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Diabetes mellitus is strongly associated with accelerated intervertebral disc

degeneration, a condition that significantly contributes to lower back pain and

reduced quality of life. Emerging evidence indicates that advanced glycation end

products (AGEs) are key mediators in the pathophysiology of disc degeneration

through the stimulation of inflammatory pathways, promotion of oxidative stress,

and induction of extracellular matrix modifications. This review critically

examines current literature on the role of AGEs in diabetic disc degeneration

and evaluates potential therapeutic interventions aimed at mitigating these

deleterious effects. Targeting AGEs represents a promising therapeutic avenue

to mitigate diabetic intervertebral disc degeneration. The current evidence

supports the rationale for further investigation into AGE inhibitors, cross-link

breakers, and receptor for AGEs modulators as potential treatment strategies.

However, to translate these findings into clinical practice, well-designed clinical

trials are required to validate the efficacy and safety of these interventions, as well

as to optimize treatment protocols.
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Introduction

Amidst rapid global economic development and concomitant

lifestyle transformations, modern society has witnessed the

proliferation of dietary patterns characterized by excessive fat and

sugar consumption, coupled with sedentary behaviors (1). These

maladaptive trends have precipitated widespread metabolic

dysregulation, including insulin resistance and pancreatic b-cell
dysfunction, thereby fueling the diabetes pandemic (2). Substantial

clinical evidence demonstrates that diabetes mellitus (DM) not only

predisposes individuals to cardiovascular diseases, nephropathy,

and neuropathies but also exerts profound detrimental effects on

spinal integrity and function (3). Notably, diabetes-induced

intervertebral disc degeneration (DIDD), often overlooked due to

its insidious onset and progressive nature, significantly

compromises patients’ quality of life through chronic low back

pain and functional impairment (4, 5). Furthermore, persistent

hyperglycemia exacerbates systemic oxidative stress and low-grade

inflammation, both of which accelerate degenerative cascades

within disc tissues (6). IDD in diabetic patients complicates

therapeutic interventions, prolongs rehabilitation, and escalates

healthcare expenditures, underscoring the imperative to elucidate

the pathomechanisms linking these conditions and identify novel

therapeutic avenues.

Recent scientific inquiry has increasingly focused on the

instrumental role of advanced glycation end products (AGEs) in

this pathological nexus. AGEs arise through non-enzymatic

glycation reactions between reducing sugars and proteins, lipids,

or nucleic acids, culminating in complex cross-linking and

structural modifications (7). Their formation is dynamically

regulated by glycemic levels, oxidative stress, and pro-

inflammatory milieus (8). While AGE generation proceeds

gradually under physiological conditions, diabetic hyperglycemia

and oxidative stress synergistically amplify their accumulation (9).

Ligand engagement with the receptor for AGEs (RAGE) activates

downstream signaling cascades, triggering robust pro-inflammatory

cytokine release and oxidative damage, which collectively drive

tissue injury and functional decline (10). Moreover, AGE deposition

in vascular, neural, and renal tissues is intimately associated with

diabetic complications. Such pathological accrual not only induces

cellular damage but also disrupts extracellular matrix architecture

by promoting aberrant collagen cross-linking, thereby impairing

tissue biomechanics and biological homeostasis (11). Against this

backdrop, investigations into AGE-mediated organ pathology have

intensified, with DIDD, a multifactorial chronic degenerative

disorder, emerging as a critical area of research.

The intervertebral disc (IVD), comprising the nucleus pulposus

(NP), annulus fibrosus (AF), and cartilaginous endplates (CEP)

(12), serves as a keystone structure in maintaining spinal stability

and mobility (13). However, aging superimposed with metabolic

perturbations precipitates functional decline in disc cells and matrix

disorganization, ultimately culminating in degenerative changes. In

diabetes, chronic hyperglycemia drives excessive AGE formation

(14), which not only hastens damage to vascular and neural systems

but also disrupts disc cell metabolism and extracellular matrix
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remodeling (15). Consequently, deciphering the mechanistic

contributions of AGEs to DIDD holds substantial promise for

unraveling disease pathogenesis and revealing targeted

therapeutic strategies.
Formation of AGEs and their
pathological significance in DM

