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SGLT2 inhibition attenuates
diabetic tubulopathy by
suppressing SGK1-mediated
pyroptosis

Xu Shi*?!, Wei Zou*', Xuehong Li*?, Sirui Liu*?, Tiantian Hu?,
Qiong Li*?, Ting Zhang™?, Lei Chen™?, Sumin Wu'?,
Cheng Wang™** and Yongjie Jin**

Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University,
Zhuhai, China, 2Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated
Hospital Sun Yat-Sen University, Zhuhai, China, *Department of Nephrology, The University of Tokyo
Hospital, The University of Tokyo, Tokyo, Japan

Background: Diabetic tubulopathy is increasingly recognized as a pivotal
contributor to diabetic kidney disease (DKD) progression. Excessive pyroptosis
of renal tubular epithelial cells exacerbates inflammation and tissue injury.
Although sodium-glucose cotransporter 2 (SGLT2) inhibitors confer renal
protection, their mechanistic linkage to pyroptosis remains unclear.

Methods: Renal biopsies from DKD patients, STZ-induced diabetic mice, and
high glucose (HG)-stimulated HK-2 cells were analyzed. Pyroptosis markers and
SGK1 signaling were assessed following SGLT2 knockdown, overexpression, or
treatment with SGLT2 inhibitor empagliflozin (EMPA) and the SGK1 inhibitor
EMD638683 (EMD).

Results: SGLT2 and Gasdermin D N-terminal domain (GSDMD-N) were
upregulated in DKD kidneys and correlated with tubular injury and renal
dysfunction. EMPA reduced pyroptosis marker expression, tubular injury, and
fibrosis in diabetic mice. In vitro, HG induced SGLT2 upregulation, SGK1
activation, and pyroptosis in HK-2 cells, which were reversed by EMPA. SGLT2
overexpression increased SGK1 and pyroptosis even under normoglycemia,
while SGK1 inhibition suppressed HG-induced pyroptosis and NF-«B activation.
Conclusion: SGLT2 promotes diabetic tubular injury through SGK1-mediated
pyroptosis. Inhibition of the SGLT2/SGK1 axis alleviates pyroptosis and offers a
potential therapeutic strategy for DKD.

KEYWORDS

diabetic tubulopathy, SGLT2, SGK1, pyroptosis, inflammation

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fendo.2025.1620230/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1620230/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1620230/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1620230/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1620230&domain=pdf&date_stamp=2025-09-15
mailto:wangch2@mail.sysu.edu.cn
mailto:kimyg1118@sina.com
https://doi.org/10.3389/fendo.2025.1620230
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1620230
https://www.frontiersin.org/journals/endocrinology

Shi et al.

1 Introduction

Diabetic kidney disease (DKD), one of the most prevalent
microvascular complications of diabetes worldwide, is a leading
cause of end-stage renal disease (ESRD) (1). Traditionally,
glomerular injury has been regarded as the primary site of
damage in DKD, with progressive glomerular dysfunction driving
proteinuria and a gradual decline in renal function (2-4). However,
advancing research on DKD challenges this paradigm, suggesting
that glomerular injury may not be the decisive factor in disease
initiation or progression, nor the earliest event in diabetic renal
injury (5, 6). Recent studies increasingly highlight the critical role of
tubular pathology, particularly proximal tubular injury, in DKD
progression—a phenomenon termed “diabetic tubulopathy” (7, 8).

Emerging therapeutic strategies for DKD increasingly focus on
targeting tubular injury. Sodium-glucose cotransporter 2 (SGLT2)
inhibitors, a unique class of antidiabetic agents primarily targeting
renal tubules (9), ameliorate renal injury through glycemic control,
hemodynamic modulation, metabolic regulation, sodium load
reduction, and anti-inflammatory actions (10-13). Intriguingly, the
anti-inflammatory benefits of SGLT2 inhibitors appear independent
of their glucose-lowering effects. Randomized, double-blind, placebo-
controlled, multicenter clinical trials, such as EMPA-KIDNEY,
DAPA-CKD, and EMPA-HF have demonstrated that SGLT2
inhibitors exert cardiovascular and renal protective effects in both
diabetic and non-diabetic populations, significantly improving
patient outcomes (14-16). Transcriptomic analyses suggest that the
glucose-independent renoprotection of SGLT2 inhibitors is
associated with serum- and glucocorticoid-regulated kinase 1
(SGK1) (17), though further mechanistic validation is needed.

