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The elevated global prevalence of metabolic syndrome and type 2 diabetes mellitus

(T2DM) has led to a dramatic increase in patients with insulin resistance. The

majority of insulin resistance is closely associated with obesity and metabolic

syndrome, resulting in impaired insulin signaling pathways. type 2 diabetes can be

preceded by insulin resistance, and therefore, it is crucial to stop the progression of

insulin resistance to type 2 diabetes. Fibroblast growth factor 21 (FGF21) holds a

bright future in the therapeutic study of insulin resistance; it is involved in the

regulation of lipid metabolism and immune homeostasis while ameliorating the

impaired insulin signaling pathway, improving the state of insulin resistance through

multiple aspects. In this review, we describe the physiological properties and

signaling pathways of FGF21 and elaborate on the mechanism of action of FGF21

in improving insulin resistance. Finally, the progress of FGF21 analog research is

summarized in the context of the treatment of insulin resistance.
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1 Introduction

In recent years, the prevalence of Insulin Resistance (IR) has been increasing year by

year worldwide. IR refers to the decreased or impaired sensitivity of target organs or target

tissues to insulin, which is manifested as impaired glucose uptake and utilization, and this

pathological response causes insulin secretion disorders, which elevate plasma insulin levels

and lead to hyperinsulinemia. IR is attributed to several factors, including obesity, physical

inactivity, advanced glycosylation end products (AGE), excess free fatty acids (FFAs),

psychological stress, smoking, alcohol consumption, and certain medications. It is closely

linked to obesity, metabolic syndrome, polycystic ovary syndrome, and other disorders,

indicating that IR results from crosstalk alterations among various tissues (1, 2). When IR

results in hyperinsulinemia, it is often associated with a diagnosis of impaired myocardial

insulin signaling, mitochondrial dysfunction, and endoplasmic reticulum stress (3).

Hyperinsulinemia is associated with elevated morbidity and mortality related to

cardiovascular complications (4). IR may contribute to cancer development, as

epidemiological studies indicate an elevated risk of breast, pancreatic, liver, and

colorectal cancers in affected patients (5, 6). Adipose tissue plays a key role in the

development of IR and may promote IR in other organs by releasing lipids and other
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circulating factors (7). IR can also appear as a pathologic

manifestation in diseases such as early T2DM and cardiovascular

disease.IR serves as the key core of pre-diabetes, and improving and

treating insulin resistance can help reverse pre-glycemia. When

insulin secretion is insufficient to counteract insulin resistance, then

T2DM results. Meanwhile, central insulin resistance is thought to

underlie cardiometabolic diseases due to the important role of

insulin in brain circuits that control food intake and voluntary

activity (8, 9). Furthermore, brain insulin resistance correlates with

various cognitive deficits and significant neurodegenerative

disorders, including Alzheimer’s disease and Parkinson’s disease

(10). Currently, there is no specific treatment plan for IR, and the

mechanism of insulin resistance is not yet fully understood.

Fibroblast growth factor (FGF) has multiple isoforms, and the

FGF subfamily includes FGF19, FGF21, and FGF23. FGF21, a novel

FGF expressed in the liver, is a signaling protein containing 208

amino acids, and FGF21 protects against injury caused by metabolic

abnormalities (11, 12). FGF21 is an autocrine, paracrine, and

endocrine factor synthesized by multiple organs with beneficial

effects on weight loss and glycemic improvement, acting on

multiple target tissues to increase fat utilization and energy

expenditure, improve glucose homeostasis, and increase insulin

sensitivity (13). Thus, FGF21 plays an important role in

regulating glucose and lipid homeostasis (14, 15). FGF21

expression and levels are influenced by diet, nutritional status,

hormones, and activity of related transcription factors (16–

18).FGF21 has been shown to have a positive role in ameliorating

insulin resistance and to mediate glucagon action (19, 20). This

review summarizes the studies of recent years, detailing recent

advances in the study of FGF21 in insulin resistance, and

develops the new potential of FGF21 for the treatment of IR.
2 Mechanisms of insulin resistance

The occurrence of IR is a complex process, and its mechanism

has not been fully clarified so far. However, some studies have

confirmed that IR is mainly caused by abnormal quality of b-cell
function, abnormal insulin signaling pathway, inflammation,

lipotoxicity, oxidative stress, and environmental and genetic

factors. In a state of insulin resistance, b-cell depletion to

maintain normoglycemia and compensate for insulin demand is

critical to the pathogenesis of the condition (21). Simultaneously,

lipotoxicity and elevated free fatty acids (FFA) overstimulate

glucose-mediated insulin production in b-cells, enhancing b-cell
signaling and oxidative stress, which ultimately leads to metabolic

depletion of b-cells (22, 23). Glucose increases IRS2 expression in b-
cells in response to elevated FFA levels as a compensatory

mechanism for insulin resistance, thereby enhancing b-cell mass,

which correlates with pancreatic b-cell neogenesis, proliferation,
and survival (1). This elevates blood insulin levels, potentially

leading to beta-cell damage due to hyperinsulinemia (24). Recent

studies have found that increased expression of the receptor for

advanced glycosylation end products (RAGE) correlates with

inflammation, toxicity, and apoptosis in human IAPP-induced (h-
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IAPP-induced) beta cells and pancreatic islets. This is because

RAGE triggers oxidative stress, inflammation, and apoptosis by

binding to IAPP toxic intermediates (25). Additionally, b-cell death
and disease progression are closely associated with heightened

cellular glucose metabolism, the accumulation of saturated-chain

fatty acid signaling, impaired insulinogen processing, abnormal

insulin secretion, reduced b-cell mass, and pancreatic islet

amyloid deposition in states of insulin resistance (26).

Insulin receptor substrates (IRS) are important nodes of insulin

signaling and are closely related to insulin sensitivity. IRS plays an

important role in the insulin signaling pathway. The IRS family

includes IRS1 and IRS2, which are key proteins in insulin receptor

and intracellular signaling (27, 28). Dysregulation of IRS pathways

for insulin signaling is one of the common causes of IR. FFAs,

inflammatory cytokines, and hyperinsulinemia significantly

increase a variety of serine kinases such as IkB kinase (IKK), c-

JunN-terminal kinase (JNK), specific isoforms of protein kinase C

(PKC), and double-stranded RNA-dependent protein kinase (PKR)

(29), and these kinases impede IRS1 function and can promote

insulin resistance by promoting the expression of genes involved in

activating inflammation and nuclear factor kB (NF-kB).
Therefore, the treatment of insulin resistance should be based

on insulin signaling, lipid metabolism, glucose metabolism,

oxidative stress, and inflammation. FGF21 has a good effect in

improving glucose-lipid metabolism, insulin signaling,

inflammation, and oxidative stress.

The pathogenesis of insulin resistance (IR) involves a complex

interplay of b-cell dysfunction, lipid overload, chronic

inflammation, and oxidative stress, all of which converge to

disrupt insulin signaling. Key findings highlight that b-cell failure
is both a consequence and driver of IR, as elevated free fatty acids

(FFAs) induce lipotoxicity, hyperinsulinemia, and oxidative

damage, ultimately depleting b-cell mass (21–26). Simultaneously,

serine phosphorylation of IRS1/2 by stress kinases (e.g., JNK, IKK)

exacerbates insulin signaling defects, creating a vicious cycle of

metabolic deterioration (27–29).