The formation of AGEs predominantly stems from the Maillard

reaction, wherein reducing sugars react with biological

macromolecules under hyperglycemic conditions, ultimately

yielding irreversible terminal products through complex

intermediate stages (16, 17). Hyperglycemia not only accelerates

the kinetics of this reaction (18) but also, under oxidative stress,

facilitates the oxidation of intermediate compounds into stable

AGEs (19). These AGEs subsequently engage in covalent cross-

linking with target macromolecules, thereby altering their

physicochemical properties (20). In diabetic patients, AGE

formation and accumulation significantly exceed physiological

levels observed in healthy individuals (21). They are not only

detectable in systemic circulation but also deposit extensively

within the extracellular matrix of tissues, disrupting collagen

cross-linking and compromising biomechanical integrity (22).

Notably, AGEs originate from both endogenous synthesis and

exogenous dietary sources, collectively exacerbating tissue AGE

burden (23). Their deleterious effects on organ systems are

primarily mediated through binding to cell-surface receptors,

most notably the receptor for AGEs (RAGE). The engagement of

AGEs with RAGE triggers the activation of multiple intracellular

signaling cascades-including NF-kB, MAPK, JNK, and TGF-b
pathways-culminating in inflammatory responses, cellular stress,

and apoptosis (24). This activation not only stimulates excessive

production of cytokines and chemokines but also induces reactive

oxygen species (ROS) generation, establishing a self-perpetuating

cycle that amplifies tissue damage.

The AGE-RAGE axis serves as a critical molecular “trigger” for

downstream pathological events. For instance, in renal

pathophysiology, AGE-RAGE signaling upregulates fibrogenic

mediators such as TGF-b and connective tissue growth factor

(CTGF), directly promoting tubulointerstitial fibrosis-a hallmark of

diabetic nephropathy (25). These mechanistic insights provide a

robust molecular foundation for therapeutic strategies targeting the

AGE-RAGE pathway, offering potential avenues for mitigatingDIDD.
The interrelationship between DM and
IDD

IDD arises from a multifactorial etiology involving age-related

changes, mechanical stress, and increasingly recognized metabolic

dysregulation (26). Recent clinical and basic research has

consistently demonstrated that diabetic patients exhibit

accelerated IDD progression and more severe degenerative

changes compared to non-diabetic individuals (27). To elucidate
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the contributory roles of various factors, large-scale cohort studies

employing advanced imaging modalities such as magnetic

resonance imaging (MRI) have systematically evaluated IDD

incidence and progression across populations. A seminal 4-year

longitudinal study by Teraguchi et al. tracked 617 Japanese

participants, analyzing lumbar MRI data to assess IDD

progression, incidence rates, and risk factors. The findings

revealed universal disc degeneration among type 2 diabetes

mellitus (T2DM) patients, with a statistically significant positive

correlation between T2DM and degeneration in upper lumbar

segments (L1/2-L3/4), establishing T2DM as an independent risk

factor for IDD in these regions (28). Complementing these results, a

retrospective Chinese study of 772 chronic low back pain patients

(622 with T2DM) stratified participants by glycemic control

(optimal vs. suboptimal) and disease duration (≤10 vs. >10 years).

Patients with >10-year T2DM duration and poor glycemic control

exhibited markedly greater IDD severity than other subgroups.

Moreover, degeneration severity at all lumbar levels (L1/2–L5/S1)

strongly correlated with T2DM duration (29). These findings

robustly validate T2DM’s pivotal role in IDD pathogenesis while

implicating prolonged disease duration and inadequate glycemic

control as key accelerants of degenerative progression (30).

From a biomechanical perspective, T2DM induces detrimental

changes in disc structure and material properties. Experimental

studies demonstrate that hyperglycemia disrupts collagen fiber

organization in the annulus fibrosus while increasing non-

enzymatic cross-linking, thereby compromising resistance to

compressive and shear stresses (31). This mechanical weakening

predisposes discs to injury from physiological loads, hastening

degeneration. Concurrently, chronic hyperglycemia alters disc

hydration and proteoglycan content, further impairing shock-

absorbing capacity and spinal stability (32).

Genetic predisposition plays a non-negligible role in IDD

pathogenesis, as evidenced by twin studies and genomic analyses.