Excessive and persistent pyroptosis triggers severe
inflammatory responses (18, 19). The canonical pyroptosis
pathway mediated by the NOD-like receptor family pyrin
domain-containing 3 (NLRP3) inflammasome plays a critical
regulatory role in diseases such as DKD, obstructive nephropathy,
lupus nephritis, and renal fibrosis (20, 21). Genetic ablation of
NLRP3 has been demonstrated to ameliorate renal inflammation
and fibrosis in diabetic mice models (22). While inflammasomes are
classically associated with immune cells (e.g., mast cells,
lymphocytes, and macrophages), renal tubular epithelial cells
(RTECs) also express functional inflammasomes capable of
secreting pro-inflammatory cytokines, positioning pyroptosis
inhibition as a therapeutic strategy for diabetic tubulopathy (11,
23). RTECs act as both victims and active contributors to
inflammation. Elucidating SGLT2-mediated injury mechanisms in
RTECs may advance therapeutic strategies for diabetic tubulopathy.

2 Materials and methods

2.1 Human kidney biopsies and urine
samples

All human samples (renal biopsies or urine) were collected from
patients at the Fifth Affiliated Hospital Sun Yat-sen University after
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obtaining written informed consent. This study enrolled male or
female patients aged =18 years with type 2 diabetes mellitus
(T2DM), defined by the American Diabetes Association’s 2010
Standards of Medical Care in Diabetes, and biopsy-confirmed
diabetic kidney disease (DKD) meeting the new pathological
classification criteria provided by the Renal Pathology Society.
Patients with severe non-diabetic kidney diseases, renal artery
stenosis, uncontrolled hypertension, chronic heart failure with
persistent symptoms, or those using SGLT2 inhibitors were
excluded. Five kidney samples from tumor nephrectomy patients
without diabetes or kidney diseases served as normal controls.
Twenty renal biopsy samples from T2DM patients with biopsy-
proven DKD were clinically characterized by persistent albuminuria
(>300 mg/24 h). Demographic and clinical data of DKD patients are
summarized in Supplementary Table S1. For urine samples, 50 mL
of clean morning urine was collected from 28 biopsy-confirmed
DKD patients with T2DM and 18 healthy subjects during routine
physical examinations. Demographic and clinical data of DKD
patients and healthy controls are presented in Supplementary
Table S2. This study was approved by the Ethics Committee of
the Fifth Affiliated Hospital Sun Yat-sen University (Approval No.:
2022#K180-1).

2.2 Animal models

The research involving murine models was approved by the
Institutional Animal Care and Use Committee of the Fifth Affiliated
Hospital Sun Yat-sen University (Approval No. 00314, Guangdong,
China). Four-week-old healthy male C57BL/6] mice were purchased
from the Guangdong Medical Laboratory Animal Center (Foshan,
Guangdong). All mice were fed either a high-fat diet (HFD; 60 kcal%
from fat, D12492, Research Diets) or a standard chow diet (12 kcal%
from fat) and housed under con-trolled temperature conditions (22—
26 °C) with a 12-hour light/dark cycle. After six weeks of HFD
feeding, diabetes was induced in the mice by intraperitoneal injection
of streptozotocin (STZ) (S0130, Sigma-Aldrich) (20). Before receiving
daily STZ injections, the mice were fasted for 12 hours. STZ was
administered intraperitoneally at a dose of 50 mg/kg body weight for
five consecutive days. Control mice received an equal volume of 0.1
mol/L citrate buffer (pH =4.5) simultaneously. One week after the
last injection, blood samples were collected from the tail vein of all
mice to measure fasting blood glucose levels. Mice with fasting blood
glucose levels > 300 mg/dL were considered diabetic (marked as
week 0).