FGF21 emerges as a promising therapeutic agent due to its

pleiotropic effects—enhancing insulin sensitivity, suppressing

lipotoxicity, and reducing inflammation—making it a potential

multi-target intervention to break this cycle. Future research

should focus on optimizing FGF21 analogs to maximize these

benefits while minimizing species-specific limitations observed in

clinical translation.
3 FGF21: biological characteristics

3.1 Gene expression and synthetic
secretion of FGF21

FGF21 is a peptide hormone, and in rodents and humans

FGF21 is secreted primarily in the liver to produce (30, 31),

FGF21 is synthesized in minimal quantities by adipose tissue and

can exert either autocrine or paracrine effects (32–34), FGF21

mRNA was detected in adipose, muscle, and pancreatic tissues
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(35, 36). Therefore, FGF21 is also known as a hepatic factor,

adipokine, and myokine. Meanwhile, cold exposure,low-protein

diet, exercise, fasting, and high fructose intake all led to an

increase in FGF21 secretion (13, 37–41), but cold exposure only

stimulated localized production of FGF21 in adipocytes, with no

change in systemic FGF21 levels (42). FGF21 levels are increased in

pancreatic islets and hepatocytes after higher glucose and fatty acid

concentrations (43–45). Fasting and starvation for 6–12 hours

resulted in an increase in circulating FGF21 in mice (46), but in

humans, serum FGF21 was essentially unchanged after two days of

fasting, and serum FGF21 was not significantly elevated until after

seven days of fasting (47, 48). Notably, a three-month ketogenic diet

leads to a decrease in circulating levels of FGF21 in humans (49).

Growth hormone has been shown to promote FGF21 expression in

mice, but not in humans, indicating a major divergence in the

physiological regulatory role and expression of FGF21 between

species (50, 51).

It was found that animals deficient in peroxisome proliferator-

activated receptor a (PPARa) resulted in reduced FGF21 secretion

under starvation (52). The FGF21 promoter can directly bind to

PPARa for transcriptional activity (46, 52). 3T3-L1 adipocytes or

human adipocytes sourced from subcutaneous adipose tissue are

activated with the PPARg agonist rosiglitazone, which concurrently

elevates FGF21 mRNA expression (53). Evidence substantiates that

the therapeutic impacts of PPARa agonists on lipid metabolism, as

well as the hypoglycemic and insulin-sensitizing actions of PPARg
agonists, are facilitated by FGF21 (54–56). Consequently, it is

further shown that FGF21 is a downstream target of PPARa and

PPARg, both of which are integral to FGF21 signaling and function.

The level of FGF21 secretion is also closely related to nutritional

status and exercise, and sugar is a potent stimulator of FGF21. Oral

administration of glucose or fructose, or intravenous injection,

significantly increases circulating levels of FGF21, except that the

two modes of ingestion lead to differences in the time point of

FGF21 elevation (39, 57–61). A high-carbohydrate (HC) diet

increases FGF21 mRNA and circulating FGF21 levels in mouse

liver and muscle (62). Carbohydrates stimulate FGF21 gene

expression through the reverse transcription factor carbohydrate

response element binding protein (ChREBP). In addition, a low-

protein diet leads to elevated circulating levels of FGF21 (63).

Notably, the increase in FGF21 levels induced by a high-

carbohydrate diet and a low-protein diet is regulated

independently of each other (60). A low-protein diet results in a

deficiency of essential amino acids, which impairs the regulation of

the b2-adrenergic receptor signaling pathway by protein kinases in

the liver and anterior pyriform cortex. This deficiency leads to

elevated phosphorylation levels of eukaryotic initiation factor-2a
(eIF2a) and upregulation of FGF21 transcription via the activation

of transcription factor 4 (ATF4) (64). At the same time, exercise

leads to elevated FGF21 levels. Resistance exercise (RE) elevates

FGF21 levels higher than endurance exercise (EE) (65), and high-

intensity exercise increases FGF21 levels more significantly than

moderate-intensity exercise (66). Acute endurance exercise,

however, induces the production of glucagon and FGF21, hence

modulating the glucagon-FGF21 axis (67, 68).
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3.2 FGF21 signaling and pathways

FGF21 exerts its effects by attaching to a receptor complex

composed of the fibroblast growth factor receptor (FGFR) and the

co-receptor b-klotho (KLB) at the amino and carboxy termini,

respectively (69), and the co-receptor KLB is crucial for the activity

of FGF21 (70). Meanwhile, the residues 198–200 at the carboxy-

terminal of FGF21 are flexible and easily cleaved by proteolysis,

eliminating the binding of FGF21 to the extracellular site of KLB,

thus playing an important role in terminating FGF21 signal

transduction (71).FGFR is a receptor tyrosine kinase family

composed of FGFR1, FGFR2, FGFR3, and FGFR4. FGF21 has the

highest affinity for FGFR1 and can signal through FGFR2 and

FGFR3, but does not respond to FGFR4 (72). Although FGFR is

widely expressed in many tissues, KLB expression is limited to

certain metabolic tissues such as the pancreas, liver, adipose tissue,

and brain (73, 74).KLB is a single-pass transmembrane protein with

a unique domain that mediates signal transduction by binding to

ligands through its extracellular domain (75).

FGF21 signaling pathways are complex and associative. The

downstream pathways of FGF21 include AMPK, mTOR, HPA axis,

GLUT1, lipocalin, etc., and are capable of indirectly affecting the

signaling pathways of MAPK, JNK, and NF-kB. First, FGF21 can

directly promote the expression of glucose transporter protein 1

(GLUT1) to increase glucose uptake. Meanwhile, FGF21 was able to

promote lipocalin secretion to increase insulin sensitivity in adipose

tissue and regulate lipid metabolism. Secondly, FGF21 controls

energy metabolism by promoting the activation of the AMPK

signaling pathway and regulating the HPA axis through the

central system. activation of AMPK signaling indirectly increases

the expression of GLUT4 to increase glucose uptake and improves

IR, and FGF21 inhibits mTOR signaling to ameliorate insulin

resistance due to impaired insulin signaling. FGF21 attenuates the

effects of immunoinflammation on the insulin signaling pathway by

inhibiting the immune inflammatory response caused by the

activation of pro-inflammatory kinases such as JNK and IKK, as

well as the activation of the NF-kB signaling pathway.

Adenosine monophosphate-activated protein kinase (AMPK) is

closely related to the body’s energy metabolism. It governs energy

metabolism by promoting the catabolism of glucose and lipids (76,

77). FGF21 appears to have a comparable function, suggesting that

both may operate via the same pathway, or that the diverse

metabolic effects of FGF21 are mediated through AMPK

signaling. AMPK is recognized as a long-lived protein, and when

FGF21 promotes AMPK activation, a series of metabolic responses

occur. It has been found that FGF21 promotes AMPK signaling in

several tissues, activating hepatic kinase B1 (LKB1) through FGFR1/

b-klotho signaling or indirectly by stimulating the secretion of

lipocalin and corticosteroids in adipose tissue to achieve activation

of AMPK signaling in target tissues and to achieve control of energy

metabolism, such as enhancing mitochondrial biogenesis (78–82).