Notably, the metabolic disturbances characteristic of T2DM

may potentiate this genetic vulnerability, rendering high-risk

individuals more susceptible to severe disc degeneration (30).

Thus, the co-occurrence of T2DM and IDD across populations

likely represents a convergence of genetic, environmental, and

metabolic insults, a paradigm that underscores the need for

personalized therapeutic approaches.
Potential mechanistic role of AGEs in
DIDD

The IVD is anatomically composed of three distinct structural

components: the outer AF, the central NP, and the superior/inferior

CEP. Under chronic hyperglycemic conditions characteristic of

DM, the progressive accumulation of AGEs exerts deleterious

effects on both the structural integrity and biological function of

these disc components through the following pathomechanisms.

AGEs significantly affect the function and stability of these

structures through mechanisms such as oxidative stress,

inflammatory responses, and extracellular matrix (ECM)
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degradation. Although these structures are affected in different

ways, the mechanisms of action of AGEs share commonalities.

This article will explore these commonalities and differences

in detail.
Annulus fibrosus

Functioning as the principal load-bearing structure that

maintains disc stability under complex biomechanical stresses, the

AF exhibits a sophisticated multilamellar architecture with unique

histological characteristics (33). Contemporary morphological studies

reveal that the AF comprises 15–25 concentric lamellae with

individual thickness ranging from 0.14-0.52 mm, wherein collagen

fibers adopt a precise crisscross arrangement that confers exceptional

tensile strength and shear resistance (34). Biochemically, the AF

extracellular matrix consists of approximately 20% proteoglycans and

60% collagen, with type I collagen fibers organized in concentric

lamellae predominating (35, 36). This highly specialized architecture

enables the AF to effectively counteract circumferential stresses

transmitted from the NP while maintaining overall disc stability

(37). However, AGE accumulation can disrupt this specialized

structure, impairing the AF’s ability to handle mechanical loads.

Anatomically, the AF can be subdivided into outer and inner

regions (38). The outer AF predominantly contains type I collagen

fibers with superior tensile properties, while the inner AF serves as a

transitional zone to the NP, exhibiting reduced cellular density and

less organized matrix composition (39). The mechanical

competence of the AF critically depends on both the structural

integrity of collagen fibers and their precise spatial orientation. The

alternating angular arrangement of collagen lamellae provides

optimal resistance against radial stresses from the NP, thereby

preventing disc displacement and structural collapse (40).

In the previous sections, we discussed in detail the structural

characteristics of the AF and the precise arrangement of collagen

fibers. However, excessive AGE accumulation within the IVD

induces detrimental structural modifications through pathological

collagen crosslinking, which not only disrupts the native fiber

organization but also promotes aberrant crosslink formation,

ultimately compromising the AF ’s adaptive capacity to

mechanical loading (41). These molecular and ultrastructural

alterations collectively contribute to AF dysfunction and

progressive disc degeneration.

Advances in modern imaging modalities have provided

unprecedented insights into disc degeneration mechanisms.

Utilizing two-photon imaging technology, researchers have

demonstrated that high-AGE diets significantly exacerbate

collagen fiber damage within the AF, with particularly

pronounced effects observed in female specimens (42). This

finding provides a new perspective on how AGEs affect the

structure of the intervertebral disc at the macroscopic level. Based

on these imaging observations, subsequent studies have further

revealed the pathological mechanisms associated with AGEs,

particularly their specific effects on the annulus fibrosus at the

cellular level.
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Based on these imaging findings, Experimental evidence

indicates that AGEs potently suppress AF cell proliferation while

promoting apoptotic cell death (40). At the molecular level, AGEs

modulate apoptotic pathways through upregulation of pro-

apoptotic Bax, downregulation of anti-apoptotic Bcl-2, and

subsequent cytochrome c release from mitochondria, thereby

activating caspase-9 and caspase-3 mediated apoptosis cascades.

Concurrently, AGEs induce mitochondrial dysfunction

characterized by elevated ROS production and diminished

membrane potential, further exacerbating cellular apoptosis (43).

Moreover, AGEs compromise the mechanical stability of the AF by

disrupting physiological collagen crosslinking patterns (44).

