cells, ultimately leading to RPE cells death (108).

The inconsistencies in cellular mitophagy changes in DR may

be owing to the level of mitophagy depending on the degree of

hyperglycemia. Zhang et al. observed that in cultured retinal

pigment epithelial cells, a slight increase in glucose concentration

(15 mM) induced upregulation of mitophagy, whereas a significant

increase (50 mM) inhibited mitophagy, leading to apoptosis (67).

The corresponding mechanism may be that mild hyperglycemia

induces a stress response, prompting cells to clear damaged

mitochondria through mitophagy. Conversely, severe or persistent

hyperglycemia causes cellular damage, leading to mitophagy

dysfunction. Additionally, the duration of diabetes appears to play

a crucial role, as studies on human retinas, mice, and primary

Müller cells have demonstrated that prolonged diabetes

progressively suppresses Pink1-dependent mitophagy, causing the

accumulation of damaged mitochondria and eventually leading to

BRB breakdown (10). Furthermore, as the duration of diabetes

increases, aging may also affect mitophagy, as late-stage DR retinas

show increased activity of senescence-associated b-galactosidase
(SA-b-Gal). In vitro studies have shown that in continuously aged

Müller cells, high-glucose levels, hyperosmolarity, or starvation fail

to activate autophagy (10) Figure 3.
5 Therapeutic strategies targeting
mitophagy dysfunction in BRB
constituent cells: protecting against
BRB injury in DR

Intensified control of blood pressure and blood glucose levels

reduces the incidence or slows the progression of microvascular

complications in diabetic patients (e.g., DR), thereby preserving

visual stability (109). Furthermore, a meta-analysis demonstrated

that maintaining adequate glycemic control may mitigate the risk of

progression to PDR and other vision-threatening complications,

irrespective of baseline DR severity (110). Notably, DME, which is

characterized by BRB disruption during DR progression, represents
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the leading cause of vision loss in patients with DR (111). Currently,

several new methods for treating DME have been introduced, with

anti-VEGF drugs being the first-line treatment for center-involved

DME. Although anti-VEGF drugs maintain the integrity of the BRB

by inhibiting VEGF-A and/or placental growth factor, some

patients show a poor response to this treatment in clinical

practice. Studies have shown that 31.6% to 65.6% of DME

patients still exhibit persistent edema symptoms after receiving at

least four regular intravitreal injections within 24 weeks (112).

Furthermore, repeated injections are often required for many

patients, which may pose economic burdens. Real-world evidence

suggests that the mean annual injection frequency is approximately

3.1 sessions per patient, with about 68.6% of patients receiving ≤3

injections, generally below the dosing schedules used in clinical

trials (typically 9–12 sessions) (113). For individuals with PDR,

laser photocoagulation continues to be widely utilized as a

therapeutic modality (114). It should be noted that laser treatment

can sometimes be associated with discomfort, and extensive applications

might potentially affect peripheral visual fields, particularly when

involving central macular areas (115). Given the limitations of the

aforementioned treatmentmethods, identifying new approaches to treat

DR is particularly important. The previous discussion highlighted the

key role of the BRB in retinal stability and the damage caused by

mitophagy dysregulation in DR. The following section introduces

existing research on maintaining cellular homeostasis by regulating

mitophagy, aiming to provide new strategies for DR treatment from the

perspective of preserving BRB integrity (Table 1).
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5.1 Inhibiting mitophagy in BRB constituent
cells to improve BRB damage in DR

Melatonin, the primary hormone of the pineal gland, is also

secreted by RECs (116). Functioning as an intracellular antioxidant

and modulator of mitochondrial bioenergetic function, it traverses

mitochondrial membranes, supporting its potential as a therapeutic

agent for mitochondrial dysfunction-related diseases such as DR (117).