For example, FGF21 promotes the secretion of lipocalin, which

stimulates lipocalin receptors (AdipoR1/2) and triggers AMPK

activation through APPL1/LKB1 signaling. FGF21 also mediates

the activation of AMPK signaling by corticosteroids through the
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HPA axis via CB1 and or GR receptors (83). FGF21-induced AMPK

activation was not observed in differentiated human subcutaneous

adipocytes, indicating that FGF21’s effect on AMPK may be tissue-

specific (84). AMPK can upregulate GLUT4 expression by

phosphorylating the transcriptional repressor histone deacetylase

(HDAC) 5, phosphorylates glucose transporter protein targets to

promote glucose utilization and cellular uptake, and also inhibiting

fatty acid, cholesterol, and protein synthesis (85–88). This was also

confirmed in animal research experiments, where AMPK activators

improved diabetic symptoms, including in rodents, and reduced

blood glucose levels in a T2DMmodel by promoting muscle glucose

uptake (89, 90).

FGF21 activates the AMPK-SIRT1 signaling pathway in

adipocytes, and AMPK enhances peroxisome proliferator-

activated receptor gamma coactivator 1a (PGC-1a) expression by

inducing the expression of the cellular energy sensor Sirtuin1

(SIRT1), which promotes mitochondrial respiration and

upregulates GLUT4 expression in muscle cells, resulting in a

serum glucose level that is significantly reduced (91, 92). In

experiments involving berberine, AMPK signaling enhanced

PGC-1a expression and facilitated the reversal of insulin

resistance, indicating the significant role of PGC-1a in addressing

this condition (93). Moreover, AMPK inhibits gluconeogenesis

through the phosphorylation of coactivators involved in the

cAMP response element binding protein (CREB) and forkhead

box protein O (FOXO) pathways (88). It has been found that insulin

resistance in muscle and adipose tissue is closely associated with

reduced AMPK activity (94–96). There exists a significant

relationship between insulin resistance and the dysregulation of

AMPK signaling (97). Excessive activation of AMPK signaling may

be indirectly associated with the onset of neurological diseases,

including Alzheimer’s disease. Excessive stimulation of AMPK

signaling may trigger autophagic cell death rather than facilitating

survival-promoting autophagy (93).In addition, AMPK regulates

the mammalian target of the rapamycin protein complex

(mTORC1) to control cell growth and protein translation (88).

There is substantial research evidence that FGF21 promotes

glucose assimilation by blocking the mTORC1 molecule, thereby

increasing insulin sensitivity in the liver, bone, muscle, and adipose

tissue (98). The mammalian target of rapamycin (mTOR) signaling

is involved in the regulation of pancreatic b-cell growth and

proliferation and insulin secretion, thereby affecting glucose

homeostasis (99, 100). mTOR coordinates peripheral insulin

target tissues with the central nervous system to regulate food

intake and glucose homeostasis, among other functions. Islets

derived from individuals with type 2 diabetes frequently exhibit

heightened mTORC1 activity alongside reduced mTORC2 activity

(101, 102), indicating that increased mTORC1 activity may

compromise b-cell functionality (103). Dysregulation of mTOR

signaling results in abnormalities in glucose and lipid metabolism,

as well as insulin resistance. Chronic activation of mTORC1

signaling is observed in individuals with overnutrition, type 2

diabetes mellitus (T2DM), and obesity (104, 105). FGF21
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enhanced insulin signaling in mouse skeletal muscle by inhibiting

mTORC1, which in turn reduced IRS1 phosphorylation at Ser636/

639 and improved insulin sensitivity (106).

FGF21 inhibits the activation of pro-inflammatory kinases such

as JNK and PKC, thereby inhibiting NF-kB signaling. NF-kB is a

key node connecting inflammation, oxidative stress, and insulin

signaling abnormality, and plays an important regulatory role in the

development of IR. The nuclear factor kappa-light-chain-enhancer

of activated B cells (NF-kB) typically exists in an inactive form.

Upon stimulation by proinflammatory kinases, the endogenous

inhibitor IkB undergoes phosphorylation, resulting in its

dissociation from the NF-kB-IkB complex. This dissociation leads

to the ubiquitination and degradation of IkB, facilitating the

translocation of NF-kB into the nucleus, where it binds to the kB
site in the promoter region to activate target genes (107). The

activation of NF-kB increases the expression of proinflammatory

factors that trigger Oxidative stress and inflammatory responses,

and inflammation and oxidative stress increase serine and

threonine phosphorylation of IRS1 and decrease tyrosine

phosphorylation to inhibit IRS1 activity, leading to impaired

insulin signaling (108, 109).

In addition, glucagon also plays a role in the FGF21 pathway. It

has been found that deletion of the glucagon receptor prevents the

elevation of FGF21 during starvation. If acute administration of

glucagon in animals leads to an increase in circulating FGF21 levels,

these findings suggest that FGF21 secretion is closely related to, and

may be regulated by, glucagon (110), and the control of FGF21 by

glucagon is independent of circulating insulin and unrelated to

insulin levels (111). Glucagon and glucagon agonists enhance

FGF21 mRNA expression in the liver and elevate circulatory

FGF21 concentrations (67, 111). Glucagon, as an antagonist of

insulin, plays an important role in increasing hepatic glucose

production during starvation, whereas FGF21 inhibits hepatic

glucose release; therefore, glucagon may be an important

mediator of FGF21 signaling and function. Glucagon promotes

activation of the cAMP and protein kinase A (PKA) pathways, and

glucagon’s promotion of PKA activation leads to an increase in

FGF21 secretion with no change in FGF21 mRNA levels (112). It

has been found that glucagon activates the AMPK signaling

pathway and promotes the expression of PPARa, which in turn

promotes the expression of FGF21 (110).In mice lacking the

glucagon receptor, glucagon, on the other hand, failed to induce

PPARa and FGF21 gene expression and hepatic AMPK

phosphorylation (113). It was found that chronic GcgR agonist-

induced energy expenditure mainly originated from increased

sympathetic nerve excitation and led to BAT tissue thermogenesis

and WAT browning (114), which was similar to the effect of FGF21

action. Meanwhile, the regulation of glucagon receptors on glucose

metabolism, lipid metabolism, and body weight adiposity was also

affected by FGF21 (115), it also indicates that FGF21 interacts with

and affects glucagon.

In summary, FGF21 can improve insulin resistance by

improving insulin signaling and affecting its downstream
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pathway. When the insulin signaling pathway is impaired, FGF21

enhances insulin signaling by activating the AMPK signaling

pathway and inhibiting the mTOR signaling pathway to achieve

glucose uptake and improve insulin resistance. FGF21 regulates

lipid metabolism by enhancing lipocalin secretion and promoting

thermogenesis in brown adipose tissue (BAT) while facilitating the

browning of white adipose tissue (WAT). This process increases

glucose uptake by adipose tissue and improves IR.