Through these dual mechanisms - inducing cellular apoptosis and

impairing matrix structural integrity AGEs synergistically accelerate

disc degeneration at both structural and functional levels in the

diabetic context.
Nucleus pulposus

The effects of AGEs on the intervertebral disc are not limited to

the annulus fibrosus, but also involve the NP. The NP, as the central

region of the intervertebral disc, is composed of highly functional

NP cells and their secreted extracellular matrix (ECM). NP cells are

not only responsible for synthesizing and maintaining the ECM,

which is rich in proteoglycans, type II collagen, and hyaluronic acid

(45), but also play a decisive role in preserving the disc’s osmotic

properties, elasticity, and biomechanical homeostasis (46).

Numerous studies have demonstrated that the progressive

accumulation of AGEs in intervertebral disc tissues can cause

direct damage and functional impairment to NP cells through

multiple molecular mechanisms (47). First, AGEs reduce NP cell

viability, suppress proliferation, and induce apoptosis, thereby

decreasing cell numbers (48). Furthermore, under diabetic

conditions, AGE accumulation not only triggers NP cell apoptosis

but also diminishes ECM synthesis capacity while upregulating the

expression of ECM-degrading enzymes such as MMP-13, ultimately

leading to significant ECM degeneration (49). This process is not

only associated with the direct structural damage to proteins by

AGEs but is also closely linked to the aberrant activation of

intracellular signaling pathways. For instance, AGEs can activate

the receptor for AGEs (RAGE), triggering NF-kB and MAPK

signaling pathways, which subsequently induce the secretion of

pro-inflammatory cytokines and matrix-degrading enzymes,

further exacerbating ECM destruction (50, 51).

In addition to directly impairing NP cell function, AGEs also

induce disordered intermolecular crosslinking by covalently

modifying extracellular proteins, particularly long-lived structural

proteins such as collagen and elastin, leading to tissue stiffening

and dysfunction. This crosslinking not only alters the mechanical

properties of the ECM but also promotes the secretion of

inflammatory cytokines and matrix metalloproteinases (MMPs)

through the activation of intracellular signaling pathways like NF-

kB and MAPK, thereby accelerating ECM degradation (50). Previous

studies have identified IL-1b and TNF-a as the most critical pro-
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inflammatory mediators in disc pathology, as they induce apoptosis,

accelerate ECM degradation, and disrupt disc integrity by

upregulating matrix-degrading enzymes such as MMPs and

ADAMTS (52). Concurrently, serum levels of pro-inflammatory

cytokines (e.g., IL-6) correlate positively with clinical symptom

severity, further underscoring the pivotal role of these cytokines in

disc degeneration and associated pain pathogenesis (10).

In the previous sections, we discussed how AGEs influence the

mechanical stability of the intervertebral disc and accelerate disc

degeneration by altering the structure of the annulus fibrosus and

nucleus pulposus. AGEs not only change the physical properties of

the matrix through pathological collagen crosslinking but also

further exacerbate disc degeneration by activating inflammatory

responses. Experimental studies have shown that direct injection of

AGEs into mouse intervertebral discs significantly increases the

expression of the pro-inflammatory cytokine IL-23 while reducing

levels of the protective anti-inflammatory cytokine IL-10, further

confirming AGEs’ involvement in disc inflammation (53).

Moreover, AGE-induced upregulation of TNF-a can promote

nerve fiber ingrowth into degenerative discs, exacerbating pain

symptoms, as evidenced clinically by imaging findings such as the

“black disc” phenomenon on T2-weighted MRI (52). This pro-

inflammatory-mediated pathological process explains why diabetic

patients are more prone to painful disc herniation during

disc degeneration.

Additionally, AGEs exacerbate intracellular oxidative stress by

inducing ROS production (42), which not only disrupts

intracellular signaling networks but also activates processes such

as FAM134B-mediated endoplasmic reticulum (ER) phagocytosis,

further compromising organelle homeostasis (54). The ER, a critical

site for protein synthesis, folding, and quality control, is essential for

cell survival (55). When ER stress occurs, misfolded or unfolded

proteins accumulate, triggering the unfolded protein response

(UPR) (56). Under moderate stress, the UPR serves as a

cytoprotective mechanism to restore homeostasis; however, under

prolonged or severe stress, it initiates apoptotic pathways (57).

