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multimodal radiomics model for
preoperative prediction of lateral
lymph node metastasis in
papillary thyroid carcinoma
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Medical University, Nanjing, Jiangsu, China, 3Department of Ultrasound, The Third Affiliated Hospital
of Soochow University, Changzhou First People’s Hospital, Changzhou, Jiangsu, China, 4Department
of Thyroid Surgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical
University, Suzhou, Jiangsu, China
Background: Papillary thyroid carcinoma (PTC) frequently develops lateral lymph

node metastasis (LLNM) in 12.6%-32.8% of patients, increasing recurrence risk

and mortality. Current diagnostic methods show significant limitations, with

occult LLNM rates of 41.0%-51.7% requiring secondary surgeries. This study

aims to develop and validate a multimodal prediction model integrating

clinical, ultrasound, and CT radiomics features for accurate preoperative LLNM

prediction in PTC patients.

Methods: Clinical data, ultrasound and CT images from 799 PTC patients were

retrospectively analyzed (524 training, 225 internal validation, 50 external

validation). Clinical features were selected through logistic regression after

collinearity analysis. A total of 874 ultrasound radiomics features and 1433 CT

radiomics features were extracted and selected using LASSO regression. Four

machine learning models were constructed and compared, with model

interpretability explored using SHAP and LIME analyses.

Results: Logistic regression identified five independent clinical risk factors:

maximum tumor diameter, multiple lesions, upper pole location, decreased

monocyte count, and lower lymphocyte-to-monocyte ratio (LMR). LASSO

regression selected 4 key ultrasound features and 11 key CT features. The

Gradient Boosting Machine (GBM) model demonstrated superior performance,

with areas under the curve of 0.973, 0.803, and 0.975, and accuracies of 0.914,

0.725, and 0.900 in the training, internal validation, and external validation sets

respectively. Decision curve analysis confirmed the GBM model’s highest net

clinical benefit. SHAP analysis identified LMR as the most important predictor.
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Conclusion: The GBM-based multimodal prediction model accurately predicts

LLNM in PTC patients preoperatively. This non-invasive, interpretable tool

enables individualized risk assessment, potentially reducing missed metastases

requiring secondary surgery, thereby supporting precise treatment decisions in

PTC management.
KEYWORDS

papillary thyroid carcinoma, lateral lymph node metastasis, radiomics, multimodal
prediction, machine learning
Introduction

Papillary thyroid carcinoma (PTC) is the most common thyroid

malignancy, with lateral lymph node metastasis (LLNM) occurring

in approximately 12.6%-32.8% of patients and significantly

increasing recurrence risk and mortality (1).

The 2015 American Thyroid Association guidelines

recommend that lateral neck dissection be reserved for patients

with preoperative evidence of LLNM rather than performed

routinely as a prophylactic measure (2). However, current

diagnostic methods have substantial limitations. Ultrasound,

while widely accessible, has insufficient sensitivity for detecting

small metastases (3). Fine-needle aspiration cytology (FNAC)

improves accuracy but is restricted to visibly suspicious nodes,

leaving many occult metastases undetected. Studies report occult

LLNM rates of 41.0%-51.7% (4, 5), representing a significant clinical

challenge as undetected metastases can lead to disease persistence

requiring secondary surgical intervention.

Radiomics has emerged as a promising approach to address

these challenges. By employing high-throughput computational

methods to extract quantitative features from medical images,

radiomics can reveal biological behaviors invisible to the naked

eye (6). These features—including morphological, statistical,

textural, and wavelet-transformed parameters—provide

comprehensive characterization of tumor heterogeneity and

microenvironment, potentially offering valuable insights into

metastatic potential.

Multimodal approaches that integrate clinical features with

different imaging modalities offer superior predictive performance

by leveraging complementary advantages of various data sources.

Machine learning algorithms, including Random Forest (RF),

Gradient Boosting Machine (GBM), Support Vector Machine

(SVM), and K-Nearest Neighbors (KNN), can effectively analyze

these high-dimensional, heterogeneous datasets to generate

accurate predictive models (7).

This study aims to develop and validate a multimodal

prediction model integrating preoperative clinical characteristics

with ultrasound and computed tomography (CT) radiomics

features to detect LLNM in PTC patients. Using machine learning

and advanced model interpretation techniques, we seek to provide a
02
non-invasive, accurate, and interpretable tool for personalized

treatment planning. This approach aims to guide lateral neck

dissection decisions, reduce unnecessary second surgeries, and

improve surgical management of PTC patients.

We present this study in accordance with the TRIPOD

(Transparent Reporting of a multivariable prediction model for

Individual Prognosis Or Diagnosis) reporting guideline to ensure

transparent and complete reporting of our prediction model

development and validation.
Methods

Patients and study design

This retrospective study was approved by the Ethics

Committees of Changzhou First People’s Hospital and Suzhou

Municipal Hospital. Clinical data, ultrasound, and CT images

were collected from thyroid cancer patients treated at these

hospitals between January 2022 and June 2024. Inclusion criteria:

(1) pathologically confirmed primary classic PTC; (2) preoperative

ultrasound and CTmeeting analysis standards; (3) complete clinical

data; (4) no prior thyroid surgery/ablation; (5) patients with PTC

and/or concurrent benign thyroid conditions (nodular goiter,

Hashimoto’s thyroiditis). Exclusion criteria: (1) non-classic PTC

or other thyroid subtypes; (2) prior thyroid surgery/ablation; (3)

history of head/neck cancer or familial cancer; (4) poor imaging

quality; (5) incomplete clinical data; (6) non-curative surgery with

persistent disease. A total of 799 PTC patients were enrolled, with

data allocation as follows: Changzhou First People’s Hospital

(training group, n=524; internal validation group, n=225) and

Suzhou Municipal Hospital (external validation group, n=50).
Clinical data collection

Body mass index (BMI) was calculated as weight (kg)/height²

(m²). Patients were classified as normal weight, overweight, or obese

based on World Health Organization guidelines (8). Hashimoto’s

thyroiditis was diagnosed based on elevated antibodies or
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ultrasound findings. Extrathyroidal extension (ETE) was defined as