In an in vitro study of a DME model, melatonin was found to reduce

the expression of HIF-1a, HIF-1b, VEGF, and VEGF receptor genes,

thereby preventing increased cell permeability and damage to the oBRB

(118). Additionally, melatonin inhibits the expression of mitophagy-

related genes (PINK, BNIP3, and NIX), thereby preventing excessive

activation of mitophagy and maintaining mitochondrial homeostasis

(119), reducing RPE cells apoptosis and alleviating BRB leakage. HG

upregulates TXNIP in both rMC-1 cells and Müller cells of diabetic

rats, leading to excessive activation of mitophagy. Knocking out TXNIP

using CRISPR/Cas9 or intravitreal injection of TXNIP siRNA can

inhibit this excessive activation. This intervention reduces Müller cell

apoptosis and mitigates gliosis mediated by Glial Fibrillary Acidic

Protein (GFAP) overexpression, potentially helping to maintain the

supportive function of Müller cells for the BRB and mitigate structural

damage to the BRB in diabetic retinopathy (98). HG also promotes

apoptosis in ARPE-19 cells through upregulation of TXNIP. Knocking

out TXNIP using TXNIP short hairpin RNA can significantly inhibit

the excessive enhancement of mitophagy flux induced by high-glucose

and alleviate mitochondrial fragmentation. This intervention restores
FIGURE 3

HG induces impairment of mitophagy in BRB constituent cells, contributing to BRB disruption in DR. The left panel depicts HG-promoted
mitochondrial fission, resulting in oxidative stress and excessive mitophagy activation, ultimately culminating in RECs apoptosis and Müller cell death.
In RECs, HG phosphorylates Drp1 via PKCd, triggering HK-II dissociation from mitochondria and blockade of the PINK1/Parkin pathway, thereby
suppressing mitophagy, inducing damaged mitochondrial accumulation, and promoting REC apoptosis. In microglia, HG promotes pro-inflammatory
M1 polarization, inducing substantial secretion of inflammatory cytokines (e.g., IL-6, TNF-a), thereby compromising BRB tight junctions and
increasing vascular permeability. In RPE cells, HG inhibits mitophagy through suppression of both PINK1/Parkin and AMPK/mTOR/ULK1 pathways,
driving RPE apoptosis and tight junction disruption. Collectively, these HG-driven impairments compromise BRB integrity and increase vascular
permeability.
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TABLE 1 Protective effects of targeting mitophagy in BRB constituent cells on the BRB in DR.

Drug/targets
Models (cells or
animals)/intervention
measures

Influence pathways
Effects on
mitophagy

Findings Reference

Inhibition of mitophagy

Melatonin

ARPE-19 (pretreated with HG+
deferoxamine mesylate, followed
by melatonin treatment for
48 hours)

HIF-1a, HIF-1b, VEGF ↓;
DRP1↓;PINK, BNip3, NIX↓;
PGC-1a, NRF2↑

Inhibition of
overactivated
mitophagy

Melatonin reduces RPE cells
apoptosis, alleviates BRB leakage,
and enhances BRB integrity.

(118)

TXNIP

rMC1/STZ-induced SD rats
(TXNIP knockout cell line/
intravitreal injection of
TXNIP siRNA)

ROS↓;DRP1↓;LC3BII puncta ,
Parkin↓; co - localization of
COXIV and LAMP2A↓,
OPTN, p62↓;GFAP↓

Inhibition of
overactivated
mitophagy

Knocking out TXNIP reduces
apoptosis and gliosis in Müller
cells, thereby BRB integrity and
mitigating structural damage to
the BRB in DR.

(98)

TXNIP
ARPE-19 (TXNIP knockout
strain shTXNIP3 + 4)

ROS↓;Restore Trx1/Trx2
function, inhibit mitochondrial
fission and TBK1-mediated
phosphorylation of
autophagy adaptors

Reduced
mitophagic flux
impairs autophagic
degradation of
damaged
mitochondria

Knocking out TXNIP reduces
RPE cells apoptosis, restores
proliferative capacity, maintains
RPE layer integrity, and protects
the barrier function of BRB.