Mice were divided into four groups: control group,
empagliflozin (EMPA) group, STZ-induced diabetes group, and
STZ-induced diabetes + EMPA treatment group, with 6 mice in
each group. Starting from the day fasting blood glucose testing
con-firmed the successful establishment of the diabetes model
(designated as week 0) until euthanasia (designated as week 12),
mice were administered EMPA (HY-15409, MedChemExpress) via
oral gavage at a dose of 10 mg/kg/day. Control group mice received
an equal volume of 0.9% normal saline via oral gavage daily for
12 weeks.
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2.3 Renal function

Serum creatinine levels were determined using a Creatinine
Assay Kit (sarcosine oxidase) (CO11-2-1, Nanjing Jiancheng
Bioengineering Institute) following the manufacturer’s
instructions. Similarly, Blood urea nitrogen concentrations were
measured with a Urea Nitrogen Colorimetric Detection Kit (C013-
2-1, Nanjing Jiancheng Bioengineering Institute) in accordance
with the provided protocol.

2.4 Cell culture and treatment

The HK-2 cells (CRL-2190, ATCC) were cultured in DMEM/
F12 medium (C11330500BT, GIBCO) supplemented with 10% FBS
(C04001, Vivacell), 100 U/mL penicillin, and 100 mg/mL
streptomycin (C3420-0100, Vivacell) and maintained at 37°C in a
humidified incubator with 5% CO,. HK-2 cells were treated for
24-72 hours with either normal glucose (NG) medium (5.5 mmol/L
D-glucose + 24.5 mmol/L mannitol) or high glucose (HG) medium
(30 mmol/L D-glucose). SGLT2 siRNA and negative control
siRNA were purchased from HanYi Bio (Guangzhou, China).
The siRNA sequences used were as follows: SGLT2 sense,
AGAAGGCCCUGAUU-GACAATT; SGLT2 antisense,
UUGUCAAUCAGGGCCUUCUTT. The SGLT2 (SLC5A2)-
3xFlag plasmid was also obtained from HanYi Bio and
constructed using the pcDNA3.1 vector, with the pcDNA3.1-
3xFlag plasmid serving as a negative control. siRNA and plasmid
transfections were performed using LipofectamineTM 3000
(L3000015, Thermo Fisher Scientific) according to the
manufacturer’s instructions. To examine the inhibitory effects of
empagliflozin (HY-15409, MedChemExpress) and EMD638683
(EMD) (HY-15193, MedChemExpress) on pyroptosis, HK-2 cells
were treated with HG in the presence of EMPA (500 nM) or EMD
(50 uM). After 72 hours of incubation, cells were collected for
further analysis.

2.5 Measurement of interleukin-1p,
interleukin-18, and lactate dehydrogenase

The IL-1f3 and IL-18 enzymatic activity in urine and cell culture
medium were assayed using a IL-1 Elisa Kit (EK0392," BOSTER
Company) and IL-18 (EK0864, BOSTER Company) following the
manufacturer’s instructions. The LDH release in cell culture
medium was conducted by the manufacturer’s instructions.

2.6 Cell viability assay

The CCK-8 assay was used to assess cell viability by measuring
dehydrogenase activity in live cells. HK-2 cells were seeded into 96-
well plates and cultured until reached 80-90% confluency. The cells
were treated with indicated agents under NG or HG conditions. To
evaluate cell viability, 10 uL. CCK-8 solution (CK04, Dojindo) was
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added to each well, followed by incubation for 2 h at 37 °C.
Absorbance was measured at 450 nm wavelength using a
microplate reader (EnVision).

2.7 Periodic acid—-Schiff staining and
quantitative assessment of tubular injury

PAS staining was used to assess tubular morphological changes
and degree of injury. PAS staining was performed following the
manufacturer’s instructions (DG0005, Leagene Biotech). Paraffin-
embedded tissue sections were deparaffinized and rehydrated
through sequential immersion in xylenes, graded ethanol
solutions, and water, as previously described (24, 25). Oxidation
was performed using 0.5% periodic acid solution for 8 minutes,
followed by rinsing under running tap water for 5 minutes. Sections
were then incubated with Schiff reagent for 15 minutes until a light
pink coloration developed. After counterstaining with hematoxylin,
the sections were dehydrated, cleared, and mounted with coverslips.
Tubular injury was assessed based on morphological changes
including tubular dilation or atrophy, cast formation,
vacuolization, epithelial cell shedding, brush border loss, and
basement membrane thickening. Tubular injury was evaluated
using a semi-quantitative scoring system: 0 = no injury; 1 = <10%
injured tubules; 2 = 11%-25%; 3 = 26%-50%; 4 = 51%-74%; and 5 =
>75% injured (26).