The endoplasmic reticulum is the main storage site of calcium

ions within the cell and is crucial for maintaining calcium

homeostasis. Research indicates that AGE treatment of NP cells

leads to sustained cytoplasmic Ca2+ elevation and ER Ca2+

depletion, disrupting calcium homeostasis and contributing to ER

stress (58). Furthermore, AGEs significantly affect the activity of ER

Ca2+ channels, including inositol 1,4,5-trisphosphate receptors

(IP3Rs), ryanodine receptors (RyRs), and the sarco/endoplasmic

reticulum Ca2+-ATPase (SERCA) pump, with their dysfunction

directly participating in AGE-induced NP cell pathology (59). In

NP cells, ER stress is a double-edged sword: it can initiate protective

mechanisms but may also induce apoptosis under excessive stress.

AGEs activate key transmembrane proteins in the ER, initiating the

UPR, while downstream effectors such as C/EBP homologous protein

(CHOP) regulate pro-apoptotic gene expression, driving cells toward

programmed death under severe or persistent stress (60).

Moreover, AGEs not only disrupt intracellular redox balance by

promoting ROS generation but also impair mitochondrial membrane

permeability, increasing pro-apoptotic Bax levels while decreasing anti-
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apoptotic Bcl-2 (61). This imbalance further elevates intracellular ROS

levels and prolongs mitochondrial permeability transition pore

(mPTP) activation, accelerating apoptosis.
Cartilage endplate

The effects of AGEs on the intervertebral disc are not limited to

the annulus fibrosus and nucleus pulposus, but also involve the

CEP, which is another critical component in disc degeneration. The

CEP serves as a critical bridge connecting the vertebral body and

intervertebral disc, not only facilitating the transport of essential

nutrients to the disc but also maintaining its internal homeostasis.

Its biomechanical function and barrier properties are vital for

overall disc health (27, 62). However, both clinical and

experimental evidence indicate that the disruption of CEP

integrity and function often acts as an “initiator” of further disc

degeneration. Such damage not only impairs nutrient exchange but

also activates local inflammatory responses and matrix degradation

pathways, accelerating the degenerative process of the entire disc.

Due to its high collagen and proteoglycan content and long

half-life, the CEP is particularly susceptible to the accumulation of

AGEs (63). AGE deposition may induce abnormal cross-linking

between collagen molecules, altering the mechanical properties of

the CEP, reducing its permeability and elasticity, and ultimately

compromising nutrient diffusion within the disc (44). Furthermore,

AGEs binding to the receptor for AGEs (RAGE) on CEP cells can

trigger localized inflammation, promoting the secretion of matrix-

degrading enzymes such as MMPs, thereby accelerating ECM

degradation in both the CEP and the entire disc (64).

Additionally, numerous animal models and clinical studies have

demonstrated that disc degeneration progresses more rapidly in

diabetic conditions. Experimental data from diabetic rat models

reveal significant reductions in disc matrix content, increased

apoptosis, and structural deterioration of the CEP (65). However,

most existing research has focused on the degeneration mechanisms

of the nucleus pulposus and annulus fibrosus, while studies on

structural and functional alterations of the CEP under diabetic

conditions remain relatively scarce (66). This gap limits a

comprehensive understanding of the pathophysiological

mechanisms underlying disc degeneration.

In recent years, advances in molecular biology and imaging

techniques have drawn increasing attention to the role of the CEP

in disc degeneration. The CEP is not only a crucial pathway for disc

nutrition but also determines the biomechanical properties and

disease resistance of the disc through its unique matrix and cellular

composition (62, 67). In diabetic patients, chronic hyperglycemia

leads to AGE deposition in the CEP, which may induce collagen

cross-linking, matrix stiffening, and functional impairment of CEP

cells, triggering local inflammation and oxidative stress. These

changes further weaken the CEP’s barrier function, reduce nutrient

supply to the disc, and promote overall disc degeneration (27).