(66)

WIF1

ARPE-19/STZ-induced diabetic
C57BL/6J mice (treated with
WIF1/intravitreal injection
of WIF1)

AMPK/mTOR, PINK1/
Parkin↓;LC3-II/LC3-I , p62↓;
ROS, MDA↓;SOD, GPX↑

Inhibition of
overactivated
mitophagy

WIF1 restores the function of
RPE cells, reduces the formation
of RECs tube, protects the
integrity of BRB, and thickens all
retinal layers

(120)

Promotion of mitophagy

MSC-derived small
extracellular
vesicles (containing
miR-125a-5p)

Rat Müller cells/STZ-induced SD
rats (co-cultured with MSC-
sEVs/intravitreally injected with
MSC-sEVs)

PINK1/Parkin ↑;LC3II/LC3I ,
TOM20↑;P62 ↓;
GFAP↓;occludin↑

Promotion
of mitophagy

MSC-sEVs-miR-125a-5p reduce
Müller cells apoptosis, restore
their proliferative capacity,
decrease retinal vascular leakage,
and improve BRB integrity.

(101)

Leflunomide
HRECs(leflunomide added when
normal blood glucose is restored
after HG exposure)

Mfn2 ↑;ROS↓;LC3II/LC3I ↑
Promotion
of mitophagy

Leflunomide reduces RECs
apoptosis, improves their
proliferative capacity, and protects
BRB integrity.

(65)

Drp1

RMECs/STZ-induced SD rats
(pretreated with Mdivi-1/
intravitreally injected with
Mdivi-1)

HK-II↑; PINK1/Parkin↑;LC3B-
II↑, p62↓

Promotion
of mitophagy

Inhibiting Drp1 can reduce
RMECs apoptosis and retinal
vascular leakage, decrease the
number of acellular capillaries,
restore retinal thickness, and
protect BRB integrity.

(99)

TIN2

ARPE-19/STZ-induced C57BL/6J
diabetic mice (transfected with
sh-TIN2/intravitreally injected
with aav-shTIN2)

mTOR↓;PINK1/Parkin↑;LC3B-
II↑, p62↓;SA-b-gal positive
cells↓;ZO-1↑

Promotion
of mitophagy

Knocking out TIN2 inhibits RPE
cells senescence; alleviates
oxidative stress, protects BRB
integrity, and increases
retinal thickness.

(104)

Sirt3
ARPE-19(Transfection withLV-
Sirt3 )

AMPK ↑, mTOR↓;ULK1↑,
LC3B-II/LC3B-I ↑;ROS↓

Promotion
of mitophagy

Sirt3 overexpression reduces RPE
cells ROS and apoptosis, protects
RPE cells integrity, and maintains
BRB barrier function.

(103)

Poldip2

BV2 cells/STZ-induced diabetic
SD rats (Transfection with
Poldip2-siRNA/intravitreally
injected with AAV9-
Poldip2-shRNA)

AMPK/ULK1/Pink1/Parkin↑;
IL-6, TNF-a ↓;VEGFR ↓;LC3B-
II/LC3B-I ↑;p62 ↓

Promotion
of mitophagy

Inhibition of Poldip2 increases
microglial M2 polarization,
reduces cytokines factors,
decreases retinal vascular leakage,
inhibits neovascularization, and
protects BRB integrity.