FGF21 emerges as a multifunctional metabolic regulator shaped

by nutritional, hormonal, and environmental cues. Its secretion is

tightly controlled by fasting, macronutrient intake (carbohydrates/

proteins), and exercise, with tissue-specific responses (e.g., adipose-

limited cold exposure) highlighting its systemic yet context-

dependent roles. As a downstream effector of PPARa/g, FGF21
links lipid/glucose metabolism to transcriptional networks

governing energy homeostasis (52–56). Mechanistically, FGF21

integrates AMPK activation, mTORC1 inhibition, and anti-

inflammatory pathways to enhance insulin sensitivity, promote

lipid oxidation, and restore metabolic balance (Figure 1). Notably,

its therapeutic potential is underscored by tissue-specific effects

(e.g., adipose AMPK activation) and interactions with glucagon

signaling, though species differences in regulation (e.g., growth

hormone responsiveness) warrant further investigation (50, 51,

83, 84). These findings position FGF21 as a promising target for

metabolic disorders, provided challenges like variable

pharmacokinetics and off-target effects are addressed.
Frontiers in Endocrinology 05
4 FGF21 and insulin resistance

4.1 The role of FGF21 in the central
nervous system

The central nervous system (CNS) plays a critical role in

mediating FGF21’s metabolic effects, including dietary preference

regulation, circadian rhythm modulation, thermogenesis

enhancement, hepatic insulin sensitivity improvement, and lipid

metabolism control (42, 116–119). CNS-specific FGF21 knockout

mice exhibit abolished body weight and glucose regulation effects

(116), while FGF21 receptors and co-receptors (KLB) are expressed

in key hypothalamic nuclei (NTS, SCN, PVN) (19, 117), confirming

the CNS as a direct target organ. Notably, FGF21 is detectable in

human cerebrospinal fluid (CSF), with levels correlating directly

with serum concentrations (118), and can cross the blood-brain

barrier after hepatic secretion (119).

FGF21 exerts specific effects on dietary preferences through

distinct hypothalamic pathways (30, 58, 63, 74, 120–122). It reduces

sucrose intake by activating PVN neurons while suppressing simple

sugar consumption via VMH signaling (74). FGF21 transgenic mice

show selective reductions in sugar/artificial sweetener preference

without affecting other nutrients (58). This regulation occurs

independently of taste perception (121), as evidenced by: (1) 62%

reduction in high-sugar diet intake following PVN-targeted FGF21

administration (58), and (2) abolished dietary preference
FIGURE 1

Schematic diagram of FGF21 and its related signaling pathways.
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modulation in brain-specific KLB knockout mice (58, 122).

Importantly, these effects are reversible and exhibit transient PVN

dependency (58).

In addition to dietary regulation, CNS FGF21 signaling significantly

impacts energy metabolism (123). Through FGFR1/KLB activation,

FGF21 stimulates CRH expression in the SCN via ERK1/2-CREB

pathway (19), subsequently increasing ACTH secretion and

sympathetic nerve activity in brown adipose tissue (BAT) (124). This

cascade enhances adipose browning and thermogenesis. Notably, CRH

antagonists block FGF21-induced sympathetic activation, while

glucocorticoids may indirectly impair hepatic insulin sensitivity by

suppressing osteocalcin production (124).

A negative feedback mechanism governs FGF21 regulation

(125, 126). High-dose FGF21 administration suppresses hepatic

FGF21 gene expression more potently than streptozotocin

treatment alone, with similar observations in independent studies,

indicating that circulating FGF21 levels regulate its own gene

expression (125, 126).
4.2 The role of FGF21 in glucose
metabolism

FGF21 has demonstrated the ability to modulate blood glucose

and insulin resistance in mice, effectively reducing lipid levels, blood

glucose, and serum insulin, while enhancing insulin sensitivity in diet-

induced obesity models, mostly through improved glucose absorption

by skeletal muscle and diminished hepatic glucose synthesis

(127).FGF21 can affect glucose homeostasis in both insulin-

dependent and insulin-independent manners. Myogenic FGF21

positively regulates skeletal muscle insulin signaling to maintain

systemic glucose stabilization and energy homeostasis (66, 73),

including increasing glycogen conversion and KLB expression, etc.

FGF21’s capacity to diminish the mRNA expression of glucose-6-

phosphatase while leaving phosphoenolpyruvate carboxykinase

unaffected indicates that FGF21 lowers glucose release from

glycogenolysis (127). Increased hepatic glycogen, inhibition of

hepatic gluconeogenesis, decreased glucagon, and improved glucose

clearance were found in ob/+ mice when FGF21 was given acutely

(128), and the overexpression of FGF21 in various transgenic mice

improved glucose clearance, augmented insulin sensitivity, and

reduced fasting blood glucose levels (129). But not in ob/ob mice.

Moreover, FGF21 enhances insulin-stimulated glucose uptake in

skeletal muscle and glucose uptake by 3T3-L1 adipocytes (130),

stimulates insulin-independent expression of GLUT1, and increases

hepatic glycogen synthesis (123, 131–136).

Furthermore, FGF21 can directly signal to brown adipose tissue to

enhance insulin sensitivity and glucose uptake. FGF21 is synthesized

and released in both white adipose tissue (WAT) and brown adipose

tissue (BAT). Owing to a positive feedback mechanism, FGF21 is

crucial in facilitating the metabolic advantages of PPARg on glucose

homeostasis and peripheral insulin sensitivity (55).In humans and

rodents, BAT is extremely insulin-sensitive, with the ability to uptake

glucose and generate heat (137, 138), and possesses a comparable

capacity to metabolize glucose and enhance insulin sensitivity as
Frontiers in Endocrinology 06
skeletal muscle (136).In contrast, in WAT, FGF21 stimulates glucose

uptake, regulates lipolysis, and enhances PPARg activity in an insulin-

independent manner (50, 55, 139). Intraperitoneal administration of

FGF21 in ad libitum-fed wild-type mice did not alter plasma glucose

concentrations; however, co-administration of FGF21 with insulin

produced a synergistic effect on plasma glucose, surpassing the impact

of insulin alone (140), indicating that FGF21 may augment insulin

sensitivity and amplify insulin action. FGF21 was found not to affect

enhancing insulin sensitivity in starved mice devoid of adipose tissue

(141). This reduction in blood glucose, attributed to improved insulin

sensitivity, primarily relies on the augmented peripheral glucose

disposal by BAT (140, 142, 143), while not elevating glucose uptake

in WAT. Likewise, the hypoglycemic impact of FGF21 is entirely

abolished when KLB is removed from adipocytes, although it remains

intact when KLB is removed from the liver (123, 140). The lack of KLB

in mouse thermogenic (UCP1+) adipocytes compromised the

enhanced insulin sensitivity of FGF21 (11). These data confirm the

significant involvement of FGF21 in adipocytes in decreasing

peripheral glucose levels by improving insulin sensitivity.

