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Frontiers in Endocrinology 
Bioinformatic analysis identifies 
LPL as a critical gene in 
diabetic kidney disease via 
lipoprotein metabolism 
Qian Dong †, Huan Xu †, Pengjie Xu, Jiang Liu and Zhouji Shen* 

Department of Nephrology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China 
Background: Diabetic kidney disease (DKD) is a common and serious 
complication of diabetes, affecting approximately 40% of patients with the 
condition. The pathogenesis of DKD is complex, involving multiple processes 
such as metabolism, inflammation, and fibrosis. Given its increasing incidence 
and associated mortality, there is an urgent need to identify novel pathogenic 
genes and therapeutic targets. 

Methods: This study systematically identified hub DKD-associated genes and 
their potential molecular mechanisms through bioinformatic analysis. Gene 
expression datasets from DKD patients and healthy controls were obtained 
from the GEO database. Hub genes were screened using differential 
expression analysis, weighted gene co-expression network analysis (WGCNA), 
LASSO regression, random forest (RF) algorithms, and consensus clustering for 
DKD patient classification. Additionally, immune cell infiltration analysis was 
performed on differentially expressed genes to explore the relationship 
between hub genes and the immune microenvironment. Potential drugs 
targeting LPL were predicted based on gene-drug interaction analysis. 
Immunohistochemistry was used to verify the expression of LPL and TNF-a in 
kidney tissues from patients with varying degrees of DKD severity, as well as their 
relationship with kidney function impairment. 

Results: This study revealed that LPL, a lipoprotein metabolism gene, plays a 
crucial role in DKD, participating in cholesterol and glycerolipid metabolism as 
well as PPAR signaling. LPL expression was negatively correlated with pro-
inflammatory M1 macrophages and various subsets of T cells, including naïve 
CD4 T cells and gamma delta T cells, while positively correlated with follicular 
helper T cells, suggesting its immune-regulation effects in DKD progression. 
Potential LPL-targeting drugs, such as Ibrolipim, anabolic steroid, and acarbose, 
might mitigate DKD. LPL expression was decreased with DKD severity and was 
correlated with TNF-a and kidney dysfunction markers, indicating its key role in 
DKD progression. 
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Conclusion: LPL is a pivotal regulator of lipid metabolism and immune inflammation 
in DKD. Potential drugs targeting LPL offer new candidates for precision treatment of 
DKD. These findings lay a theoretical foundation for understanding the molecular 
mechanisms of DKD and developing LPL-based therapeutic strategies. 
KEYWORDS 

diabetic kidney disease, lipoprotein lipase, immune cell infiltration, lipid 
metabolism, bioinformatic 
Introduction 

Diabetic kidney disease (DKD) is a common and serious 
microvascular complication of diabetes and is one of the leading 
causes of chronic kidney disease (CKD) and end-stage renal disease 
(ESRD), affecting approximately 40% of patients with diabetes (1, 
2). The early stages of DKD are often asymptomatic, resulting in 
delayed diagnosis in huge amount of DKD patients. This delayed 
detection contributes to the global rise in DKD prevalence and 
mortality rates, especially in low- and middle-income countries, 
making it a significant public health burden (3–5). The 
pathophysiology of DKD is complex, involving the interplay of 
multiple factors such as metabolic disturbances induced by 
hyperglycemia, hemodynamic abnormalities, oxidative stress, 
chronic inflammation, and genetic susceptibility (6–9). 

Hyperglycemia activates several key biochemical pathways such as 
the polyol pathway, the advanced glycation end product (AGE) 
pathway, and protein kinase C, which further exacerbate kidney 
damage (10, 11). Concurrently, glomerular hyperfiltration and 
overactivation of the renin-angiotensin system (RAS) lead to 
increased intraglomerular pressure, promoting mesangial matrix 
expansion and podocyte apoptosis (12, 13). Besides, Hyperglycemia 
promotes the secretion of pro-inflammatory cytokines including C-
reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-
alpha (TNF-a), all of which have been shown to contribute to DKD 
progression and cardiovascular disease development (14, 15). Oxidative 
stress and inflammatory responses further exacerbate cellular damage, 
while tubular epithelial cell trans differentiation and extracellular matrix 
deposition drive fibrotic progression (6, 16, 17). Additionally, genetic 
background and epigenetic regulation influence disease susceptibility 
and progression (18). These mechanisms collectively contribute to 
glomerulosclerosis, tubulointerstitial fibrosis, and progressive renal 
function decline. Given the limitations of current treatment strategies, 
identifying new pathogenic factors and therapeutic targets, particularly 
through in-depth exploration of molecular mechanisms, may offer new 
opportunities to improve the diagnosis and treatment of DKD (19). 