>25% tumor contact with the thyroid capsule (9). The largest lesion

was used for pathological evaluation in multifocal cases. All

d iagnoses and lymph node s ta tuses were confirmed

pathologically. Preoperative laboratory tests included white blood

cell count, platelet count, neutrophil count, lymphocyte count,

monocyte count, and thyroid function, as well as inflammatory

indices (lymphocyte-to-monocyte ratio (LMR), neutrophil-to-

lymphocyte ratio, platelet-to-lymphocyte ratio, systemic immune-

inflammation index).
Surgical procedures

All surgical procedures were performed by experienced thyroid

surgeons following standardized protocols. Thyroidectomy

procedures included: (1) Total thyroidectomy: complete removal

of both thyroid lobes and isthmus; (2) Thyroid lobectomy:

unilateral thyroid lobe removal with isthmus. Central lymph node

dissection was performed in all patients, involving systematic

removal of compartment VI lymph nodes. For patients with

preoperative evidence of LLNM confirmed by fine-needle

aspiration cytology, therapeutic lateral lymph node dissection was

performed, involving systematic removal of levels II-V lymph

nodes. A total of 102 patients underwent lateral neck dissection of

levels II-V: 92 patients at Changzhou First People’s Hospital (61

training group + 26 internal validation group with confirmed

LLNM, plus 5 patients with suspected but pathologically negative

LLNM) and 10 patients at Suzhou Municipal Hospital with

confirmed LLNM.
Preoperative imaging and diagnostic
workflow

CT scans were performed with a Siemens Somatom Definition

Flash dual-source CT scanner. Patients were positioned supine with

slight neck hyperextension. The scanning range extended from the

hyoid bone to the sternal manubrium, and if needed, to the aortic

arch. Parameters included 120 kV, 200 mAs, 1.0 mm slice thickness,

pitch 1.0, and a 200 mm × 200 mm field of view. Contrast-enhanced

scans were performed using Iohexol (350 mg/ml iodine

concentration), with dual-phase enhancement for arterial and

venous phase imaging. Ultrasound was conducted using Philips

iU22/EPIQ 5 or GE LOGIQ E9 systems. Experienced physicians

obtained high-resolution tumor images and Doppler flow images,

which were stored in DICOM format. Lymph nodes with suspicious

features (e .g . , round shape, absent echogenic hi lum,

microcalcifications) were classified as ultrasound-suspected

LLNM. FNAC was then performed to confirm the histopathologic

diagnosis of suspicious lateral lymph nodes. For patients with

clinically suspicious LLNM confirmed by FNAC, thyroidectomy

plus central neck dissection and therapeutic lateral neck dissection

were performed.
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Image analysis and radiomics feature
extraction

To standardize image analysis and ensure cross-device

reproducibility, all ultrasound and CT images were resampled to an

isotropic voxel resolution of 1 mm³ using trilinear interpolation

algorithms. For ROI segmentation, tumor regions of interest were

manually delineated on contrast-enhanced arterial phase CT images

by the two radiologists, as the arterial phase provides optimal tumor-

to-background contrast for accurate boundary definition. Ultrasound

images were min-max normalized to the (–1, 1) range, and tumor

ROIs were manually delineated by two ultrasonographers using 3D-

Slicer (Supplementary Figure 1) following standardized protocols. A

total of 874 quantitative features were extracted according to Image

Biomarker Standardization Initiative (IBSI) guidelines, including

morphological (25), first-order statistical (42), texture (729), and

wavelet transform features (78) using 8 different wavelet

decompositions (LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH).

CT image analysis, independently performed by two blinded imaging

physicians, involved spatial standardization using B-spline

interpolation, Z-score normalization, and Gaussian filtering (s=1.0
mm) for noise suppression. To mitigate potential inter-device

variability across different scanner manufacturers (Philips, GE,

Siemens), intensity harmonization using histogram matching was

applied prior to feature extraction. LIFEx software extracted 1433

features following IBSI compliance standards, categorized into

morphological (32), first-order statistical (75), texture (620), and

filtered transform features (706). The filtered transform features

included wavelet decompositions, Laplacian of Gaussian filters, and

mathematical transformations (square, square root, logarithm,

exponential). For reproducibility analysis of radiomics features, a

random subset of 150 patients was selected for repeat feature

extraction by the same two operators after a two-week interval to

assess intra- and inter-observer reliability. Feature stability across

different imaging platforms was assessed through intraclass

correlation coefficient (ICC) analysis, with features demonstrating

ICC >0.85 retained to ensure cross-device reproducibility.

All radiomics features were standardized using the zero-mean

method, with highly correlated features (Spearman’s r>0.9)
removed. Features with an intraclass correlation coefficient >0.85

were retained to ensure reproducibility.
Feature selection

T-tests or Mann-Whitney U tests were used to screen features

with P<0.05 and |log2(Fold Change)|≥1. Subsequently, least

absolute shrinkage and selection operator (LASSO) regression was

applied to further reduce feature redundancy and optimize feature

selection. The optimal l value was determined using 10-fold cross-

validation to identify key predictive features. Correlation heatmaps

were generated to analyze relationships between radiomics features

and clinical factors, ensuring they could provide complementary

information for predicting LLNM.
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To identify clinical features associated with LLNM, variance

inflation factor (VIF) was calculated through collinearity analysis to

exclude variables with multicollinearity. Logistic regression analysis

with stepwise regression was then performed on the remaining

variables to screen for independent risk factors.
Multimodal prediction model construction
and evaluation

Four machine learning models were constructed: Random

Forest (RF), Gradient Boosting Machine (GBM), Support Vector

Machine (SVM), and K-Nearest Neighbors (KNN). Models were

trained using 10-fold cross-validation to avoid overfitting. While

advanced deep learning approaches, including semi-supervised

learning frameworks (10) and divide-and-conquer architectures

(11), show promise in medical imaging, we selected traditional

machine learning algorithms for better interpretability and

performance with our dataset size. Hyperparameters were

optimized through grid search. Model performance was evaluated

by area under the curve (AUC), sensitivity, specificity, accuracy, and

related metrics. DeLong tests compared model differences, while

clinical utility was assessed using decision curves. SHapley Additive

exPlanations (SHAP) and Local Interpretable Model-agnostic

Explanations (LIME) were used to interpret model predictions,

with SHAP providing global feature importance and LIME offering

local explanations for individual cases.
Statistical analysis

Statistical analyses were performed using R (Version 3.5.3),

SPSS (Version 25.0), and Python (Version 3.12.0). Categorical

variables were compared using chi-square or Fisher’s exact tests.

Continuous variables were compared using t-tests for normally

distributed data and Mann-Whitney U tests for non-normally

distributed data. Model evaluation included receiver operating

characteristic curves, DeLong tests, Decision curve analysis

(DCA), and SHAP and LIME analyses. P<0.05 was considered

statistically significant.
Results

Clinical characteristics of patients

In the training group, 146 patients (27.9%) were male and 378

(72.1%) were female, with a mean age of 44.0 ± 12.1 years. The

internal validation group consisted of 51 males (22.7%) and 174

females (77.3%), with a mean age of 42.7 ± 11.6 years. The external

validation group included 10 males (20.0%) and 40 females (80.0%),

with a mean age of 44.2 ± 12.3 years. The incidence of LLNM was

11.6% in the training group, 11.6% in the internal validation group,

and 20.0% in the external validation group (Table 1). No statistically

significant differences in clinical or pathological characteristics were
Frontiers in Endocrinology 04
observed between the training and internal validation groups (all

P>0.05). Follow-up surveillance revealed that 7 patients developed

contralateral residual thyroid recurrence. No patients who did not

undergo initial lateral neck dissection developed subsequent lateral

regional recurrence
Clinical risk factors for LLNM

To identify independent risk factors for LLNM, we first

performed collinearity diagnostics. Variables demonstrating

significant multicollinearity (VIF>10) included platelet count

(VIF=99.79), neutrophil count (VIF=89.25), lymphocyte count

(VIF=29.22), neutrophil-to-lymphocyte ratio (VIF=178.73),

platelet-to-lymphocyte ratio (VIF=160.64), and systemic immune

inflammation index (VIF=96.32). These variables were excluded

from further analysis to enhance model stability.