FGF21 promotes the expression and secretion of lipocalin through

PPARg, and there is a large expression of adipoR1 and adipoR2 in

skeletal muscle, heart, liver, and other organs (144). Lipocalin

enhances glucose homeostasis and increases insulin sensitivity in

adipose and muscle tissues (145), indicating that the FGF21-

lipocalin axis plays a synergistic role in the regulation of glucose

metabolism. In leptin-deficient (ob/ob) mice and diet-induced obese

mice, the pharmacological effects of FGF21 on glucose, dyslipidemia,

and IR are reduced (72). Lipocalin secretion was significantly

increased in mice overexpressing the FGF21 gene (129), whereas

FGFR1 mutant mice exhibited no increase in lipocalin secretion

following FGF21 treatment (146). However, a high-fat diet leads to

impairment of the FGF21-lipocalin axis, which is ameliorated by

prolonged exercise (120). Therefore, when FGF21 is used to treat

patients with high-fat diet-induced insulin resistance, it should be

combined with exercise therapy to repair the FGF21-lipocalin axis and

restore their metabolic functions.

In conclusion, FGF21 demonstrates an irreplaceable role in

insulin resistance, both by increasing insulin signaling to enhance

glucose uptake and by increasing lipocalin secretion to elevate

insulin sensitivity. FGF21 improves glucose metabolism not only

through insulin-dependent but also non-insulin-dependent modes,

which suggests that FGF21 plays an indispensable role in the

process of glucose sugar metabolism, suggesting that FGF21 plays

an indispensable role.
4.3 The role of FGF21 in lipid metabolism

The FGF21 receptor is highly expressed in adipose tissue, making

adipose tissue an important target tissue for FGF21. FGF21 promotes

lipolysis in isolated adipocytes, increases circulating free fatty acids,

and enhances ketogenesis in the liver (46, 111). During starvation,

FGF21 enhances hepatic gluconeogenesis, promotes fat oxidation, and

stimulates ketogenesis (147). FGF21 transgenic mice exhibited an

increase in hepatic fat b-oxidation, which serves as a crucial substrate
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for gluconeogenesis and ketogenesis. FGF21’s effects on lipid

metabolism are also insulin-independent, as shown in type 1

diabetic and insulin-deficient animal models (111). In obesity,

FGFR1 expression is reduced in adipose tissue (148). When

adipocyte-specific FGFR1 was knocked down in mice, the effects of

FGF21 in lowering plasma glucose, triglycerides, insulin and

increasing energy expenditure were mostly eliminated (146). FGF21

and its analogs were shown to decrease the expression of adipogenic

genes in DIO mice, including SCD1, FASN, and/or SREBF1, a key

regulator of the adipogenic transcriptional network that is upregulated

in response to a high-fat diet (127, 149, 150). Prolonged

administration of FGF21 or FGF21 analogs in rodents and non-

primates resulted in significant weight loss, with lesser effects on

human body weight (140, 142, 151). In obese animals, the treatment

with the medication FGF21 enhanced energy expenditure and

ameliorated diabetes and obesity (142, 146). In DIO mice,

prolonged administration of FGF21 led to a reduction in body

weight along with a reduction in adiposity, hepatic triglycerides, and

cholesterol (152). Thus, FGF21 also prevents hepatic steatosis and

atherosclerosis (153).

FGF21 can directly promote glucose absorption and lipocalin

release in adipocytes. The triglyceride-lowering effect was lost after

the knockdown of lipocalin in DIO mice (145), indicating that

FGF21 may function in a lipocalin-dependent way. FGF21 can

increase the secretion of lipocalin, which plays an important role

not only in glucose metabolism but also has an important influence

on lipid metabolism. For example, FGF21 analogs can significantly

increase plasma lipocalin levels in obese and type 2 diabetic patients

(154). Pharmacologic dosages of FGF21 can stimulate lipocalin

production inWAT (145, 155). The elevation in energy expenditure

caused by FGF21 treatment was diminished in lipocalin-deficient

animals. Exercise mitigated the reduction in FGF21’s capacity to

stimulate lipocalin secretion produced by a high-fat diet, potentially

attributable to enhanced expression of FGFR and KLB (120, 156).

Lipocalin reduces the accumulation of lipids, such as ceramide, in

insulin-sensitive tissues, whereas the presence of ceramide

accumulation in the liver leads to IR and lipotoxicity.

FGF21 increases energy expenditure and decreases WAT content

by activating BAT (157, 158). FGF21 knockout mice exhibit increased

visceral and subcutaneous fat accumulation, along with enlarged

adipocytes. In mice lacking FGF21 receptors, exercise enhances

lipolysis and reduces WAT size, yet results in atypical lipid

accumulation in non-adipose tissues, including the liver and muscle

(119). This indicates that FGF21 inhibits the transfer of exercise-

induced catabolic adipose tissue to non-adipose tissues, including the

liver and muscle (156). Elevated FGF21 levels markedly decrease

WAT size. The browning of WAT results in reduced adipocyte size

and enhanced thermogenesis, correlating with the effects of FGF21-

promoted genes (UCP-1, CIDEA, DIO2) on heat production. FGF21

is associated with the promotion of thermogenic gene expression,

including UCP-1, CIDEA, and DIO2 (33, 159). UCP1 is not essential

for the increases in energy expenditure mediated by FGF21 (160).

When UCP1 is absent, energy expenditure is maintained by

compensating for adipose tissue thermogenesis. Meanwhile, exercise

increases mitochondrial citrate synthase activity, which is reduced in
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FGF21 knockout mice, suggesting that FGF21 regulates mitochondrial

activity in WAT, and is likely to be involved in the regulation of WAT

“browning” (161, 162). FGF21 exerts both acute and chronic

influences on metabolic processes. Lipodystrophic mice exhibiting

diminished adipose tissue demonstrate resistance to both the acute

and chronic effects of systemic FGF21, a factor recognized for its

ability to reduce blood glucose levels and enhance insulin sensitivity.

Transplantation of WAT into these mice resulted in complete

restoration of FGF21 responsiveness, confirming that adipose tissue

is the site that plays a major role in the antidiabetic activity of

FGF21 (141).

FGF21 has demonstrated the ability to augment pancreatic insulin

levels and safeguard pancreatic islets from glucolipotoxicity and

cytokine-induced apoptosis (163). AMPK signaling is crucial in

regulating pancreatic b-cell activity and apoptosis; its activation and

transduction inhibit b-cell apoptosis and diminish lipid buildup (93),

which is likely to be an effect of FGF21 activation of the AMPK

signaling pathway. It was found that AMPK signaling is necessary for

the adult b-cell phenotype during weaning and that AMPK prevents

b-cell maturation and provides an aberrant phenotype by inhibiting

mTORC1 signaling. In addition, downregulation of AMPK leads to

mitochondrial degeneration, which can indirectly contribute to the

development of diabetes, so AMPK signaling is the first step in b-cell
maturation and normal function (164, 165). AMPK signaling has been

found to improve b-cell function as well as protect b-cells from

apoptosis in several drug experiments, including Rhodiola rosea

glycoside, mulberry pigment, and kaempferol (166–168). AMPK

and SIRT1 interact with each other to regulate the action of SIRT1,

which activates AMPK signaling to augment fatty acid oxidation,

hence facilitating b-cell recovery and endocrine progenitor

development, while also contributing to the regulation of b-cell
function and survival (1, 169). The activation of AMPK and SIRT1

is linked to various positive outcomes in the maintenance of glucose

homeostasis in insulin-resistant conditions (170).