(100)

(Continued)
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the antioxidant function of thioredoxins (Trx1, Trx2), reduces ROS

accumulation, alleviates increased lysosomal membrane permeability,

and prevents the inactivation of tissue cathepsin L. Consequently,

decreased RPE cells apoptosis and enhanced cell viability may

contribute to maintained BRB structural integrity (66). Wnt

inhibitory factor 1 (WIF1) is a gene reported to inhibit the Wnt/b-
catenin signaling pathway. Initially discovered in human retinas, it is

involved in regulating cell proliferation and tissue homeostasis. HG

reduces the expression of WIF1, leading to excessive activation of

mitophagy. Recombinant WIF1 protein downregulates the expression

of mitophagy-related proteins in STZ-induced diabetic mice, including

Parkin, PINK1, and the LC3-II/LC3-I ratio, inhibiting excessive

activation of mitophagy (120). This helps restore RPE cells function,

downregulate VEGFA expression, reduce tube formation in retinal

endothelial cells, and maintain the integrity of the BRB.
5.2 Increasing mitophagy in BRB
constituent cells to improve BRB damage
in DR

In AGEs-induced Müller cells and STZ rat models, small

extracellular vesicles from MSCs (which contain miR-125a-5p)
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activate PINK1/Parkin-mediated mitophagy by inhibiting PTP1B

expression, significantly increasing the LC3-II/LC3-I ratio while

decreasing levels of p62 protein and the tight junction protein

occludin. Ultimately, these changes alleviate glial cell activation and

reduce vascular leakage (101). Leflunomide acts on human retinal

endothelial cells under high-glucose conditions in vitro, promoting

the expression of the mitochondrial fusion protein mitofusin 2

(Mfn2), reversing Drp1-mediated excessive fission, restoring

mitophagy flow, and increasing the expression of the tight junction

protein ZO-1, which helps maintain the structural integrity of the

BRB (65). Studies have shown that HG promotes Drp1

phosphorylation, leading to reduced mitochondrial fission,

separation of HK-II from mitochondria, and inhibition of PINK1/

Parkin-mediated mitophagy. Notably, Mdivi-1 (a Drp1 inhibitor)

and rapamycin (an autophagy agonist) can reverse the above

phenomena. Pretreatment with Mdivi-1 or rapamycin can reduce

mitochondrial fission, enhance PINK1/Parkin-mediated mitophagy,

decrease RMEC apoptosis and retinal vascular leakage, and reduce

the number of acellular capillaries, thereby protecting BRB integrity

(99). Research has shown that both in diabetic mice and under

hyperglycemic conditions in vitro,TIN2 exacerbates the aging of RPE

cells, TIN2 overexpression activates the mTOR signaling pathway

and suppresses PINK1/Parkin-mediated mitophagy in ARPE-19 cells
TABLE 1 Continued

Drug/targets
Models (cells or
animals)/intervention
measures

Influence pathways
Effects on
mitophagy

Findings Reference

Promotion of mitophagy

TGR5

RMECs/STZ-induced SD rats
(pretreated with INT-777/
intravitreally injected with
INT-777)

PKCd/Drp1 ↓;HK2/PINK1/
Parkin↑;LC3B-II/LC3B-I ↑;
p62 ↓

Promotion
of mitophagy

Activating TGR5 reduces retinal
vascular leakage, RECs apoptosis
and acellular capillaries, restores
retinal thickness, and maintains
BRB integrity.

(121)

VDAC1
HRCECs (Transfection with
VDAC1-
overexpressing adenovirus)

PINK1/Parkin↑; mtROS ↓;
NLRP3 ↓

Promotion
of mitophagy

VDAC1 overexpression reduces
HRCECs proliferation, migration
and tube formation, promotes
apoptosis, and protects
BRB integrity.

(122)

NGR1

rMC-1 cells/db/db mice (NGR1
pretreatment/oral administration
of 30 mg/kg NGR1 for
12 weeks)

PINK1/Parkin↑; LC3-II/LC3-I
↑;VEGF↓;PEDF↑

Promotion
of mitophagy

NGR1 reduces Müller cells
apoptosis, inhibits inflammatory
cytokines release, increases retinal
thickness, alleviates vascular
leakage, and protects
BRB integrity.