2.8 Masson'’s trichrome staining

Masson’s trichrome staining was applied to evaluate interstitial
fibrosis, a hallmark of progressive kidney damage. The staining
procedure was performed according to the manufacturer’s
guidelines (DC0033, Leagene Biotech). Briefly, paraffin-embedded
tissue sections underwent sequential deparaffinization through a
graded series of xylenes and ethanol solutions followed by hydration
in distilled water. Sections were incubated in Weigert’s iron
hematoxylin for 5 minutes at room temperature, then thoroughly
washed under running tap water. Subsequently, samples were
immersed in Biebrich scarlet-acid fuchsin staining solution for
10 minutes. Differentiation was achieved by treating slides with a
phosphomolybdic-phosphotungstic acid mixture for 10 minutes,
followed by counter-staining with aniline blue solution. A brief
10-second acid alcohol rinse was applied to optimize cytoplasmic
staining. Finally, tissues were dehydrated through an ascending
ethanol series, cleared in xylene, and permanently mounted with a
synthetic resin-based medium.

2.9 Immunohistochemistry staining

Kidney injury molecule-1 (KIM-1) is a well-recognized
biomarker of tubular damage. We assessed renal injury severity
through KIM-1 immunostaining. The paraffin sections were
deparaffinized and rehydrated as previously described.
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Deparaffinized tissue sections (4um) were prepared, and antigen
retrieval was performed using citrate buffer (10 mM, C1032,
Solarbio Life Sciences) in an autoclave at 120 °C for 10 min.
Endogenous peroxidase activity was blocked with 1% H,O, for
10 min. After blocking with 10% donkey serum, sections were
incubated overnight at 4 °C with anti-Kim-1(R&D systems,
AF1817, RRID: AB_2116446, 1:200), followed by a 1 h incubation
with biotinylated secondary antibodies at room temperature and an
additional 1 h incubation with HRP Conjugated Streptavidin
Complex (BA1088, Boster). DAB was used for visualization, and
hematoxylin was applied as a counterstain. Images were acquired
using All-in-One Fluorescence Microscope (BZ-X Itasca).

2.10 Immunofluorescence staining

After antigen retrieval, sections were blocked with 5% donkey
serum and incubated with primary antibodies overnight at 4°C:
anti-SGLT2 (Abcam, sc-393350, RRID: AB_2814658, 1:200), anti-
GSDMD-N (Proteintech, 66387-1-IG, RRID: AB_2881763, 1:200),
anti-p-SGK1 (Affinity Biosciences, AF3001, RRID: AB_2834440,
1:200), and anti-F4/80 (CST, 70076T, RRID: AB_2799771, 1:200).
Alexa Fluor 488(abcam, ab150160, RRID: AB_2756445)/594
(abcam, ab150077, RRID: AB_2630356) secondary antibodies
were used and nuclei were counterstained with DAPI (HY-
D0814, MCE). Images were acquired on a Pannoramic 250
FLASH III scanner (3DHISTECH).

2.11 Immunoblotting

Immunoblotting was performed as previously described
(22, 23). Briefly, the tis-sues/cells were homogenized and lysed in
a lysis buffer containing protease and phosphatase inhibitors. The
same amounts of protein were electrophoresed by sodium dodecyl
sulfate-polyacrylamide (SDS-PAGE) gel and then transferred to
PVDF mem-branes (Millipore-Sigma). The membrane blotting was
performed using 5% nonfat milk for 1 h at room temperature, and
then the membranes were incubated with the primary antibodies
overnight at 4 °C. After washing with TBST, the membranes were
incubated with HRP-conjugated goat anti-rabbit or goat anti-mouse
secondary antibodies for 1 h. The signals were captured using a
SuperSignal West Femto Maximum Sensitivity Substrate kit
(Thermo Scientific).