FGF21 plays a significant role in lipid metabolism by promoting

WAT browning, fat oxidation, and tissue thermogenesis to reduce

body weight, triglycerides, and cholesterol. And lipotoxicity is also

an important factor leading to IR. Lipotoxicity not only leads to

apoptosis of pancreatic b-cells but also leads to inflammation,

which in turn promotes the development of IR. Therefore, FGF21

can reduce the harm of lipotoxicity and improve IR by regulating

lipid metabolism and immune homeostasis.
4.4 The role of FGF21 in immune
homeostasis

The inflammatory response has a huge impact on IR

progression, especially in insulin-target tissues such as muscle,

adipose tissue, and liver. Therefore, improving inflammation is

equally a therapeutic goal in the treatment of IR and T2DM (171,

172). And FGF21 can act on the immune and inflammatory

systems. Research indicates that inflammation diminishes the

functionality of FGF21, which notably inhibits pro-inflammatory

factors, including tumor necrosis factor-a (TNF-a), interleukin-6
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(IL-6), IL-1b, and monocyte chemotactic protein-1 (MCP-1) (173,

174). In a therapeutic study with FGF21 analogs, FGF21 was found

to decrease pro-inflammatory marker expression and increase anti-

inflammatory marker expression in non-human primates (175).

FGF21 can induce a shift in macrophage phenotype from pro-

inflammatory to pro-repair in vitro (174). In acute pancreatitis

mice, knockdown of FGF21 exacerbated inflammatory response

and fibrosis, and restoration of FGF21 attenuated inflammation and

fibrosis. The above findings confirm that FGF21 can improve the

diabetic disease state by inhibiting inflammatory factor

expression (176).

Lipotoxicity is closely related to IR and involves multiple

pathways (177). Lipotoxicity arises from overnutrition, excessive

fat storage, and catabolism, resulting in metabolic dysfunctions in

peripheral organs, including muscle, pancreas, liver, and adipose

tissue (178). When the storage capacity of adipose tissue is

exceeded, free fatty acid spillover results in the formation of fatty

acyl-coenzyme A, diglycerides (DAG), and ceramides in muscle

tissue (179). The buildup of these harmful lipids significantly affects

the onset of insulin resistance in skeletal muscle. Prolonged

exposure to lipotoxicity results in the release of pro-inflammatory

cytokines by adipose tissue and alters the equilibrium between

inflammation and metabolism, which are significant factors in

lipotoxicity. Ceramides induce cellular stress and death, impairing

muscle insulin sensitivity by decreasing AKT (179, 180), and PKB

activity, and serve as primary inflammatory mediators of muscle

insulin resistance (181, 182). Ceramide has been shown to have a

favorable correlation with the development of insulin resistance in

the context of lipotoxicity (182–184). Toll-like receptor 4 (TLR4)

significantly contributes to the onset of insulin resistance (IR) and

inflammation, being expressed in insulin-responsive tissues. It

induces IR by enhancing the transcription of pro-inflammatory

genes and activating pro-inflammatory kinases, including JNK,

IKK, and p38, among others. Pro-inflammatory kinases obstruct

IRS phosphorylation, hinder insulin signaling, and impede insulin

action (185, 186). These kinases additionally promote NF-kB
signaling, resulting in heightened inflammatory responses (185,

187, 188). NF-kB binds to the promoter region of the solute

carrier family 2 member 4 (Slc2a4) gene, thereby downregulating

GLUT4 expression transcription (189, 190). FGF21 inhibits pro-

inflammatory factor activity and NF-kB signaling, preventing

inflammation and hepatic fibrosis (191), this may come from the

activation of AMPK signaling (192). AMPK is an inhibitor of acute

pro-inflammatory responses, and salicin, olive bitter moss, and

naringenin all ameliorate oxidative stress or inflammation-

mediated insulin resistance by stimulating the activation of

AMPK signaling (93). AMPK response activity decreases with age

(193), which also results in the disruption of FGF21-mediated

AMPK signaling.
4.5 The role of FGF21 in redox homeostasis

Oxidative stress is also a cause of insulin resistance (IR), and

FGF21 can reduce oxidative stress (191, 194–196). FGF21 mitigates
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oxidative damage and cytotoxicity through its influence on MAPK

and JNK pathways (196). Chronic mitochondrial stress correlates

with the activation of response pathways, including the

mitochondrial unfolded protein response (UPRmt) and integrated

stress response (ISR), in FGF21 target tissues such as the liver,

adipose tissue, and skeletal muscle (197, 198). The IRS promotes the

phosphorylation of eukaryotic initiation factor 2a (eIF2a) and

activates ATF4. Following IRS activation, there is a promotion of

mitochondrial UPRmt activation, which mitigates mitochondrial

dysfunction (199).ATF4 mediates the transcription of FGF21 (200–

203), thereby regulating systemic metabolic homeostasis (140, 204).

In murine models of mitochondrial stress, the upregulation of

FGF21 serves as a protective mechanism against mitochondrial

damage and metabolic disorders. In models exhibiting impaired

mitophagy, there is an upregulation of FGF21 expression, which

facilitates thermogenesis in adipose tissue (161). The targeted

deletion of autophagy-related gene 7 (ATG7) in skeletal muscle

inhibits mitophagy and induces FGF21 secretion, thereby

preventing insulin resistance (38). FGF21 serves as a crucial

metabolic mediator, enhancing mitochondrial function while

decreasing inflammation and apoptosis in skeletal muscle (205).

Notably, while chronic mild mitochondrial stress can trigger

adaptive responses and improve metabolism, prolonged and

sustained mitochondrial stress can lead to metabolic disorders

with IR, T2DM, and obesity (206, 207). During oxidative

phosphorylation, mitochondria produce reactive oxygen species

(ROS) as toxic byproducts. When the production of ROS exceeds

the scavenging capacity, redox imbalance occurs (208, 209),

damaging mitochondrial structure, cellular DNA and proteins,

etc., leading to mitochondrial dysfunction (210). Mitochondrial

dysfunction correlates with insulin resistance in skeletal muscle,

liver, and adipose tissue (211–213). Compromised mitochondrial

oxidative capability, increased ROS, and diminished ATP

generation rates all contribute to the onset of insulin resistance

(206), while also impacting adipose tissue function and disturbing

adipose tissue homeostasis (207, 213, 214). Excessive production of

ROS also stimulates the JNK, IKK, and NF-kB pathways, disrupting

cellular homeostasis (215). Oxidative stress arises from excessive

ROS production in mitochondria, resulting in endoplasmic

reticulum stress and activating the UPR. This ROS-induced

oxidative stress exacerbates further oxidative stress, creating a

detrimental cycle that damages cellular components and induces

transcriptional alterations in insulin resistance (216).In addition, b-
cell death and oxidative stress are likewise closely linked, and

overproduction of ROS leads to oxidative damage in b-cells.
Oxidative stress induces FOXO1 expression, leading to PDX1

nuclear translocation and stimulating b-cell dysfunction (93).