Multivariate logistic regression analysis of the remaining

variables identified five independent risk factors for predicting

LLNM (Table 2). Maximum tumor diameter was significantly

associated with increased risk, with progressively higher odds for

larger tumors (>1 to ≤2 cm: OR=2.494, 95% CI: 1.212–5.132,

P=0.013; >2 to ≤4 cm: OR=7.851, 95% CI: 3.072–20.066, P<0.001;

>4 cm: OR=13.032, 95% CI: 3.253–52.212, P<0.001). Multiple

lesions (≥2 lesions: OR=2.846, 95% CI: 1.436–5.639, P=0.003) and

tumor location in the upper pole (OR=5.181, 95% CI: 2.550–10.524,

P<0.001) were also identified as independent risk factors.

Additionally, decreased monocyte count (OR=0.004, 95% CI:

0.000–0.070, P<0.001) and a lower LMR (OR=0.524, 95% CI:

0.410–0.671, P<0.001) were significantly associated with LLNM.
Radiomics feature selection

Differential feature analysis using independent sample t-tests

(for normally distributed data) or Mann-Whitney U tests (for

skewed distributions) was performed to compare radiomics

features between groups with and without LLNM. Features with

P<0.05 and |log2(Fold Change)|≥1 were selected. This initial

screening reduced the 874 ultrasound radiomics features to 100

and the 1433 CT radiomics features to 97 (Figures 1a).

LASSO regression was subsequently applied to further eliminate

redundant features while balancing model simplicity and predictive

performance. Using 10-fold cross-validation to determine the

optimal l value (corresponding to minimum binomial deviance),

we identified 4 key ultrasound features (1 first-order feature and 3

texture features) and 11 key CT features (1 morphological feature

and 10 texture features) (Figures 1b).

Correlation analysis using heatmaps evaluated the relationships

between radiomics features and clinical factors (tumor diameter,

number of lesions, tumor location, monocyte count, LMR and

LLNM). Results demonstrated weak correlations between clinical

factors, except for LLNM, and radiomics features (Figures 2a),

indicating that these features could provide complementary

information for constructing more robust prediction models.
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TABLE 1 Clinical pathological characteristics of patients.

Clinical features
Training
group

Internal
validation
group

External
validation
group

t/c² value* P value* t/c² value** P value**

Gender

Male 146 (27.9%) 51 (22.7%) 10 (20.0%) 2.192 0.139 1.347 0.246

Female 378 (72.1%) 174 (77.3%) 40 (80.0%)

Age (years) 44.0 ± 12.1 42.7 ± 11.6 44.2 ± 12.3 1.365 0.172 0.096 0.924

≥55 97 (18.5%) 38 (16.9%) 8 (16.0%) 0.280 0.596 0.157 0.692

<55 427 (81.5%) 187 (83.1%) 42 (84.0%)

BMI (kg/m²) 24.26 ± 3.83 24.07 ± 3.76 24.12 ± 3.79 0.626 0.531 0.218 0.827

Normal 317 (60.5%) 144 (64%) 32 (64.0%) 1.067 0.586 0.723 0.697

Overweight 169 (32.3%) 64 (28.4%) 12 (24.0%)

Obese 38 (7.3%) 17 (7.6%) 6 (12.0%)

BRAF V600E mutation

Yes 469 (89.5%) 195 (86.7%) 50 (100.0%) 1.259 0.262 5.837 0.016

No 55 (10.5%) 30 (13.3%) 0 (0.0%)

Hashimoto’s thyroiditis

Yes 127 (24.2%) 47 (20.9%) 16 (32.0%) 0.989 0.320 1.126 0.289

No 397 (75.8%) 178 (79.1%) 34 (68.0%)

Maximum tumor
diameter (cm)

1.09 ± 0.79 1.12 ± 0.76 1.03 ± 0.65 0.482 0.630 0.542 0.588

≤1 352 (67.2%) 135 (60.0%) 30 (60.0%) 5.342 0.148 1.234 0.745

>1 to ≤2 121 (23.1%) 68 (30.2%) 16 (32.0%)

>2 to ≤4 39 (7.4%) 19 (8.4%) 2 (4.0%)

>4 12 (2.3%) 3 (1.3%) 2 (4.0%)

Number of lesions

1 388 (74.0%) 162 (72.0%) 40 (80.0%) 1.579 0.454 0.892 0.345

≥2 136 (26.0%) 63 (28.0%) 10 (20.0%)

Tumor location

Upper pole 149 (28.4%) 67 (29.8%) 20 (40.0%) 0.138 0.710 2.147 0.143

Middle/Lower pole 375 (71.6%) 158 (70.2%) 30 (60.0%)

ETE

Yes 165 (31.5%) 72 (32.0%) 8 (16.0%) 0.019 0.890 4.325 0.038

No 359 (68.5%) 153 (68.0%) 42 (84.0%)

Serum thyroglobulin
(ng/ml)

34.18 ± 81.86 38.01 ± 80.22 36.37 ± 99.37 0.591 0.555 0.151 0.880

Thyroglobulin antibody
(IU/ml)

138.25 ± 466.72 89.31 ± 385.49 275.01 ± 813.53 1.383 0.167 1.127 0.260

Peroxidase antibody
(IU/ml)

38.99 ± 88.17 32.33 ± 72.42 76.09 ± 140.89 0.998 0.318 1.674 0.095

White blood cell count
(×109/L)

6.80 ± 2.20 6.62 ± 2.20 6.62 ± 2.32 1.027 0.305 0.478 0.633

(Continued)
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Construction of multimodal machine
learning models

Based on the 5 clinical features, 4 ultrasound radiomics features,

and 11 CT radiomics features, we constructed four machine

learning models: RF, GBM, SVM, and KNN. Comprehensive

evaluation revealed that the GBM model demonstrated superior

overall performance, achieving AUCs of 0.973, 0.803, and 0.975 in

the training, internal validation, and external validation sets,

respectively (Table 3).