In this study, a comprehensive analysis to explore key pathogenic 
genes and potential therapeutic targets of DKD was conducted. Gene 
expression datasets from DKD patients and healthy controls were 
obtained from the Gene Expression Omnibus (GEO) database and 
subjected to multi-level bioinformatic analysis. Differential expression 
02 
analysis including Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Gene Ontology (GO) enrichment, gene set enrichment 
analysis (GSEA) and weighted gene co-expression network analysis 
(WGCNA) in combination with LASSO regression and random 
forest (RF) algorithms to identify hub genes, and simultaneously 
classified DKD patients using consensus clustering. Immune cell 
infiltration analysis was performed to elucidate the role of 
inflammatory response in the progression of DKD and to provide 
theoretical support for immunotherapy. In addition, potential 
targeted drugs and drug-gene interactions involving hub genes 
were conducted. The bioinformatic conclusion was approved by 
immunohistochemistry. This study highlights the role of lipid 
metabolism disorders and their associated immune-inflammatory 
responses, providing new insights and potential targets for the early 
diagnosis, classification and targeted treatment of DKD. 
Materials and methods 

Data search and download 

In this study, datasets related to DKD were obtained from the 
GEO database (http://www.ncbi.nlm.nih.gov/geo) for subsequent 
data analyses. Both the GSE30122 (training set) and GSE104948 
(validation set) datasets are based on microarray technology. The 
gene expression data for GSE30122 was obtained from the GEO 
database. These files are typically provided as log2-transformed and 
pre-normalized expression matrices by the data submitters or GEO 
processing pipeline. Following this, our preprocessing involved 
handling probes that correspond to multiple genes by averaging 
their expression levels to represent a single gene symbol. 
Subsequently, Z-score normalization was applied to the log2­
transformed data to standardize gene expression distributions 
across samples, which facilitates comparability in downstream 
analyses. The GSE30122 dataset was selected as the training set, 
which contained the gene expression profiles of 19 DKD patients 
and 50 healthy controls. We utilized GSE104948 dataset was used as 
a validation set to verify the robustness of the model and the 
reliability of the GSE104948-GPL22945 subset, which included gene 
expression profiles of 7 DKD patients and 18 healthy controls, 
directly relevant to diabetic kidney disease. 
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Identification of differentially expressed 
genes 

The “Limma” package (version 3.60.5) in R was utilized to screen 
the differentially expressed genes (DEGs) between DKD patients and 
healthy controls in the training set (GSE30122). Genes with a P < 0.05  
and |log2(FC)| > 0.585 were considered significantly differentially 
expressed. This threshold, corresponding to a fold change of 1.5, was 
selected to balance statistical significance with the retention of genes 
exhibiting subtle yet potentially critical biological changes, thereby 
ensuring a comprehensive yet reliable set of differentially expressed 
genes for downstream functional analyses. The expression profiles of 
DEGs were visualized using a volcano plot and a heatmap generated 
with the pheatmap package (version 1.0.12) and the ggplot2 package 
(version 3.5.1), respectively. 
Enrichment analysis 

To better understand the biological functions of key genes, GO 
functional enrichment analysis and KEGG pathway enrichment analysis 
were performed on the identified DEGs using the clusterProfiler 
package (version 4.12.6) in R. GO enrichment analysis evaluated gene 
enrichment across three domains: Biological Processes (BP), Molecular 
Functions (MF), and Cellular Components (CC), offering a 
comprehensive understanding of their functional characteristics. 

Additionally, GSEA was conducted to examine the distribution 
of DEGs within known functional pathways. By analyzing the 
ranking of gene expression, GSEA determines whether specific 
gene sets are significantly enriched in particular biological 
pathways. In this study, GSEA was performed using the 
clusterProfiler package (version 4.12.6), with the Hallmark gene 
sets from the Molecular Signatures Database (MSigDB) as the 
reference standard. P<0.05 was considered statistically significant. 
WGCNA analysis of differentially expressed 
genes 

To further identify the key gene modules associated with DKD, 
this study used the R package WGCNA (version 1.72-5) to 
construct a gene co-expression network. WGCNA is a widely 
used bioinformatic method that can reveal co-expression patterns 
between genes and identify gene modules associated with specific 
biological characteristics (20). 

First, the pickSoftThreshold function was used to select an optimal 
soft threshold to ensure the sparsity of the network and to generate a 
robust co-expression network. Subsequently, gene co-expression was 
assessed by calculating the Pearson correlation coefficient between 
gene pairs in the adjacency matrix. These weighted co-expression 
relationships enabled the evaluation of interaction strength between 
genes and the identification of key gene modules within the network. 
Finally, genes from key modules associated with DKD were extracted 
for further analysis and validation. 
Frontiers in Endocrinology 03 
LASSO and RF analysis 

To further identify hub genes closely related to DKD, the key 
module genes screened by WGCNA were subjected to Least 
Absolute Shrinkage and Selection Operator (LASSO) regression 
analysis and RF analysis. 

In the LASSO regression analysis, we used the R package glmnet 
(version 4.1-8) and 5-fold cross-validation to determine the optimal 
regularization parameter. By incorporating L1 regularization, the 
number of variables in the model was controlled by compressing 
less important coefficients to zero, thereby reducing model 
complexity and retaining the most representative gene features. 