(123)

Alc
High-fat diet + STZ-induced SD
rats (Alc, 16 mg/kg/day)

PINK1/Parkin↑; MDA↓;SOD,
GPx↑;NLRP3↑

Promotion
of mitophagy

Alc restores retinal layer
thickness, alleviates vascular
lesions, reduces retinal ganglion
cell degeneration, protects BRB
structural integrity, and
decreases permeability.

(124)

Heyingwuzi
formulation

HRCECs/STZ-induced C57BL/6
diabetic mice (treated with 10%
HYWZF serum/administered
with 12 g/kg or 24 g/
kg HYWZF)

HIF-1a/BNIP3/NIX↑;LC3II/
LC3I ↑;P62↓;claudin-5↑;VEGF↓

Promotion
of mitophagy

HYWZF reduces RECs apoptosis,
restores their function, enhances
tight junctions, reduces BRB
permeability, restores retinal
thickness, and decreases
acellular capillaries.

(126)
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under high-glucose conditions. Conversely, knocking out TIN2 or

using rapamycin reduced RPE cells aging, restored ZO-1 expression,

increased retinal thickness, alleviated oxidative stress, and preserved

BRB integrity (104).

Additionally, the decreased expression of SIRT3 caused by HG

inhibits mitophagy. In vitro studies, overexpression of SIRT3

enhanced mitophagy in ARPE-19, reduced ROS production,

decreased RPE cells apoptosis, and potentially maintained the

barrier function (103). HG conditions in vitro induces the

upregulation of Poldip2 expression in microglia, which directly

obstructs the initiation and execution of mitophagy, leading to the

accumulation of damaged mitochondria that cannot be cleared in

time. Interventions targeting Poldip2 (such as knocking out Poldip2)

can restore the activity of the AMPK/ULK1/PINK1 pathway,

enhance mitophagy to clear damaged mitochondria, increase M2

polarization of microglia, reduce inflammatory cytokines, decrease

retinal vascular leakage, and inhibit ocular neovascularization

(lowering VEGFR) (100). Similarly, research teams have found that

the membrane G protein-coupled bile acid receptor 5 (TGR5)

enhances mitophagy and inhibits mitochondrial fission by

regulating the PKCd/Drp1-HK2 signaling pathway in STZ-induced

SD rat models and HG-induced human retinal endothelial cells

(RMEC). This mechanism reduces retinal vascular leakage,

decreases the number of acellular capillaries, restores retinal

thickness, reduces endothelial cell apoptosis, and maintains BRB

integrity (121). Subsequently, in HG-induced human retinal capillary

endothelial cells (HRCECs), increased expression of Drp1, decreased

expression of MFN2, increased mtROS, and reduced expression of

PINK1, Parkin, and VDAC1 proteins were observed. Further studies

indicated that overexpression of VDAC1 could promote PINK1

expression and inhibit NLRP3 activation. Therefore, it is concluded

that VDAC1 may be a potential target for the prevention and

treatment of DR (122).

Ginsenoside R1 (NGR1) is a novel saponin extracted from

Panax notoginseng with pharmacological properties. NGR1

pretreatment upregulates the levels of PINK1 and Parkin in db/db

mouse retinas. It also increases the LC3-II/LC3-I ratio and

downregulates the levels of p62/SQSTM1. These changes

collectively enhance mitophagy via the PINK1/Parkin pathway

(123). In these models,NGR1 reduces Müller cell apoptosis,

lowers VEGF levels, increases PEDF expression, and inhibits the

release of inflammatory cytokines. These preclinical findings

demonstrate that NGR1 improves retinal function, increases

retinal thickness, and attenuates vascular leakage under

experimental conditions, thus potentially exerting protective

effects on BRB integrity. Allicin (Alc) is a natural compound

found in garlic that is gaining attention for its antioxidant and

anti-inflammatory properties. Studies have shown that Alc

promotes the expression of mitophagy-related proteins such as

PINK1 and Parkin in DR rats, enhances mitophagy, reduces pro-

inflammatory cytokines levels, and alleviates oxidative stress (124).