In the training set, the GBM model achieved an accuracy of

0.914, with 0.894 specificity and 0.957 sensitivity. In the internal

validation set, these metrics were 0.725, 0.889, and 0.794,

respectively. In the external validation set, the GBM model

demonstrated excellent performance with an accuracy of 0.900,

specificity of 0.950, and sensitivity of 0.800 (Table 3). Although the

RF model showed a comparable AUC in the external validation set

(0.955 vs. 0.975), the GBMmodel exhibited better overall diagnostic

metrics and F1 score (0.842 vs. 0.870). DeLong tests revealed

statistically significant differences between the GBM model’s AUC

and other models (P<0.05) (Figures 3a). Combined with the higher

AUC values, this indicates that the GBM model achieved superior

discriminative performance compared to the RF, SVM, and KNN

models. DCA further validated these findings: across clinically

relevant threshold ranges, the GBM model (yellow line)

maintained the highest net benefit, followed by KNN, SVM, and

RF models (Figure 3).

The observation-prediction probability scatter plots revealed

the predictive characteristics of each model (Figures 4a). The RF
Frontiers in Endocrinology 06
model (Figure 4) exhibits a characteristic “striped” pattern due to its

ensemble voting mechanism, with good overall separation but

notable uncertainty in the mid-probability range. The GBM

model (Figure 4) demonstrates a more continuous probability

distribution with clearer class separation, reflecting its superior

calibration and generalization capability. The SVM model

(Figure 4) displays a polarized prediction pattern, clustering

probabilities at extremes, which corresponds to its lower

sensitivity (0.404) in internal validation due to misclassifications,

particularly in the external validation set. The KNN model

(Figure 4) produces a “stepped” probability pattern, indicating

limited discrimination ability and aligning with its lower accuracy

(0.567) and F1 score (0.519) in external validation. These

probability distributions visually corroborate the performance

metrics in Table 3, further supporting the GBM model as the

most reliable classifier for LLNM prediction.
Feature importance and model
interpretation using SHAP and LIME

SHAP analysis was employed to interpret the GBM model’s

prediction process. SHAP analysis (Figure 5) identifies LMR as the

most influential feature, followed by wavelet-based texture features

(wavelet-LHH_glszm_GrayLevelNonUniformity, wavelet-

LLL_glszm_ZoneVariance), morphological characteristics

(wavelet-HHH_glszm_SizeZoneNonUniformity), and exponential

transformations of gray-level matrices. The color gradient

highlights how feature values impact prediction outcomes.
TABLE 1 Continued

Clinical features
Training
group

Internal
validation
group

External
validation
group

t/c² value* P value* t/c² value** P value**

ETE

Platelet count (×109/L) 301.7 ± 95.3 309.7 ± 92.8 287.0 ± 88.5 1.061 0.288 0.947 0.344

Neutrophil count (×109/L) 5.30 ± 1.87 5.41 ± 1.76 5.05 ± 1.70 0.751 0.453 0.822 0.411

Lymphocyte count
(×109/L)

1.67 ± 0.81 1.66 ± 0.78 2.02 ± 0.85 0.157 0.876 2.618 0.009

Monocyte count (×109/L) 0.39 ± 0.19 0.36 ± 0.17 0.47 ± 0.14 2.043 0.061 2.763 0.006

Lymphocyte to
monocyte ratio

5.54 ± 4.28 5.91 ± 4.38 4.92 ± 3.75 1.077 0.281 0.894 0.372

Neutrophil to
lymphocyte ratio

4.21 ± 2.73 4.25 ± 2.65 3.31 ± 2.47 0.185 0.853 2.041 0.042

Platelet to lymphocyte ratio 238.10 ± 146.94 242.69 ± 144.71 186.97 ± 134.17 0.394 0.694 2.146 0.032

SII 1438.7 ± 1187.2 1467.8 ± 1153.0 1066.9 ± 1029.7 0.310 0.756 1.952 0.051

LLNM

Yes 61 (11.6%) 26 (11.6%) 10 (20.0%) 0.001 0.973 2.354 0.125

No 463 (88.4%) 199 (88.4%) 40 (80.0%)
*P value for comparison between training group and internal validation group.
**P value for comparison between training group and external validation group.
LLNM, lateral lymph node metastasis; BMI, body mass index; ETE, extrathyroidal extension; SII, Systemic immune inflammation index.
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TABLE 2 Collinearity and logistic regression analysis of clinical features associated with LLNM.

Clinical Features VIF b Odds Ratio (95% CI) P value

Gender

Female 1

Male 5.41 -0.436 0.646 (0.317-1.317) 0.230

Age (years)

≥55 1

<55 1.29 -0.288 0.750 (0.315-1.784) 0.515

BMI (kg/m²)

Normal 1

Overweight 0.682 1.977 (0.363-10.766) 0.430

Obese 5.67 -0.374 0.688 (0.119-3.972) 0.676

BRAF V600E mutation

Yes 1

No 6.54 -0.511 0.600 (0.223-1.618) 0.313

Hashimoto’s thyroiditis

No 1

Yes 2.18 0.293 1.340 (0.547-3.283) 0.522

Maximum tumor diameter (cm)

≤1 1

>1 to ≤2 0.914 2.494 (1.212-5.132) 0.013

>2 to ≤4 2.061 7.851 (3.072-20.066) <0.001

>4 1.72 2.567 13.032 (3.253-52.212) <0.001

Number of lesions

1 1

≥2 5.12 1.046 2.846 (1.436-5.639) 0.003

Tumor location

Middle/Lower pole 1

Upper pole 6.95 1.645 5.181 (2.550-10.524) <0.001

ETE

Yes 1

No 1.50 0.731 2.077 (0.997-4.282) 0.058

Serum thyroglobulin (ng/ml) 1.38 -0.001 0.999 (0.996-1.003) 0.753

Thyroglobulin antibody
(IU/ml)

1.40 <0.001 1.000 (1.000-1.001) 0.269

Peroxidase antibody (IU/ml) 1.78 0.002 1.002 (0.999-1.005) 0.160

White blood cell count
(×109/L)

9.16 0.122 1.129 (0.984-1.297) 0.085

Platelet count (×109/L) 99.79 N/A N/A N/A

Neutrophil count (×109/L) 89.25 N/A N/A N/A

Lymphocyte count (×109/L) 29.22 N/A N/A N/A

(Continued)
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Figure 5 visualizes the model’s decision path, mapping cumulative

feature contributions from the base value (0.4) to final probabilities

(0–1), revealing complex feature interactions with stronger positive

contributions toward LLNM prediction.