The RF analysis, an ensemble learning method based on 
decision trees, assesses the importance of each gene by 
constructing multiple decision trees. RF analysis was performed 
using the R package randomForest (version 4.7-1.1), and the most 
critical genes were identified based on their importance scores, 
measured as Mean Decrease Gini. 

The results of LASSO regression and RF analysis were analyzed 
through Venn diagram intersection analysis using EVenn (http:// 
www.ehbio.com/test/venn/#/) to screen out hub genes related to 
DKD for subsequent in-depth research. 
Consensus cluster analysis 

To explore molecular heterogeneity within the DKD patient cohort 
based on the five identified hub genes (LPL, BCAM, SERPINE2, 
GCNT3, and CTNNBIP1), consensus clustering was performed on 
the DKD samples from the training dataset (GSE30122). The analysis 
was conducted using the ConsensusClusterPlus R package (v1.58.0) 
applying the k-means algorithm with Euclidean distance. Cluster 
stability was evaluated for k values ranging from 2 to 9 (maxK=9), 
using 1000 resampling iterations (reps=1000) with 80% samples 
randomly selected in each iteration (pItem=0.8). The optimal number 
of clusters was determined based on the consensus cumulative 
distribution function (CDF) plots and the stability of consensus 
matrices. DKD samples were subsequently classified into the optimal 
number of subtypes, and the expression patterns of the five hub genes 
across these subtypes were visualized using heatmaps and box plots. 
Immune cell infiltration assessment 

To evaluate the composition of 22 types of immune cells in the 
samples, the CIBERSORT algorithm was used to conduct immune 
cell infiltration analysis based on differentially expressed genes. A box 
plot was utilized to visually present the differences in immune cell 
composition between the two groups. In addition, Pearson 
correlation analysis was conducted to assess the relationships 
between hub genes and various immune cells. The R package 
corrplot was used to generate a heatmap of the correlation between 
genes and immune cells, aiming to visualize the association between 
hub genes and immune infiltration characteristics. 
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Gene-drug prediction 

To explore potential drug targets of hub genes, this study 
leveraged the Drug-Gene Interaction Database (DGIdb, https:// 
www.dgidb.org/) to perform drug association analysis on the 
screened hub genes to identify possible drug-gene interactions. 
The interaction scores provided by DGIdb are quantitative 
measures derived from integrated information across various 
public databases and literature sources, reflecting the strength of 
potential drug-gene associations. Our study primarily utilized these 
pre-computed scores for predictive analysis. 
Clinical sample collection and 
immunohistochemical analysis 

To verify the correlation between LPL and the severity of DKD 
and its renal function indicators, 20 renal tissue samples were 
collected, including 10 paraffin-embedded renal biopsy samples 
from patients with varying severities of DKD and 10 healthy 
control samples from non-tumor renal tissue adjacent to renal 
tumors. The age and gender of the samples in each group were 
matched to eliminate the influence of confounding factors. All 
sample collections were carried out with informed consent from 
patients and approved by the hospital’s ethics committee 
(KY2024SL295-01). 

The collected kidney tissue samples were fixed in 4% 
paraformaldehyde buffer at room temperature for 24 hours, then 
embedded in paraffin and sectioned into 4 mm thick sections. The 
sections were hydrated, and nonspecific binding was blocked with 
5% goat serum for 1 hour at room temperature. The sections were 
then incubated overnight at 4°C with primary antibodies, including 
anti-LPL antibody (1:200, RayBiotech, # 144-64237) and anti-TNF­
a antibody (1:200, Abcam, #ab1793). The next day, the sections 
were incubated with biotinylated secondary antibodies (1:500, Ray 
Biotech, # 144-00277) at room temperature for 1 hour. 
Subsequently, 3,3’-diaminobenzidine (DAB, MilliporeSigma) was 
applied for 5 minutes for staining, followed by hematoxylin 
counterstaining at room temperature for 60 seconds. After 
counterstaining, the sections were dehydrated with gradient 
ethanol, cleared with xylene, and mounted with neutral balsam. 
The completed sections were observed and recorded under an 
optical microscope (Olympus, Tokyo, Japan) to evaluate the 
expression level of LPL protein in DKD and control tissues. 
Results 

Differentially expressed gene identification 

Through analyses of the GSE30122 dataset from the GEO 
database, a total of 477 differentially expressed genes (DEGs) were 
identified between DKD patients and healthy controls, based on the 
criteria of P < 0.05 and |log2FC| > 0.585. Among these, 193 genes 
were upregulated, and 284 were downregulated (Figures 1A, B). 
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To further explore the BP in which these DEGs may be involved 
in, we conducted GO and KEGG enrichment analyses. The KEGG 
analysis revealed that these genes were significantly enriched in 
immune and inflammation-related pathways, such as the NF-kappa 
B signaling pathway, Antigen processing and presentation, and 
Phagosome (Figure 1C). In GO analysis, differentially expressed 
genes were significantly enriched in BP, MF, and CC, involving key 
processes such as positive regulation of cell adhesion, collagen-
containing extracellular matrix, and MHC class II protein complex 
binding (Figure 1D). Additionally, the GSEA analysis further 
confirmed significant enrichment of these DEGs in pathways such 
as Interferon gamma response, inflammatory response, epithelial 
mesenchymal transition, complement, and allograft rejection 
(Figures 1E, F), providing further insights into the molecular 
mechanisms underlying DKD. 
WGCNA to identify key modules 