These effects restore the thickness of various retinal layers, reduce

vascular lesions, and decrease degeneration of retinal ganglion cells,

thereby lowering BRB permeability. Recent studies have indicated

that the HIF-1a/BNIP3/NIX pathway is associated with restoring
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autophagy in degenerated retinas, alleviating oxidative stress, and

preventing diabetic retinopathy (125, 126). The traditional Chinese

medicine Heyingwuzi formulation (HYWZF) inhibits excessive

ROS production, cell apoptosis, tube formation, and invasion in

HG-induced HRCECs by promoting mitophagy. After HYWZF

treatment, the expression levels of the tight junction protein

claudin-5, HIF-1a, Beclin1, BNIP3, and BNIP3L in mice were

significantly higher than in the model group. The results indicate

that HYWZF increases mitophagy through the HIF-1a/BNIP3/NIX
axis, reduces apoptosis of retinal endothelial cells, increases tight

junction protein levels, downregulates VEGF, decreases the number

of acellular capillaries, reduces BRB permeability, and alleviates

retinal tissue damage (126).
6 Discussion

Mitophagy is a selective degradation mechanism targeting

dysfunctional mitochondria. It participates in mitochondrial

quality control and maintains cellular homeostasis. Current

evidence indicates that dysfunctional mitophagy is associated with

multiple diseases, including DR. Therefore, targeting the mitophagy

pathway may hold therapeutic potential.

We summarize the effects of targeting mitophagy on BRB in

DR. The results show that under high-glucose conditions,

mitophagy in cells exhibits bidirectional changes, rather than

simply increasing or decreasing. Mitophagy may be excessively

activated, leading to the clearance of necessary organelles and

proteins, causing cells to lose compensatory capacity and

ultimately undergo apoptosis. Conversely, a decrease in

mitophagy can lead to the accumulation of damaged

mitochondria. Whether through excessive activation or inhibition,

either condition can ultimately lead to BRB degradation. This

difference may be owing to variations in induction methods and

the use of different animal or cell models across various studies,

leading to inconsistent results. Mild hyperglycemia can induce a

stress response that excessively activates mitophagy, leading to the

clearance of damaged mitochondria. Conversely, severe or

persistent hyperglycemia leads to cellular damage, resulting in

mitophagy dysfunction. Additionally, the duration of diabetes

affects mitophagy function. With prolonged diabetes duration,

mitophagy gradually decreases, which may be related to aging, as

aging inhibits its activation.

Mitophagy acts as a key regulator in DR. Existing drug and

target interventions can improve BRB damage in DR by promoting

or inhibiting mitophagy, providing an effective strategy for the

precise regulation of DR. Current research has confirmed this

feasibility through cellular and animal models (such as rats and

mice), demonstrating high translational value. In particular, MSC-

EVs therapy has reached the in vitro validation phase, with

preliminary evidence demonstrating its ability to penetrate the

BRB and deliver miR-125a-5p to Müller cells, potentially

circumventing systemic drug side effects. Leflunomide, an FDA-

approved anti-rheumatic drug, has been shown in animal studies to

activate Mfn2 and ameliorate DR pathology, suggesting potential
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for accelerated clinical translation. Moreover, preclinical studies

suggest that targeting molecules such as TXNIP, Drp1, and TIN2, or

applying bioactive natural compounds like NGRI and Alc, may

exert therapeutic potential by modulating mitophagic imbalance in

BRB cells. These strategies merit further mechanistic and efficacy

validation in subsequent research. Future research should focus on

several aspects. First, retinal imaging technologies (such as OCT-A)

should be combined to assess the state of mitophagy in patients and

guide drug selection. Second, BRB-specific drug delivery systems

should be developed, such as nanoparticles targeting Müller or RPE

cells. Third, integrating multi-omics technologies to screen for new

targets, such as compounds derived from the TXNIP pathway, can

enhance treatment specificity and reduce side effects to support the

development of DR treatment.
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