LIME analysis (Figure 5) demonstrates clear probability

stratification, with distinct low- and high-risk regions and a

minimal overlap between positive and negative cases,

supporting robust risk discrimination. These findings indicate

that while LMR is the dominant predictor, the GBM model’s

superior performance arises from the integration of clinical and
Frontiers in Endocrinology 08
radiomic features, enhancing LLNM prediction beyond

conventional visual assessment.
Clinical implementation of the prediction
model

To facilitate clinical translation of our multimodal prediction

model, we developed an interactive web-based calculator interface

(Figure 6). This platform integrates all identified predictive features
TABLE 2 Continued

Clinical Features VIF b Odds Ratio (95% CI) P value

ETE

Monocyte count (×109/L) 7.26 -5.584 0.004 (0.000-0.070) <0.001

Lymphocyte to
monocyte ratio

7.48 -0.646 0.524 (0.410-0.671) <0.001

Neutrophil to
lymphocyte ratio

178.73 N/A N/A N/A

Platelet to lymphocyte ratio 160.64 N/A N/A N/A

SII 96.32 N/A N/A N/A
LLNM, lateral lymph node metastasis; VIF, Variance inflation factor; BMI, body mass index; ETE, extrathyroidal extension; CI, confidence interval; SII, Systemic immune inflammation index.
FIGURE 1

Radiomics feature selection workflow. Comprehensive feature selection process for ultrasound (a–c) and computed tomography (CT) radiomics (d–
f). (a, d) Volcano plots display the relationship between statistical significance (-log10(p-value), y-axis) and fold change magnitude (log2(fold change),
x-axis) for all extracted features, with red dots indicating statistically significant features (P<0.05, |log2(fold change)|≥1) selected for further analysis.
(b, e) Least Absolute Shrinkage and Selection Operator (LASSO) regression deviance plots showing cross-validation error (mean-squared error, y-
axis) versus regularization parameter lambda (log(l), x-axis), with the optimal lambda value (red dashed line) minimizing prediction error while
reducing feature redundancy. (c, f) LASSO coefficient plots demonstrating feature selection process, where each colored line represents a radiomics
feature’s coefficient value changing with regularization strength, with features retained at optimal lambda shown as non-zero coefficients. This
process reduced 874 ultrasound features to 4 key predictors and 1433 CT features to 11 key predictors for model construction.
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into a streamlined clinical workflow, including: (a) dropdown

menus for clinical features (tumor diameter, lesion number,

tumor location); (b) input fields for laboratory parameters

(monocyte count, LMR); (c) DICOM image upload functionality

for ultrasound and CT images; and (d) real-time LLNM probability

calculation. This implementation provides healthcare providers

with a practical tool for preoperative risk stratification in

PTC patients.
Frontiers in Endocrinology 09
Discussion

Despite technological advances, preoperative LLNM diagnosis

remains challenging due to significant technical and interpretative

limitations. Current methods rely heavily on subjective radiologist

interpretation of imaging features with inherent variability.

Standard ultrasound criteria and CT assessment demonstrate only

moderate sensitivity and insufficient specificity (3, 12), particularly
FIGURE 2

Correlation analysis between radiomics features and clinical variables. Heatmaps displaying Pearson correlation coefficients between selected
radiomics features and clinical factors for (a) ultrasound and (b) CT modalities. Color intensity represents correlation strength, with green indicating
positive correlations and purple indicating negative correlations. Clinical variables include tumor location, lateral lymph node metastasis (LLNM)
status, monocyte count, lymphocyte-to-monocyte ratio (LMR), lesion number, and tumor size. Network diagrams show interconnections between
variables, with line thickness representing correlation strength. Weak correlations between radiomics features and clinical factors (except LLNM)
demonstrate that imaging-derived features provide complementary information to traditional clinical parameters, supporting the rationale for
multimodal model development.
TABLE 3 Performance of four models in training, internal validation and external validation sets.

AUC
AUC
95% CI

Accuracy Specificity Sensitivity PPV NPV
F1
score

Loss
value

AP

Training

RF 0.924 0.895-0.953 0.943 0.957 0.913 0.913 0.957 0.913 0.269 0.896

GBM 0.973 0.956-0.987 0.914 0.894 0.957 0.815 0.977 0.880 0.300 0.952

SVM 0.932 0.905-0.959 0.957 0.957 0.957 0.917 0.978 0.936 0.183 0.915

KNN 0.914 0.885-0.943 0.786 0.702 0.957 0.611 0.971 0.746 0.367 0.872

Internal validation

RF 0.811 0.745-0.877 0.755 0.849 0.866 0.651 0.797 0.605 0.493 0.795

GBM 0.803 0.735-0.871 0.725 0.889 0.794 0.639 0.747 0.487 1.720 0.785

SVM 0.715 0.635-0.795 0.681 0.819 0.404 0.526 0.734 0.457 0.867 0.658

KNN 0.744 0.670-0.818 0.725 0.769 0.636 0.578 0.810 0.606 1.825 0.728

External validation

RF 0.955 0.925-0.978 0.900 0.850 1.000 0.769 1.000 0.870 0.439 0.938

GBM 0.975 0.933-0.982 0.900 0.950 0.800 0.889 0.905 0.842 0.364 0.961

SVM 0.910 0.825-0.995 0.800 0.850 0.700 0.700 0.850 0.700 0.338 0.872

KNN 0.713 0.675-0.851 0.567 0.500 0.700 0.412 0.769 0.519 1.853 0.684
fro
AUC, Area Under the Curve; CI, Confidence Interval; PPV, Positive Predictive Value; NPV, Negative Predictive Value; AP, Average Precision; RF, Random Forest; GBM, Gradient Boosting
Machine; SVM, Support Vector Machine; KNN, K-Nearest Neighbors.
ntiersin.org

https://doi.org/10.3389/fendo.2025.1618902
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Feng et al. 10.3389/fendo.2025.1618902
for micrometastases smaller than 2mm that cause minimal

morphological changes. Even experienced radiologists struggle to

differentiate reactive lymph nodes from early metastatic

involvement due to overlapping features. This diagnostic gap

significantly impacts surgical decision-making, forcing surgeons

to balance the risks of potentially unnecessary therapeutic lateral

neck dissection against the oncological consequences of leaving

occult metastases untreated. These persistent challenges underscore

the urgent need for more objective, quantitative approaches to

preoperative LLNM risk assessment. The variability in LLNM

prevalence across different institutions, as evidenced by the higher

rate observed in our external validation cohort (20.0%) compared to

the training cohort (11.6%), further highlights the complexity of

standardizing diagnostic approaches across diverse clinical settings

with varying referral patterns and case complexities.

Previous studies on LLNM prediction have primarily relied on

either clinical parameters or single-modality imaging analysis.

Several notable imaging-based efforts include Zou et al.’s

combined dual-energy CT and thyroid function indicators model

(AUC: 0.834 in the full cohort) (13), Jiang et al.’s contrast-enhanced

ultrasound-based radiomics nomogram (AUC: 0.820 in training
Frontiers in Endocrinology 10
set) (14), and other recent advances that have demonstrated

promising results with CT radiomics-based approaches. These

include prospective multicenter studies achieving robust

performance in lateral neck lymph node metastasis prediction

(15), as well as specialized models targeting challenging cases

such as lymph nodes with short diameter less than 8mm (16).