To identify gene modules associated with DKD, WGCNA was 
performed on 477 differentially expressed genes from 19 DKD 
samples and 50 normal samples. Based on the scale-free topological 
network construction (Figures 2A, B), the soft threshold was set to 
12. Hierarchical clustering identified multiple modules containing 
different numbers of co-expressed genes, and the similarity analysis 
of module feature genes revealed the correlation between modules. 
Correlation analysis showed that the MEturquoise module was 
significantly correlated with DKD (r = 0.47, P = 5e-05) 
(Figure 2C). Within the MEturquoise module, 110 genes were 
found to be correlated with DKD (r = -0.22, P = 0.021, 
Figure 2D). The expression levels of genes in the MEturquoise 
module are shown in Figure 2E. To further investigate the function 
of the genes in the MEturquoise module, KEGG and GO analyses 
were conducted. The results revealed significant associations with 
pathways such as the Wnt signaling pathway, adherens junction, 
and cholesterol binding (Figures 2F, G). These findings further 
suggest that the genes within the MEturquoise module and the 
associated pathways may play a key role in the progression of DKD, 
offering potential directions for its diagnosis and therapy. 
LASSO and RF analysis to identify hub 
genes 

LASSO regression and RF analysis were performed on the key 
module genes screened by WGCNA to identify key genes with 
significant predictive value. After LASSO regression determined the 
optimal regularization parameter through 5-fold cross-validation, 
24 key genes were finally identified (Figures 3A, B). In the RF 
analysis, the top 20 genes were screened out based on the gene 
importance score (Mean Decrease Gini) (Figures 3C, D). 

A total of 10 overlapping genes were identified from both 
LASSO and RF analysis, which were visualized using Venn 
diagrams (Figure 4A). The expression levels of these genes are 
shown in Figure 4B. Further correlation analysis revealed the 
 frontiersin.org 

https://www.dgidb.org/
https://www.dgidb.org/
https://doi.org/10.3389/fendo.2025.1620032
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dong et al. 10.3389/fendo.2025.1620032 
correlations between the expression levels of these genes 
(Figure 4C). To evaluate the potential of these genes in diagnosis, 
ROC analysis was performed, and the results showed that the 
combination of these genes had good predictive performance 
(Figure 4D). In addition, the gene-gene interaction network 
constructed using the GENEMANIA database revealed that the 
functions of these genes are closely related to mesenchymal cell 
proliferation, locomotory behavior, astrocyte differentiation, and 
regulation of insulin-like growth factor receptor signaling 
(Figure 4E). Finally, the expression levels of these genes were 
Frontiers in Endocrinology 05 
verified on the validation set, and 5 hub genes closely related to 
DKD (LPL, BCAM, SERPINE2, GCNT3, and CTNNBIP1) were 
screened out (Figure 4F), providing important candidate targets for 
further functional research and drug development. 
Consensus cluster analysis 

Consensus cluster analysis was performed on the DKD 
patient samples from the training set using the expression profiles 
FIGURE 1 

Differentially expressed genes (DEGs) analysis and enrichment results in DKD patients versus healthy controls. (A) Volcano plot of DEGs identified in 
the GSE30122 dataset based on the criteria |log2FC| > 0.585 and P < 0.05 in diabetic kidney disease (DKD) patients compared to controls. 
(B) Heatmap showing the expression levels of selected DEGs in DKD and control groups. (C) KEGG pathway enrichment analysis of DEGs. (D) GO 
enrichment analysis illustrating DEGs significantly associated with biological processes (BP), molecular functions (MF), and cellular components (CC). 
(E, F) Gene Set Enrichment Analysis (GSEA) of DEGs. 
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of the five hub genes (LPL, BCAM, SERPINE2, GCNT3, and 
CTNNBIP1) to identify distinct molecular subtypes. Evaluation of 
the consensus CDF curves and the consensus matrix heatmaps 
indicated that k=2 yielded the most stable clustering solution 
(Figures 5A, B). Consequently, the DKD samples were classified 
into two robust molecular subtypes, designated Cluster A and 
Cluster B. 
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Significant differences in the expression levels of the hub genes 
were observed between these two subtypes (Figures 5C, D). 
Specifically, compared to Cluster B, Cluster A exhibited significantly 
lower expression of LPL (P<0.01) and lower expression of BCAM. 
Conversely, Cluster A showed significantly higher expression of 
SERPINE2 (p<0.01), higher expression of GCNT3, and significantly 
higher expression of CTNNBIP1 (p<0.001) compared to Cluster B. 
FIGURE 2 