FGF21 has been shown to mitigate endoplasmic reticulum stress

(149, 217, 218), drug-induced endoplasmic reticulum stress, and

adipose degeneration due to endoplasmic reticulum stress through

MAPK (219, 220). Furthermore, the treatment of FGF21 enhanced

mitochondrial function in hepatocytes during murine tests (78,

221), and the absence of FGF21 resulted in the buildup of hepatic

reactive oxygen species, which was mitigated by FGF21

supplementation (194). At the same time, FGF21 induces
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activation of pathways that help protect cells from oxidative stress

and inhibit pro-cell death pathways. Physiologically, FGF21

oxidizes stress by upregulating Nrf2-mediated antioxidant

capacity (222). FGF21 has been demonstrated to safeguard mice

from acetaminophen-induced hepatotoxicity by augmenting PGC-

1a/Nrf2-mediated antioxidant capacity in the liver, and it also

protects mouse liver from D-galactose-induced oxidative stress in

hepatocytes by improving Nrf2-mediated antioxidant capacity (194,

222). Thus, FGF21 achieves treatment of IR in response to oxidative

stress by improving mitochondrial function, decreasing ROS

production, activating AMPK to inhibit inflammatory responses,

and promoting insulin signaling.

In summary, the improvement and treatment of IR by FGF21 is

multifaceted, including improving the damaged insulin signaling

pathway to enhance insulin signaling, promoting the production

and release of biological factors such as lipocalin to enhance insulin

sensitivity in adipose tissue, regulating lipid metabolism to reduce

lipotoxicity, and attenuating inflammation and oxidative stress. At

the same time, the multiple effects of FGF21 and CNS coordinate

with each other to regulate body metabolism and reverse

insulin resistance.

FGF21 emerges as a pleiotropic metabolic regulator that

orchestrates systemic glucose and lipid homeostasis through

interconnected pathways. Its actions span the central nervous system

(CNS), peripheral tissues, and immune-metabolic networks,

collectively mitigating insulin resistance via three key mechanisms:

(1) Neuroendocrine Regulation: CNS-specific FGF21 signaling

modulates dietary preferences, thermogenesis, and hepatic insulin

sensitivity by activating hypothalamic nuclei (e.g., PVN, SCN) and

suppressing glucocorticoid-driven lipolysis. (2) Peripheral Metabolic

Reprogramming: FGF21 enhances insulin-dependent glucose uptake in

skeletal muscle and liver while driving insulin-independent glucose
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disposal via GLUT1 upregulation and adipose tissue browning.

Notably, its synergistic effects with lipocalin amplify lipid oxidation

and mitigate lipotoxicity in adipocytes and hepatocytes. (3) Anti-

Inflammatory and Antioxidant Defense: By suppressing NF-kB/JNK
pathways and activating AMPK/SIRT1, FGF21 reduces pro-

inflammatory cytokine production, protects pancreatic b-cells from

glucolipotoxicity, and restores mitochondrial function impaired by

oxidative stress.

The therapeutic potential of FGF21 is underscored by its ability

to simultaneously target multiple IR drivers—lipotoxicity,

inflammation, and oxidative damage—while compensating for

adipose tissue dysfunction. However, species-specific variations in

receptor sensitivity (e.g., human vs. rodent KLB expression) and

pharmacokinetic limitations (e.g., short half-life in primates)

necessitate further optimization of analogs for clinical translation.

Future research should prioritize elucidating tissue-specific FGF21

responses and developing delivery systems to enhance its metabolic

benefits while minimizing off-target effects.
5 FGF21 analogs

Natural FGF21 has a short half-life of 30 min-120 min, which

depends on the species (142, 223). FGF21 is vulnerable to cleavage

of its structural domain by the endopeptidase fibroblast activating

protein (FAP), and the removal of 10 residues at the C-terminus,

specifically Pro-171 and Ser-172, diminishes FGF21’s affinity for the

co-receptor KLB (14, 224, 225). Therefore, the development of

FGF21 analogs is crucial (Table 1). However, it is worth noting that

different organisms have different sensitivities to the effects of

FGF21. For example, in individuals with obesity and type 2

diabetes, FGF21 analogs attenuate dyslipidemia but have less
TABLE 1 Comparison table of key characteristics of FGF21 analogs.

FGF21 analogs
Potency (relative

to FGF21)
Half-life The main side effects Remarks

PEG-FGF21 ~10-20times
Extension (specific data varies
with PEGylation degree)

Mild gastrointestinal reactions
(e.g., nausea)
Potential immunogenicity (due
to PEG modification)

PEGylation extends the half-life
and improves pharmacokinetics

FGF21 fusion protein ~5-10times
Significantly extended (e.g., by
several days)

Injection site reactions
May increase the risk
of thrombosis

Fusion with antibodies or
albumin for half-life extension

FGF21 Allosteric Modulator ~2-5times Short (requires frequent dosing)
Elevated liver enzymes Small-molecule compounds

targeting the FGFR-
KLB complexPotential metabolic disorder

GLP-1/FGF21 dual agonist Synergistic Effect (1 + 1>2)
Moderate (partially dependent on
GLP-1)

Gastrointestinal reactions
(nausea/vomiting)

The satiety effect of GLP-1
combined with the metabolic
regulation of FGF21

Hypoglycemia risk
(monitoring required)

Antibody-conjugated FGF21 ~15-30times Extremely long (several weeks)

High immunogenicity Antibody-mediated delivery of
FGF21 to specific tissues (e.g.,
the liver)

Off-target toxicity
(e.g., hepatotoxicity)
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impact on glycemic control, which demonstrates the differences

that still exist among different FGF21 analogs and the differences in

action between species (72).

Currently, research on FGF21 analogs is still in the experimental

stage, for example, LY2405319, a variantwithFGF21proto-life created

in Lilly’s lab, reduces aggregation in solution by introducing additional

disulfide bonds through the Leu118Cys andAla134Cysmutations and

reduces aggregation in the solution by deletion of the four amino-

terminal amino acid residues His-Pro-Ile- Pro97 to avoid protein

hydrolytic cleavage (72). Its effects on both insulin and lipids were

positive indiabetic subjects, but glucoseuptakewasnot as effective as in

monkey subjects (154, 226, 227). PF-05231023, a long-acting FGF21

analog, is a combination of the protein with the antibody scaffold

CovX-2000, intended for weekly injection, exhibiting superior

pharmacokinetics in human kinetics and safety (228, 229), and

capable of reducing blood glucose and cholesterol levels in murine

models (230, 231). BMS-986036, the thirdmedication, is derived from

polyethylene glycol-modified recombinant human FGF2. Clinical

trials indicate that it demonstrates favorable safety and tolerability

characteristicswhile considerablydecreasing the incidenceofNASHin

obese and diabetic patients (228, 229, 232, 233). Nonetheless, the

medication exhibits restricted efficacy against human adipose tissue-

FGFR1c (234), potentially resulting indiminished insulin sensitization

of adipose tissue. BIO98-100, a recent FGF21 analog (235), is a novel

glycopolyglycolated variant that interacts comparably with human

FGF21 and FGFR1c to elicit a following. This analog enhanced fasting

glucose, cholesterol, and triglyceride levels in diabetic monkeys (235).