Other researchers have focused on developing prediction models

based solely on clinical risk factors like tumor size, age, gender, and

conventional laboratory parameters (1, 17). Despite these

promising results, these approaches have inherent limitations:

they typically utilize either clinical parameters or single imaging

modality features without leveraging the complementary

information available from integrating multiple data sources.

Additionally, most existing models operate as diagnostic “black

boxes” without clear explanations of their decision-making process,

and the absence of external validation in many studies restricts their

generalizability to diverse clinical settings (18).

Our multimodal machine learning approach addresses these

limitations by seamlessly integrating clinical characteristics with

both ultrasound and CT radiomics features. The GBM model

demonstrated superior performance across all datasets, with AUCs
FIGURE 3

Machine learning model performance comparison. Receiver Operating Characteristic (ROC) curves and decision curve analysis (DCA) evaluating four
machine learning algorithms across three datasets. (a–c) ROC curves plot true positive rate (sensitivity, y-axis) versus false positive rate (1-specificity,
x-axis) for Random Forest (RF), Gradient Boosting Machine (GBM), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) models in training
(a), internal validation (b), and external validation (c) sets. Area Under the Curve (AUC) values quantify discriminative performance. GBM consistently
achieved superior performance with AUCs of 0.97, 0.80, and 0.97 respectively. (d) Decision curve analysis for the training set displays net benefit (y-
axis) versus threshold probability (x-axis), with GBM (yellow line) providing highest clinical utility across all probability thresholds compared to
treating all patients (horizontal line) or no treatment (diagonal line).
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of 0.973, 0.803, and 0.975 in the training, internal validation, and

external validation sets, respectively. The notable decrease in AUC

from training to internal validation (0.973 to 0.803) may reflect

inherent data heterogeneity within the single-center population and

natural variations in sample composition between cohorts. This

performance variation, while indicating opportunities for further

optimization through enhanced feature selection strategies, more

rigorous cross-validation approaches and improved model

calibration techniques, still resulted in superior performance

compared to other approaches. This performance significantly

outpaced other machine learning algorithms, including RF, SVM,

and KNN models. The GBM model’s excellent generalization

capability was evidenced by its evenly distributed prediction

probabilities across the entire range, as shown in Figure 3, in

contrast to the more fragmented patterns exhibited by other

models. Importantly, despite the external validation cohort’s

substantially higher LLNM prevalence (20.0% vs 11.6%), our model

maintained robust performance (AUC: 0.975), demonstrating

resilience to population heterogeneity and case-mix variations that

commonly occur across different clinical settings. Unlike most
Frontiers in Endocrinology 11
previous work, our approach incorporates advanced interpretability

techniques—SHAP and LIME—transforming the typically opaque

machine learning model into a transparent, explainable system (19).

This interpretability enhances clinical trust and facilitates

understanding of the model’s predictions, addressing a key barrier

to clinical implementation of artificial intelligence systems in

healthcare. Recent studies have similarly emphasized the

importance of explainable machine learning approaches in

predicting lymph node metastasis in thyroid cancer, demonstrating

the broader clinical acceptance and applicability of interpretable AI in

oncological decision-making (20).

Our SHAP analysis identified LMR as the most influential

predictor for LLNM, consistent with established research on

immune microenvironment’s role in tumor metastasis. This

finding underscores the biological significance of immune

parameters in metastasis development (21). In contrast to recent

studies showing sex and age as significant predictors of lymph node

metastasis in PTC (22), these traditional demographic factors did

not reach statistical significance in our LLNM prediction model,

highlighting the distinct predictive patterns for lateral versus central
FIGURE 4

Model prediction probability distribution analysis. Scatter plots displaying the distribution of predicted probabilities (y-axis) versus observed outcomes
(x-axis, where 0 = no LLNM, 1 = LLNM) across all three datasets for each machine learning model. Optimal model performance shows low predicted
probabilities clustered near y=0 for patients without LLNM (x=0) and high predicted probabilities clustered near y=1 for patients with LLNM (x=1). (a)
Random Forest (RF) demonstrates moderate separation between the two outcome groups, with some overlap in predicted probabilities between
LLNM-positive and LLNM-negative cases. (b) Gradient Boosting Machine (GBM) shows the clearest separation between outcome groups, with
LLNM-negative cases predominantly clustered at low predicted probabilities and LLNM-positive cases at high predicted probabilities, indicating
superior discriminative ability. (c) Support Vector Machine (SVM) exhibits less distinct separation, with notable prediction overlap between the two
outcome groups, particularly affecting discrimination accuracy. (d) K-Nearest Neighbors (KNN) shows considerable overlap between outcome
groups, reflecting limited discriminative capability. Histograms display probability density distributions for each class (blue = no LLNM, orange =
LLNM), with better models showing more distinct, non-overlapping distributions. GBM’s superior class separation and minimal probability overlap
support its selection as the optimal prediction model.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1618902
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Feng et al. 10.3389/fendo.2025.1618902
FIGURE 6

Web-based clinical implementation interface. Interactive prediction calculator implementing the validated GBM multimodal model for real-time
clinical decision support. The interface integrates three essential components: (1) Clinical Features section with dropdown menus for maximum
tumor diameter, number of lesions, and tumor location; (2) Laboratory Parameters section with numerical input fields for monocyte count (×109/L)
and lymphocyte-to-monocyte ratio (LMR), including example values for guidance; (3) Medical Images section with drag-and-drop functionality
supporting DICOM format uploads for both ultrasound and CT images, enabling automated radiomics feature extraction. The “Calculate LLNM Risk”
button processes all inputs through the trained model to provide instantaneous probability assessment with clinical recommendations, facilitating
evidence-based surgical planning and reducing diagnostic uncertainty in papillary thyroid carcinoma management.
FIGURE 5

Model interpretability analysis using advanced explainable AI techniques. Comprehensive feature importance analysis of the optimal GBM model
using SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). (a) SHAP summary plot ranks features by
importance (y-axis) with individual patient predictions shown as colored dots, where color intensity represents feature values (purple = low, yellow =
high) and horizontal position indicates impact on prediction (leftward = decreased LLNM risk, rightward = increased risk). Lymphocyte-to-monocyte
ratio (LMR) emerges as the most influential predictor. (b) SHAP decision path plot illustrates cumulative feature contributions from baseline
probability (0.4) to final predictions, with each line representing an individual patient’s prediction pathway, demonstrating complex feature
interactions. (c) LIME probability distribution analysis shows clear class separation with minimal overlap between positive (orange) and negative (blue)
cases, confirming robust risk stratification capability across the probability spectrum.
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lymph node metastasis. Lymphocytes display dual regulatory

properties—effector cells provide anti-tumor immunity while

tumor cells recruit immunosuppressive T-regulatory cells to

facilitate immune evasion (23). Monocytes contribute significantly

by differentiating into tumor-associated macrophages that promote

angiogenesis and metastatic spread (24). The LMR serves as a

quantifiable indicator of this immunological balance, with lower

values potentially reflecting both diminished anti-tumor

surveillance and enhanced pro-tumorigenic processes (25, 26).