Weighted Gene Co-expression Network Analysis (WGCNA) of DEGs in DKD patients and control samples. (A, B) Scale-free topology model fit index 
as a function of the soft-thresholding power. A soft-thresholding power of 12 was chosen to ensure scale-free topology in the network 
construction. (C) Module-trait relationships showing a significant association between the turquoise module and DKD (r = 0.47, P = 5e-05). 
(D) Scatter plot of module membership versus gene significance for genes in the turquoise module, with a notable correlation (r = -0.22, P = 0.021). 
(E) Heatmap depicting the expression levels of genes within the turquoise module across DKD and control samples. (F, G) Functional enrichment 
analysis of genes in the turquoise module via KEGG and GO analysis. 
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Immune cell infiltration assessment 

To evaluate the immune microenvironment, the proportions of 
22 types of immune cells in DKD patient and healthy control 
samples were estimated using the CIBERSORT algorithm based on 
the overall gene expression profiles from the training dataset. The 
analysis revealed distinct immune cell composition profiles between 
the groups (Figure 6A). Comparing the estimated immune cell 
proportions between the DKD group and the healthy control group, 
significant alterations in several immune cell subsets were observed 
(Figure 6B). Notably, DKD patients exhibited significantly 
increased proportions of M1 macrophages, naïve CD4 T cells, 
and gamma delta T cells compared to controls, suggesting a shift 
towards a pro-inflammatory immune microenvironment in DKD. 

To further explore the potential relationship between the key 
genes identified in this study and the immune landscape, we 
performed a correlation analysis specifically between the 
expression levels of the five identified hub genes (LPL, BCAM, 
SERPINE2, GCNT3, and CTNNBIP1) and the estimated 
Frontiers in Endocrinology 07 
proportions of various immune cell types (Figure 6C). This 
analysis revealed that LPL expression was positively correlated 
with M0 macrophages and follicular helper T cells, while being 
negatively correlated with M1 and M2 macrophages. These 
correlations suggest that LPL may play a role within the pro-
inflammatory immune context of DKD. Additionally, significant 
correlations were observed between BCAM and SERPINE2 
expression and various immune cells, indicating their potential 
involvement in modulating inflammatory responses and immune 
infiltration in DKD. 
Hub gene enrichment analysis 

To further reveal the biological pathways that the screened hub 
genes may be involved in DKD, KEGG enrichment analysis was 
performed. The results showed that LPL was significantly associated 
with Mucin type O-glycan biosynthesis (P=0.012), Cholesterol 
metabolism (P=0.015) and Glycerolipid metabolism (P=0.018, 
FIGURE 3 

Identification of key predictive genes using LASSO regression and Random Forest (RF) analysis. (A) LASSO regression model with 5-fold cross-
validation to select the optimal regularization parameter (l). The minimum mean squared error was used to determine the optimal l value, resulting 
in the selection of key predictive genes. (B) LASSO coefficient profiles for each gene as a function of the regularization parameter l. Genes with 
non-zero coefficients at the optimal l were identified as key genes. (C) RF analysis showing the error rate as a function of the number of decision 
trees. (D) Top 20 genes ranked by importance score (Mean Decrease Gini) in the RF analysis. 
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Table 1). These findings suggest that LPL may play a crucial role in 
lipid metabolism disorders, and through regulating lipid 
metabolism and inflammatory responses, it could contribute to 
the progression of DKD. 

Further gene-drug interaction analysis identified a variety of 
potential targeted drugs that may affect the pathological progression 
of DKD by regulating the activity of the LPL gene. The analysis 
results showed that IBROLIPIM had the strongest interaction with 
LPL (Interaction score = 1.875), suggesting that it has a high 
potential in regulating LPL activity. Other compounds, such as 
anabolic steroid (Interaction score=1.250) and ACARBOSE 
(Interaction score=0.625) also showed significant interaction 
scores with LPL, indicating that they may have a significant effect 
on the functional regulation of LPL (Supplementary Figure 1, 
Supplementary Table 1). These results offer promising therapeutic 
targets for DKD intervention. 
Immunohistochemical analysis of the 
correlation between LPL expression and 
DKD severity 

To validate the expression pattern of LPL protein in renal tissue 
and its relationship with disease severity, immunohistochemistry 
(IHC) was performed on kidney samples from healthy controls and 
Frontiers in Endocrinology 08
DKD patients with varying degrees of severity. LPL staining was 
reduced in DKD samples compared to controls, particularly in 
moderate/severe cases, while TNF-a staining appeared increased 
with severity (Figure 7A). Quantitative analysis confirmed these 
trends, revealing a significant decrease in LPL staining intensity 
with increasing DKD severity (Ctrl vs. Mild vs. Moderate/Severe 
DKD, P<0.001), whereas TNF-a staining intensity significantly 
increased (P<0.001, Figure 7B). 