Moreover, AGE-stimulated CEP cells may undergo apoptosis or

functional abnormalities, and their secreted regulatory factors can
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disrupt the metabolic balance of the ECM in the microenvironment,

contributing significantly to disc degeneration (68, 69). Beyond the

direct molecular pathological mechanisms mediated by AGEs,

growing evidence suggests that systemic metabolic dysregulation in

diabetes exacerbates disc degeneration through chronic

inflammation and oxidative stress. Prolonged glycemic fluctuations

and insulin resistance induce a low-grade systemic inflammatory

state, which not only damages vascular endothelium but also

disrupts the metabolic equilibrium of CEP cells (53). Furthermore,

systemic oxidative stress enhances the interaction between AGEs and

RAGE, creating a vicious cycle that further diminishes the damage

resistance of the CEP and the entire disc (66).
Common mechanisms

The mechanistic role of AGEs in the IVD exhibits commonality

across different structural components, including the AF, NP, and

CEP. These common mechanisms primarily involve oxidative

stress, ER stress, collagen crosslinking and matrix stiffening, and

inflammatory responses. AGEs promote the generation of ROS,

inducing intracellular oxidative stress that disrupts cellular function

and triggers pathological changes. This process plays a significant

role in AF, NP, and CEP, impairing normal cellular activities and

accelerating disc degeneration. Simultaneously, AGEs initiate ER

stress, leading to calcium imbalance and the UPR, which induces

cell apoptosis. This reaction is evident in all regions, directly

damaging cell function and promoting cell death through the

activation of pro-apoptotic genes, further exacerbating disc

degeneration. Additionally, AGEs induce abnormal crosslinking

between collagen molecules, altering the mechanical properties of

the matrix, leading to tissue stiffening and dysfunction, thereby

weakening the structural stability of the disc and affecting its

compressive resistance and elasticity. AGEs also activate local

inflammation, promoting the secretion of matrix-degrading

enzymes such as MMPs, which further accelerates ECM

degradation. By binding to the RAGE, AGEs activate

inflammatory signaling pathways such as NF-kB and MAPK,

enhancing the release of pro-inflammatory cytokines and matrix-

degrading enzymes, thereby accelerating disc degeneration. In

conclusion, AGEs act through multiple mechanisms in AF, NP,

and CEP, broadly impacting the structure and function of the

intervertebral disc, ultimately accelerating the progression of

degenerative disc disease.
Targeting AGEs for DIDD treatment
strategies

In-depth research into the role of AGEs in DIDD not only helps

clarify the fundamental pathological processes of the disease but

also provides new insights for identifying effective clinical treatment

interventions. Given the central role of AGEs and their interaction

with the RAGE axis in DIDD pathogenesis, therapeutic strategies
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targeting this pathological pathway have attracted widespread

attention in recent years. These treatment approaches can be

mainly categorized into the following aspects:
Inhibiting AGEs formation

Inhibiting AGEs formation is one of the most direct

intervention methods, with its basic principle being to block the

non-enzymatic glycation reaction between reducing sugars and

proteins, thereby reducing AGEs production. In clinical and

experimental studies, AGE inhibitors such as aminoguanidine and

pyridoxamine have been extensively researched and shown good

intervention effects (70, 71). Experimental data indicate that these

inhibitors can significantly reduce AGEs formation, thereby

decreasing oxidative stress and inflammatory responses induced

by AGEs accumulation (71). Additionally, some natural

polyphenolic compounds exhibit similar AGE-inhibitory effects,

possessing both antioxidant capabilities and the ability to trap

reactive intermediates to block AGEs generation (72). These

studies provide strong theoretical support and experimental

evidence for the application of AGEs inhibition in DIDD treatment.
Blocking AGEs-RAGE interaction

Another important therapeutic strategy involves blocking the

interaction between AGEs and RAGE to prevent the activation of

downstream pathological signals. Currently, approaches such as

RAGE monoclonal antibodies, soluble RAGE (sRAGE), and RNA

interference-based technologies have achieved certain success in

animal models (73, 74). For example, anti-RAGE monoclonal

antibodies can significantly reduce the expression of

inflammatory and fibrotic factors in endothelial cells, thereby

improving organ function (74). Furthermore, researchers have

developed nanoparticle-based siRNA delivery systems to

specifically knock down RAGE expression, providing a novel

approach for precise regulation of AGE-RAGE signaling in

clinical settings (75).
Clearing AGEs

Clearing already-formed AGEs, known as the “AGEs breaker”

strategy, has also become a research hotspot in recent years. AGEs

breakers degrade AGEs-induced crosslinks, thereby improving the

biomechanical properties of proteins and organ function. AGE

crosslink breakers such as N-phenacylthiazolium bromide (PTB)

and ALT-711 have been shown in animal experiments to partially

reverse tissue stiffness and dysfunction caused by AGEs

accumulation (76). This approach has demonstrated clear benefits

not only in the cardiovascular system but also shows potential

therapeutic value in diabetic retinopathy and nephropathy (73).