The key radiomics features selected by our model complement

these immune indicators by capturing tumor heterogeneity and

invasive behavior at the microstructural level. To enhance clinical

understanding, we provide detailed biological interpretations of

these top-ranked radiomic features. Specifically, the ultrasound-

derived wavelet-LHH_glszm_GrayLevelNonUniformity captures

high-frequency spatial variations in image intensity, reflecting

internal tumor architecture and cellular disorganization associated

with invasive growth (27). Higher values indicate greater

intratumoral heterogeneity, suggesting regions of variable cellular

density, necrosis, or vascular changes associated with metastatic

capability. The CT-derived wavelet-LLL_glszm_ZoneVariance

quantifies low-frequency texture variations, representing larger-

scale structural patterns within the tumor that characterize tumor

density and boundary properties indicative of matrix remodeling

and active invasion fronts (28, 29). Additionally, the wavelet-

HHH_glszm_SizeZoneNonUniformity measures variation in

connected region sizes at high frequencies, indicating irregular

tumor borders and infiltrative growth patterns typical of

metastatic lesions (30). These radiomic signatures capture subtle

microstructural changes invisible to conventional visual assessment,

providing quantitative biomarkers of tumor biology that

complement traditional clinical and laboratory parameters in

predicting LLNM risk. LIME analysis further validated our

model’s robust discriminative ability, demonstrating clear

probability stratification with minimal overlap between positive

and negative cases. Together, these findings represent digital

signatures of biological processes typically invisible to

conventional visual assessment (31).

Our multimodal prediction model offers substantial clinical

value through several mechanisms. As a non-invasive

preoperative risk stratification tool, it enables more informed

surgical planning regarding lateral neck dissection. For patients

identified as high-risk of LLNM, clinicians can implement more

comprehensive evaluation with targeted ultrasound by experienced

sonographers or additional imaging modalities such as contrast-

enhanced thin-slice CT, potentially reducing both unnecessary

lateral neck dissections in low-risk patients and missed metastases

requiring secondary surgery in high-risk individuals (32). For active

surveillance candidates, the model provides valuable additional

information to inform treatment decisions. The model’s robust

performance in the external validation cohort, which exhibited a

markedly different LLNM prevalence pattern potentially reflecting

institutional differences in referral practices or patient

demographics, demonstrates meaningful adaptability to varying

clinical contexts that characterize real-world healthcare
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environments. This cross-institutional validation under

heterogeneous conditions enhances confidence in the model’s

potential for widespread implementation across diverse medical

centers. Additionally, the interpretability through SHAP and LIME

analyses gives clinicians transparent insights into specific factors

contributing to individual risk profiles, facilitating more

personalized patient counseling and treatment planning (33).

To facilitate widespread clinical adoption of our GBM-based

prediction model, we have designed a user-friendly web-based

calculator (Figure 6) that addresses radiomics infrastructure

limitations. This online platform allows clinicians to upload

standard DICOM ultrasound and CT images through a secure web

interface, where automated algorithms process the images and

compute radiomics features without requiring local technical

expertise. The web calculator interface is designed for clinical

efficiency, with an estimated completion time of 3–5 minutes for

data input and image upload, followed by automated processing

within 2–3 minutes. Users input basic clinical parameters (tumor

diameter, lesion number, location, monocyte count, and LMR) and

upload corresponding images. While the current implementation

requires manual parameter entry and image upload, future

integration with hospital Picture Archiving and Communication

Systems could significantly streamline the workflow by automatically

retrieving patient imaging data and laboratory results from electronic

health records. The system automatically performs image

preprocessing and feature extraction using our validated algorithms,

generating a comprehensive risk assessment report with predicted

LLNM probability and clinical recommendations within minutes.

Despite its strengths, our study has several limitations. First, as a

retrospective study, potential selection bias cannot be completely

eliminated, and patient allocation was not randomized across centers.

Second, radiomics feature extraction and analysis methods lack full

standardization across institutions, potentially affecting

reproducibility and clinical translation (34). The imaging protocols,

while standardized within each center, may vary between institutions,

introducing technical variability. Third, our model currently

incorporates ultrasound and CT radiomics but could benefit from

additional imaging modalities such as contrast-enhanced ultrasound,

MRI, or molecular imaging techniques (35–37) to further enhance

predictive accuracy. Finally, the external validation cohort (n=50)

represents a significant limitation that restricts comprehensive

assessment of model generalizability across broader population

demographics. This sample size is insufficient for robust statistical

evaluation of model performance variability under different

institutional characteristics and may not adequately represent the

full spectrum of real-world clinical heterogeneity encountered in

diverse healthcare systems. Future validation should include: (1)

prospective multicenter studies involving 5–8 tertiary centers with

300–500 patients to ensure adequate statistical power; (2)

international validation across different healthcare systems to assess

model transferability; (3) temporal validation using consecutive

patient cohorts to evaluate model stability; and (4) equipment

diversity validation across different imaging platforms to assess

feature reproducibility. To address these limitations, future research

priorities should focus on large-scale prospective multicenter
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validation, standardization of imaging acquisition and processing

workflows, and incorporation of emerging imaging technologies to

establish robust clinical implementation guidelines.
Conclusions

In summary, our study integrated clinical features, ultrasound

radiomics, and CT radiomics data to construct a multimodal model

for predicting LLNM in PTC patients using machine learning

algorithms. The model demonstrated excellent predictive

performance and clinical application potential, providing an

objective basis for individualized precision treatment of PTC. By

enabling more accurate preoperative risk stratification, this

approach may reduce missed metastases requiring secondary

surgery, ultimately improving patient outcomes through more

personalized surgical management.
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SUPPLEMENTARY FIGURE 1

Multimodal Medical Imaging Workflow for Radiomics Analysis. Step-by-step
illustration of the imaging analysis pipeline demonstrating tumor

segmentation and feature extraction methodology. (a) Original high-
resolution ultrasound image showing thyroid tumor with characteristic

echogenic patterns and surrounding normal thyroid tissue. (b) Same

ultrasound image with manual region of interest (ROI) delineation overlaid
in green, performed by experienced ultrasonographers using 3D-Slicer

software following standardized protocols to ensure reproducible tumor
boundary definition. (c) Corresponding axial CT image at the same

anatomical level with precisely matched ROI segmentation (green overlay),
enabling cross-modal feature correlation and multimodal analysis. (d) Three-
dimensional volumetric reconstruction of the segmented tumor volume,

providing comprehensive spatial representation for advanced radiomics
feature extraction including morphological, textural, and transform-

based parameters.
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An agent-based model of monocyte differentiation into tumour-associated
macrophages in chronic lymphocytic leukemia. iScience. (2023) 26:106897.
doi: 10.1016/j.isci.2023.106897