Correlation analysis was performed between LPL and TNF-a 
staining intensities and indicators of renal function using the 
combined patient and control samples (Figure 7C). Notably, LPL 
staining intensity showed a strong negative correlation with TNF-a 
staining intensity (r = -0.85). Furthermore, LPL staining was 
negatively correlated with serum creatinine (r = -0.66) and BUN (r 
= -0.68),  while TNF-a showed positive correlations with these renal 
function markers. Linear regression analysis focusing on the patient 
samples further confirmed a significant negative correlation between 
LPL staining intensity and both serum creatinine (R²=0.402, P=0.049) 
(Figure 7D) and  BUN  (R²=0.524,  P=0.018) (Figure 7E). While these 
correlations were statistically significant, the R2 values indicate that 
LPL expression explains a moderate proportion of the variance in 
these renal function markers. No significant correlation was found 
between LPL staining and 24-hour urinary protein (P=0.690) 
(Figure 7F). These IHC results demonstrate that LPL protein 
expression decreases in the kidney tissue of DKD patients as the 
FIGURE 4 

Integrated analysis of hub genes identified by LASSO and RF models in DKD. (A) Venn diagram depicting 10 overlapping genes identified by both 
LASSO and RF analyses. (B) Expression levels of the overlapping genes in DKD and control samples. *P<0.05, ***P<0.001. (C) Correlation analysis of 
the expression levels of the 10 overlapping genes. (D) Receiver Operating Characteristic (ROC) analysis for each gene. (E) Gene-gene interaction 
network generated via the GENEMANIA database. (F) Validation (GSE104948) of gene expression in an independent dataset identified five hub genes 
(LPL, BCAM, SERPINE2, GCNT3, and CTNNBIP1) closely associated with DKD. *P<0.05, **P<0.01. 
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disease progresses and is negatively correlated with renal function 
impairment and inflammatory response (TNF-a). This finding aligns 
with the LPL downregulation observed in transcriptome analyses and 
supports a complex role for LPL in DKD pathogenesis, potentially 
differing from its role in systemic lipid metabolism. 
Discussion 

DKD is the leading cause of ESRD worldwide. Its incidence and 
medical costs continue to rise, placing a heavy burden on the medical 
system (21). The clinical feature of DKD is persistent albuminuria, 
which indicates that the disease could irreversibly progress to ESRD 
(22). Given the increasing global prevalence of DKD, this study 
identified the key role of lipoprotein metabolism-related gene LPL 
in DKD through systematic bioinformatic analysis, and further 
revealed the potential pathological mechanisms of lipid metabolism 
disorders and immune inflammatory responses in DKD, providing 
Frontiers in Endocrinology 09
new insights and potential targets for the early diagnosis and targeted 
treatment of DKD. 

In the progression of DKD, lipid metabolism disorders are 
increasingly recognized as a significant risk factor (23). Normally, 
the balance of lipid metabolism pathways is essential for maintaining 
kidney health and function (24). However, in patients with diabetes, 
hyperglycemia and insulin resistance lead to profound disruptions in 
lipid metabolism, initiating a cascade of pathological events. Excess 
lipids gradually accumulate in the renal tubules and glomeruli, and 
this abnormal lipid accumulation has been identified one of the key 
factors promoting the progression of DKD (25, 26). Excessive lipids 
not only directly damage the kidney structure, but also significantly 
accelerates tissue fibrosis and aggravates kidney damage by activating 
inflammatory responses and oxidative stress (23). Previous studies 
have demonstrated that the inflammatory responses caused by lipid 
metabolism disorders play key regulatory roles in the development of 
DKD. Abnormal lipid accumulation often induces the aggregation 
and activation of macrophages, further aggravating the inflammatory 
FIGURE 5 

Consensus clustering analysis of five hub genes in DKD patients. (A) Consensus matrix for clustering, showing optimal stability at k=2, resulting in 
two molecular subtypes (Type A and Type B) based on the expression of hub genes. (B) Cumulative Distribution Function (CDF) curve for consensus 
clustering with different values of k. (C) Expression levels of the hub genes (LPL, BCAM, SERPINE2, GCNT3, and CTNNBIP1) in the two identified 
subtypes. ***P<0.001 (D) Heatmap of gene expression between Type A and Type B. **P<0.01. 
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microenvironment of the kidney (27). Activated macrophages release 
large amounts of pro-inflammatory cytokines, such as TNF-a, IL-6,  
and IL-1b, which directly damage the renal tubules and glomeruli, 
impairing both renal structure and function (28). These cytokines also 
activate oxidative stress and increase the production of reactive oxygen 
species (ROS), accelerating renal cell apoptosis and tissue fibrosis, 
which ultimately promotes the progression of DKD (29). To better 
understand the specific mechanisms of lipid metabolism dysregulation 
in DKD, recent studies have utilized bioinformatic analysis and 
machine learning to analyze in depth gene expression data from 
DKD patients and healthy individuals (30). These studies suggested 
that lipid metabolism imbalance may influence DKD pathological 
Frontiers in Endocrinology 10 
process by regulating the behavior of immune cells (31, 32). It is worth 
noting that specific metabolic enzymes are closely related to the 
activity of M1 macrophages, and the increase in M1 macrophages is 
positively correlated with further deterioration of renal function (33, 
34). In contrast, M2 macrophages have anti-inflammatory and 
protective effects, and their reduction may exacerbate renal damage 
in DKD patients (35). 