However, due to the diversity and widespread distribution of AGEs,
Frontiers in Endocrinology 06
the clinical translation of such drugs still faces many challenges,

requiring further optimization of their pharmacokinetics and

safety profiles.
Other treatment strategies and prospects
for combined applications

Beyond the aforementioned strategies directly targeting AGEs

and RAGE, antioxidants, anti-inflammatory drugs, and stem cell

therapy have gradually shown potential in DIDD intervention.

Since AGEs exert their pathogenic effects by activating oxidative

stress and inflammatory pathways, the use of antioxidants (e.g., N-

acetylcysteine) can interrupt this pathological vicious cycle (77).

Additionally, non-steroidal anti-inflammatory drugs (NSAIDs) and

drugs targeting the NF-kB signaling pathway can effectively reduce

AGEs-RAGE-mediated inflammatory responses, thereby

improving organ function (78). Stem cell therapy, as an

important direction in regenerative medicine, has also garnered

increasing attention for its application in repairing AGEs-induced

cell damage and tissue degeneration, providing new insights into

the synergistic effects of multiple treatment strategies.

From an overall perspective, single treatment modalities are

insufficient to completely block or reverse the complex role of AGEs

in DIDD pathogenesis. Therefore, multi-target combination

therapy has become an important research trend. For example,

combining AGEs inhibitors with antioxidants can reduce AGEs

generation while alleviating oxidative stress. Meanwhile, the

combined application of RAGE blockers and AGE breakers may

simultaneously prevent new AGEs signaling and clear existing

pathological crosslinks (79). Furthermore, natural plant extracts,

with their multi-target and low-toxicity characteristics, show great

potential in combination therapy strategies (72).
Future perspectives

Although recent years have seen abundant literature reporting

on the role of AGEs in diabetic complications, many unanswered

questions remain regarding the intrinsic relationship between AGEs

and DIDD. First, current research on DIDD pathological

mechanisms primarily focuses on isolated processes such as

apoptosis, matrix degradation, and oxidative stress, while the fine

regulatory mechanisms by which AGEs synergistically induce

cellular dysfunction through multiple signaling pathways remain

incompletely elucidated (53). Second, most experimental data come

from in vitro cell models or animal models, with limited direct

evidence on human DIDD pathogenesis, making the translation

from laboratory findings to clinical applications challenging (80).

Additionally, most studies concentrate on AGEs’ functional

changes in single cell types (e.g., nucleus pulposus cells or

annulus fibrosus cells), whereas the actual intervertebral disc, as a

complex multi-cellular, multi-matrix structure, has not been

sufficiently explored in terms of its intrinsic intercellular
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interactions and cross-regional signaling mechanisms (69).

Moreover, the expression and activation of AGEs-RAGE signaling

pathways may vary among different patient populations, and how to

develop precise interventions for such individual differences

remains an urgent issue for future research (81). Furthermore,

current treatment strategies mostly focus on blood glucose control

or AGEs inhibitors, but their efficacy in improving DIDD is

suboptimal. Therefore, there is an urgent need to develop more

targeted interventions, such as using molecular nanotechnology to

directly clear or degrade AGEs within intervertebral discs.

In summary, current research indicates that AGEs play a central

role in diabetic complications. Their abnormal deposition not only

triggers local oxidative stress and pro-inflammatory responses but

also mediates apoptosis and structural damage through binding

with RAGE, thereby accelerating disc degeneration. Based on this

understanding, multi-level therapeutic strategies targeting AGEs,

including inhibiting AGEs formation, blocking AGEs-RAGE

interactions, and clearing existing AGEs, provide novel insights

for the prevention and treatment of DIDD. Meanwhile, exploring

multi-target combination therapies by integrating antioxidants,

anti-inflammatory agents, and stem cell approaches may further

enhance treatment efficacy and improve patient outcomes.
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