The analog possesses a half-life of 55–100 hours in humans, enhancing

its previously limitedhalf-life, and research suggests it enhances insulin

sensitivity, lipocalin levels, and triglyceride concentrations. A highly

anticipated contemporary analog is the fusion protein of FGF21 with

human immunoglobulin 1Fc, which enhances affinity for KLB and

possesses a half-life of 3-3.5 days, referred to asAKR-001 (236, 237). In

phases 1 and 2 of clinical trials, this analog enhanced insulin sensitivity

and lipoprotein levels while simultaneously inhibiting adipose tissue

catabolism and hepatic neoadipogenesis, demonstrating good

tolerability (234, 236). The cumulative effects of most FGF21 analogs

are substantial in enhancing lipid metabolism, although they

demonstrate less efficacy in ameliorating glycemic alterations in

humans compared to animal trials (154, 230, 235). However, this

does not mean that FGF21 is not helpful for diabetes and insulin

resistance in humans, and FGF21 analogs can improve the insulin

signaling pathway by improving lipid metabolism and reducing

lipotoxicity and chronic inflammation associated with obesity in

humans. Moreover, since FGF21 works differently in different

organisms, and perhaps analogs that do not work well in animal

studies are effective in humans, there are still many FGF21 analogs

worth developing in humans!
6 Safety of FGF21

Several studies of FGF21 are still progressing, and the safety of its

clinical production has attracted attention. FGF21 has been suggested
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to have potential effects on bone turnover as it has been observed in

animal models that FGF21 stimulates adipogenesis in the bone

marrow, leading to bone loss (238). Bone loss was observed in

mice treated with pharmacological doses of FGF21 (100).

Nonetheless, this was not observed in another same experiment

involving mice (239). Also in rodents, FGF21 increases

thermogenesis and promotes adrenergic receptor activation in

adipose tissue by spiking the sympathetic nerves of the BAT, which

may lead to symptoms triggered by sympathetic hyperexcitability,

such as hyperhidrosis, but is rarely seen in human studies using

FGF21 analogs. These occurrences may be due to differences in

FGF21 analogs or interspecies differences that lead to different effects.

The most common adverse reactions in FGF21 analog trials are

gastrointestinal reactions, including diarrhea and nausea. However,

this adverse reaction is usually transient, similar to metformin,

which occurs mainly at the beginning of treatment and can be

tolerated after a period of use (234, 240, 241). here have also been

cases of FGF21 analogs causing elevated heart rate and blood

pressure with use, but this is an isolated case (230). It is worth

mentioning that in rodents and monkeys, administration of FGF21

drug therapy does not cause adverse effects on mitosis or

hypoglycemia. FGF21 has been shown to influence female

reproduction (242, 243), as seen by infertility in mice that

overexpress this factor. This may pertain to energy insufficiency

resulting from chronic energy depletion, which can be ameliorated

when FGF21 transgenic sterile mice are on a high-fat diet (243).

However, further research is needed to determine whether the

administration of FGF21 treatment affects female fertility.
7 The future and prospects of FGF21

This article has systematically elucidated the signaling pathways of

FGF21 and its mechanisms of action. However, several critical scientific

questions remain unresolved. While FGF21 has been demonstrated to

play a pivotal role in glucose and lipid metabolism as well as immune

homeostasis in coordination with the central nervous system, the

precise molecular mechanisms underlying its organ-specific effects

remain poorly understood. Although accumulating evidence

highlights FGF21’s immense therapeutic potential for metabolic

disorders such as obesity, insulin resistance, and type 2 diabetes, key

gaps persist in our understanding of its systemic actions.

Preclinical studies have shown that antidiabetic drugs like

metformin and thiazolidinediones (TZDs) not only upregulate

FGF21 expression but also activate AMPK while improving

mitochondrial function - effects that synergize with FGF21’s

metabolic regulatory properties. Nevertheless, significant challenges

remain in drug development:

First, the pharmacological efficacy of FGF21 analogs exhibits

remarkable species-specific differences. Analogues showing

remarkable efficacy in rodent models often demonstrate substantially

diminished effects in non-human primates or human trials, suggesting

complex inter-species variations in FGF21 signaling. The molecular

basis for these discrepancies remains to be fully characterized.
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Second, while animal studies consistently demonstrate FGF21’s

beneficial effects on glycemic control, human clinical trial results

show considerable heterogeneity. This discrepancy underscores the

limitations of current experimental models (e.g., diet-induced

obesity mouse models) in fully replicating the pathophysiology of

human metabolic diseases. There is an urgent need to develop more

physiologically relevant animal models or organoid systems that

better mimic human disease conditions.

Safety concerns represent another major hurdle for FGF21 analog

development. Current data indicate these analogs may cause mild

gastrointestinal side effects, alter lipid profiles, and potentially induce

hepatotoxicity, though comprehensive long-term safety data remain

limited. Particularly concerning are reports of dose-dependent

immunogenic responses in some clinical trials, which could

compromise drug efficacy through neutralizing antibody production.

Moreover, the pharmacokinetic profiles of engineered FGF21 analogs

differ substantially from endogenous FGF21, raising questions about

their impact on physiological homeostasis.

Based on these challenges, we propose the following priority areas

for future research:
Fron
1. Organ-Specific Mechanistic Studies

• Employ tissue-specific gene knockout models and single-

cell sequencing technologies to delineate FGF21’s

differential effects across organs (liver, adipose tissue,

skeletal muscle, brain).

• Investigate the crosstalk mechanisms between peripheral

tissues and the central nervous system in FGF21-mediated

metabolic regulation.

2. Cross-Species Pharmacology Research

• Conduct comparative genomic and proteomic analyses to

identify species-specific determinants of FGF21 signaling

efficacy.

• Develop improved preclinical evaluation systems

incorporating multiple species data

3. Next-Generation Drug Delivery Systems

• Design targeted nanocarrier platforms for tissue-specific

FGF21 delivery (e.g., liver-targeted nanoparticles).

• Explore sustained-release formulations to optimize

pharmacokinetic profiles.

4. Long-Term Safety Assessment

• Implement large-scale, long-term clinical trials monitoring

immunological, cardiovascular, and hepatic safety parameters.

• Establish biomarkers for early detection of adverse

immune responses.

5. Combination Therapy Strategies
tiers in Endocrinology 11
• Investigate synergistic mechanisms between FGF21 analogs

and existing antidiabetic agents (GLP-1 receptor agonists,

SGLT2 inhibitors).

• Develop optimized combination regimens for metabolic

syndrome management.
Addressing these challenges through multidisciplinary

approaches will be essential to translate FGF21-based therapies

from bench to bedside, ultimately realizing their potential to

revolutionize treatment paradigms for metabolic diseases.
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