As a key regulator of lipid metabolism, LPL may play a core role 
in lipid metabolism disorders associated with DKD. Functional 
enrichment analysis in this study showed that LPL genes were 
significantly enriched in lipid metabolism and inflammatory 
response pathways, especially in the Cholesterol metabolism and 
FIGURE 6
 

Analysis of immune cell composition and hub gene immune associations in DKD using CIBERSORT. (A) Proportional distribution of immune cell
 
types in DKD patients and healthy controls (Control group). (B) Comparative analysis of immune cell infiltration in DKD and control groups. *P<0.05,
 
**P<0.01, ***P<0.001. (C) Correlation analysis of hub genes (LPL, BCAM, SERPINE2, GCNT3, and CTNNBIP1) with various immune cell types.
 
*P<0.05, **P<0.01, ***P<0.001.
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Glycerolipid metabolism pathways, suggesting that LPL may play 
an important role in the occurrence and development of DKD. In 
diabetic patients, due to insulin resistance and hyperglycemia, lipid 
metabolism is significantly disrupted, leading to lipid accumulation 
in the kidneys (23, 36). Previous studies have shown that abnormal 
lipid metabolism not only damages the glomerular and tubular 
structures, but also aggravates local inflammatory responses and 
oxidative stress, promoting the progression of DKD (23, 37). The 
enrichment of LPL genes in these pathways supports previous 
Frontiers in Endocrinology 11 
findings and further highlights its key role in regulating lipid 
metabolism disorders in DKD. 

In addition to enrichment in lipid metabolism pathways, the 
significant enrichment of LPL genes in the PPAR signaling pathway 
also suggests that it may play an important role in regulating 
inflammatory responses. The PPAR pathway is a key anti-
inflammatory signaling pathway that inhibits inflammatory 
responses by inhibiting the expression of pro-inflammatory 
factors (38). Previous studies have shown that activation of the 
PPAR signaling pathway can reduce the production of 
inflammatory cytokines by downregulating pro-inflammatory 
pathways such as NF-kB, thereby playing a protective role in 
chronic inflammatory diseases such as DKD (39, 40). In the 
immune cell infiltration analysis of this study, it was found that 
pro-inflammatory immune cells increased significantly in DKD 
patients, forming a significant pro-inflammatory immune 
microenvironment, which is closely related to the pathological 
progression of DKD. It is worth noting that the aggregation and 
activation of M1 macrophages are commonly accompanied by 
structural destruction of glomeruli and tubules (41). A previous 
study has shown that M1 macrophages play a crucial role in the 
FIGURE 7 

Immunohistochemical analysis of LPL and TNF-a expression in relation to DKD severity. (A) Representative immunohistochemical staining of LPL and 
TNF-a in kidney tissues from control, mild DKD, and moderate/severe DKD patients (scale bar = 100 mm). (B) Quantitative analysis of LPL and TNF-a 
staining intensities among the control, mild DKD, and moderate/severe DKD groups. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Correlation matrix of 
LPL and TNF-a staining intensities with kidney function indicators (serum creatinine, urea nitrogen, and 24-hour urinary protein). (D) Linear 
regression analysis of LPL staining intensity with serum creatinine levels. (E) Linear regression analysis of LPL staining intensity with urea nitrogen 
levels. (F) Linear regression analysis of LPL staining intensity with 24-hour urinary protein levels. 
TABLE 1 Results of hub gene functional enrichment analysis. 

Term P-value Genes 

Mucin type O-glycan 
biosynthesis 

0.009 GCNT3 

Cholesterol metabolism 0.012 LPL 

Glycerolipid metabolism 0.015 LPL 

PPAR signaling pathway 0.018 LPL 

Wnt signaling pathway 0.041 CTNNBIP1 
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progression of inflammation and fibrosis in DKD, and under high 
glucose conditions, they promote the polarization of macrophages 
to the M1 phenotype by downregulating STAT-3-mediated 
autophagy (42). 