25. Ahn J, Song E, Oh HS, Song DE, Kim WG, Kim TY, et al. Low lymphocyte-to-
monocyte ratios are associated with poor overall survival in anaplastic thyroid
carcinoma patients. Thyroid. (2019) 29:824–9. doi: 10.1089/thy.2018.0684

26. Wei D, Liu J, Ma J. The value of lymphocyte to monocyte ratio in the prognosis
of head and neck squamous cell carcinoma: a meta-analysis. PeerJ. (2023) 11:e16014.
doi: 10.7717/peerj.16014

27. Hsu SM, Kuo WH, Kuo FC, Liao YY. Breast tumor classification using different
features of quantitative ultrasound parametric images. Int J Comput Assist Radiol Surg.
(2019) 14:623–33. doi: 10.1007/s11548-018-01908-8

28. Zamacona JR, Niehaus R, Rasin A, Furst JD, Raicu DS. Assessing diagnostic
complexity: An image feature-based strategy to reduce annotation costs. Comput Biol
Med. (2015) 62:294–305. doi: 10.1016/j.compbiomed.2015.01.013

29. Yang G, Nie P, Zhao L, Guo J, Xue W, Yan L, et al. 2D and 3D texture analysis to
predict lymphovascular invasion in lung adenocarcinoma. Eur J Radiol. (2020)
129:109111. doi: 10.1016/j.ejrad.2020.109111

30. Nakamura T, Matsumine A, Matsubara T, Asanuma K, Yada Y, Hagi T, et al.
Infiltrative tumor growth patterns on magnetic resonance imaging associated with
systemic inflammation and oncological outcome in patients with high-grade soft-tissue
sarcoma. PLoS One. (2017) 12:e0181787. doi: 10.1371/journal.pone.0181787

31. Sanduleanu S, Woodruff HC, de Jong EEC, van Timmeren JE, Jochems A, Dubois
L, et al. Tracking tumor biology with radiomics: A systematic review utilizing a radiomics
quality score. Radiother Oncol. (2018) 127:349–60. doi: 10.1016/j.radonc.2018.03.033

32. Zhao S, Yue W, Wang H, Yao J, Peng C, Liu X, et al. Combined conventional
ultrasound and contrast-enhanced computed tomography for cervical lymph node
metastasis prediction in papillary thyroid carcinoma. J Ultrasound Med. (2023) 42:385–
98. doi: 10.1002/jum.16024

33. Aldughayfiq B, Ashfaq F, Jhanjhi NZ, Humayun M. Explainable AI for
retinoblastoma diagnosis: interpreting deep learning models with LIME and SHAP.
Diagnostics (Basel). (2023) 13(11). doi: 10.3390/diagnostics13111932

34. Nicora G, Vitali F, Dagliati A, Geifman N, Bellazzi R. Integrated multi-omics
analyses in oncology: A review of machine learning methods and tools. Front Oncol.
(2020) 10:1030. doi: 10.3389/fonc.2020.01030

35. Wei R, Wang H, Wang L, Hu W, Sun X, Dai Z, et al. Radiomics based on
multiparametric MRI for extrathyroidal extension feature prediction in papillary
thyroid cancer. BMC Med Imaging. (2021) 21:20. doi: 10.1186/s12880-021-00553-z

36. Wang B, Guo Q, Wang JY, Yu Y, Yi AJ, Cui XW, et al. Ultrasound elastography
for the evaluation of lymph nodes. Front Oncol. (2021) 11:714660. doi: 10.3389/
fonc.2021.714660

37. Choi M, Yoon J, Choi M. Contrast-enhanced ultrasound sonography combined
with strain elastography to evaluate mandibular lymph nodes in clinically healthy dogs
and those with head and neck tumors. Vet J. (2020) 257:105447. doi: 10.1016/
j.tvjl.2020.105447
frontiersin.org

https://doi.org/10.3389/fonc.2022.944414
https://doi.org/10.1089/thy.2015.0020
https://doi.org/10.1016/j.ejrad.2020.109103
https://doi.org/10.3389/fendo.2024.1353923
https://doi.org/10.1002/mp.13678
https://doi.org/10.1002/mp.13678
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1089/thy.2015.0632
https://doi.org/10.3348/kjr.2019.0983
https://doi.org/10.1088/1361-6560/ad7454
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1136/bmjopen-2021-051568
https://doi.org/10.1186/s12885-021-07951-0
https://doi.org/10.1186/s12885-021-07951-0
https://doi.org/10.3390/cancers15051613
https://doi.org/10.3390/cancers15051613
https://doi.org/10.1016/j.acra.2023.03.039
https://doi.org/10.1186/s40644-024-00803-7
https://doi.org/10.1186/s40644-024-00803-7
https://doi.org/10.3389/fendo.2023.1233929
https://doi.org/10.1111/cts.70056
https://doi.org/10.1038/s41598-024-73837-3
https://doi.org/10.1172/JCI124037
https://doi.org/10.1038/s41598-024-66304-6
https://doi.org/10.1038/s41598-024-66304-6
https://doi.org/10.7150/thno.51777
https://doi.org/10.1016/j.isci.2023.106897
https://doi.org/10.1089/thy.2018.0684
https://doi.org/10.7717/peerj.16014
https://doi.org/10.1007/s11548-018-01908-8
https://doi.org/10.1016/j.compbiomed.2015.01.013
https://doi.org/10.1016/j.ejrad.2020.109111
https://doi.org/10.1371/journal.pone.0181787
https://doi.org/10.1016/j.radonc.2018.03.033
https://doi.org/10.1002/jum.16024
https://doi.org/10.3390/diagnostics13111932
https://doi.org/10.3389/fonc.2020.01030
https://doi.org/10.1186/s12880-021-00553-z
https://doi.org/10.3389/fonc.2021.714660
https://doi.org/10.3389/fonc.2021.714660
https://doi.org/10.1016/j.tvjl.2020.105447
https://doi.org/10.1016/j.tvjl.2020.105447
https://doi.org/10.3389/fendo.2025.1618902
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Application and validation of the machine learning-based multimodal radiomics model for preoperative prediction of lateral lymph node metastasis in papillary thyroid carcinoma
	Introduction
	Methods
	Patients and study design
	Clinical data collection
	Surgical procedures
	Preoperative imaging and diagnostic workflow
	Image analysis and radiomics feature extraction
	Feature selection
	Multimodal prediction model construction and evaluation
	Statistical analysis

	Results
	Clinical characteristics of patients
	Clinical risk factors for LLNM
	Radiomics feature selection
	Construction of multimodal machine learning models
	Feature importance and model interpretation using SHAP and LIME
	Clinical implementation of the prediction model

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