The expression level of the LPL gene was negatively correlated with 
M1 and M2 macrophages, suggesting that LPL may affect the pro-
inflammatory microenvironment of DKD by regulating the polarization 
state of macrophages, thereby exacerbating kidney damage. In addition, 
immunohistochemistry detection revealed low LPL expression in both 
glomerular and tubular regions of DKD patients. This finding further 
supports the significant downregulation of LPL in DKD renal tissue and 
underscores its potential anti-inflammatory and anti-fibrotic roles in 
pathological progression (43). While the immunohistochemical analysis 
revealed a statistically significant negative correlation between LPL 
protein expression and renal function indicators such as serum 
creatinine (P=0.049) and BUN (P=0.018), it is crucial to interpret 
these findings in light of the relatively moderate R2 values (R2 = 0.402  
for serum creatinine and R2 = 0.524  for BUN).  These R2 values indicate 
that LPL expression explains only a moderate proportion of the 
observed variance in these markers. This suggests that while LPL 
plays a discernible contributing role in DKD progression and kidney 
dysfunction, its impact is part of a highly complex and multifactorial 
disease etiology. The pathogenesis of DKD involves intricate 
interactions between various factors including hemodynamic changes, 
metabolic disturbances, inflammation, and fibrosis. Consequently, no 
single gene or pathway is expected to fully account for the broad 
spectrum of variability observed in clinical outcomes. Therefore, while 
LPL has been identified as a key player in DKD, its precise impact on 
overall renal function needs to be understood within this broader 
pathological context, necessitating further studies to delineate its exact 
contribution and interplay with other intricate mechanisms. 

In the gene-drug interaction analysis, several potential 
therapeutic agents that may regulate lipid metabolism and 
inflammatory responses through the LPL gene were identified. 
Among them, Ibrolipim showed a high interaction score, 
indicating that it may alleviate lipid metabolism disorders and 
related inflammatory responses in DKD by regulating LPL 
activity. As a lipid-lowering drug, Ibrolipim may reduce the 
inflammatory cascade caused by lipid accumulation by reducing 
the deposition of cholesterol and triglycerides in the kidneys (44). 
Other drugs such as anabolic steroid and acarbose also exhibited 
high interaction scores with LPL, suggesting potential therapeutic 
value in regulating LPL activity. Anabolic steroid has an 
immunomodulatory effect and may reduce the inflammatory 
damage of DKD by balancing the ratio of pro-inflammatory and 
anti-inflammatory immune cells; while acarbose, as a hypoglycemic 
agent, may indirectly regulate lipid metabolism and inflammatory 
responses by improving glucose metabolism (45, 46). The potential 
mechanisms of action of these drugs provide a variety of possible 
intervention pathways for the targeted treatment of DKD. By 
regulating the activity of LPL, these drugs are expected to not 
only alleviate lipid metabolism disorders but also improve the pro-
inflammatory immune environment in the kidneys, reduce 
persistent tissue damage, and ultimately delay the progression of 
DKD. The significant correlation between LPL and renal function 
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indicators (serum creatinine, urea nitrogen, and 24-hour urine 
protein excretion) in immunohistochemistry results further 
indicates that these drugs targeting LPL may have clinical 
application value in monitoring and improving the condition of 
DKD patients. 
Limitation 

However, this study has certain limitations. Firstly, the sample 
sizes were relatively small, including only 19 DKD patients and 50 
healthy controls in the training set, and 7 DKD patients and 18 
healthy controls in the validation set. Additionally, the 
immunohistochemical experiments included only 10 kidney 
biopsy specimens from DKD patients with varying disease 
severity and 10 healthy control samples, which may not fully 
reflect the widespread variations in LPL expression levels among 
DKD patients. Future studies with larger sample sizes are needed to 
validate the generalizability of the results. Secondly, while this study 
revealed a strong association between LPL and DKD progression 
through bioinformatic analysis and immunohistochemistry, it is 
important to acknowledge that correlation does not automatically 
imply causation. Therefore, the exact underlying mechanisms and 
causal relationships still need to be further verified through in vivo 
and in vitro experiments to functionally validate these findings. 

Furthermore, while consensus clustering identified distinct 
molecular subtypes of DKD, the current study, due to the inherent 
limitations of publicly available datasets, was unable to perform 
comprehensive clinical correlations with functional outcomes such as 
eGFR decline, which would further strengthen the clinical relevance of 
these subtypes. To address these limitations and establish causality, 
future research should focus on: (1) integrating multi-omics data 
analysis to reveal the complex molecular mechanisms of DKD; (2) 
conducting longitudinal studies to track the dynamic changes of LPL in 
the progression of DKD, providing stronger evidence for its role and 
potential as a therapeutic target; and (3) evaluating LPL-targeted 
therapies for their potential in precision medicine, including a focus 
on correlating identified molecular subtypes with specific clinical

outcomes to enhance personalized diagnostic and therapeutic strategies. 
Conclusion 

This study systematically identified the lipoprotein metabolism-

related gene LPL as a hub gene in DKD through bioinformatic 
analysis and immunohistochemical validation, revealing its 
multiple roles in lipid metabolism disorders and immune-

inflammatory response regulation. The study found that the 
expression level of LPL significantly decreased with the severity of 
DKD and was negatively correlated with the pro-inflammatory 
cytokine TNF-a and kidney function indicators. Further functional 
analyses suggested that LPL dysregulation is intricately linked to 
DKD progression, potentially influencing lipid metabolism and the 
immune microenvironment in complex ways. Additionally, gene-
drug interaction analysis identified several potential drugs that may 
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target LPL to alleviate DKD progression, providing an important 
theoretical basis for future clinical interventions. 
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