The following antibodies were used in this study: anti-SGLT2
(SANTA CRUZ, sc-393350; RRID: AB_2814658, 1:1000), Cleaved
Caspase-1 (CST, 4199S; RRID: AB_1903916, 1:2000), GSDMD-N
(Proteintech, 66387-1-IG; RRID: AB_2881763, 1:2000),
IL-1B(Abcam, ab9722; RRID: AB_308765, 1:2000), IL-18 (Abcam,
ab191152, RRID: AB_2737346. 1:2000), o-tubulin(Ribobio,
CRM2007, AB_2934267, 1:5000), phospho-SGK1 (Ser422)
(Affinity Biosciences, AF3001, RRID: AB_2834440, 1:1000), SGK1
(CST, 12103S, RRID: AB_2687476, 1:2000), B-actin(HUABIO,
HA722023, AB_3096833, 1:10,000), phospho-NF-xb(S536) (CST,
3033T, RRID: AB_331284, 1:2000), Nlrp3(CST, 15101S, RRID:
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AB_2722591, 1:2000), goat anti-rabbit secondary antibody
(Abcam, ab205718, AB_2819160); and goat anti-mouse secondary
antibody (Abcam, ab205719, RRID:AB_2755049).

2.12 Quantitative real-time polymerase
chain reaction

Total RNA was extracted from HK-2 cells and mouse renal
tissue using TRIzol reagent (15596026, Thermo Fisher Scientific).
RNA purity and concentration were assessed using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific). cDNA
synthesis was carried out with the PrimeScript RT Reagent Kit
(RR047A, TaKaRa Bio-technology) following the manufacturer’s
protocol. Quantitative real-time PCR was performed on a CFX96
Touch Real-Time PCR Detection System (Bio-Rad) using a re-
action mixture containing 12.5 UL of TB Green Premix Ex Taq II
(Tli RNaseH Plus) (RR820A, TaKaRa Biotechnology), 0.4 UM of
SGLT2 primers (Forward: 5-TCCTGCTGACATCCTAGTCATT-
3’, Reverse: 5-GAAGAGCGCATTCCACTCG-3’), 2 UL of cDNA,
and 8.5 UL of nuclease-free water. The thermal cycling program
included an initial denaturation at 95 °C for 30 s, followed by 40
cycles of 95 °C for 5 s and 60 °C for 30 s. Gene expression levels were
normalized to B-actin as an internal refer-ence and analyzed using
the 2A-AACq method in Microsoft Excel.

2.13 Terminal deoxynucleotidyl transferase
dUTP nick end labeling

Since random DNA fragmentation occurs during pyroptosis,
TUNEL staining can be used to detect it (27, 28). A TUNEL
BrightGreen Apoptosis Detection Kit (A112, Vazyme) was used
ac-cording to the manufacturer’s instructions. Briefly, HK-2 cells
were cultured on TC-treated coverslips and subjected to high-
glucose (HG) treatment. After treatment, the coverslips were
rinsed twice with PBS and fixed in 4% paraformaldehyde for
25 minutes at room temperature. The fixed cells were then
permeabilized with 0.2% Tri-ton X-100 for 5 minutes, followed
by equilibration in equilibration buffer for 30 minutes.
Subsequently, the cells were incubated with 50 uL of the TdT
reaction mixture at 37 °C for 60 minutes in the dark. After
counterstaining with DAPI, images were acquired using All-in-
One Fluorescence Microscope (BZ-X Itasca). For quantification,
nine randomly selected non-overlapping fields of view were
analyzed per sample. The number of TUNEL-positive cells and
total cells were counted using Image] software, and the percentage
of TUNEL-positive cells was calculated for statistical analysis.

2.14 Flow cytometric analysis of pyroptotic
cells

Pyroptotic cells show a rapid Annexin V*/PI" shift, due to the
increased permeability of cell membranes, which allows the
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detection of pyroptotic cells using flow cytometry (27). HK-2 cells
(2 x 10° cells/well) were harvested using 0.25% trypsin without
EDTA for 2 minutes. Apoptosis was assessed using the Annexin
V-FITC/PI Apoptosis Detection Kit (A211, Vazyme, Nanjing,
China) according to the manufacturer’s instructions. Cells were
double-stained with Annexin V-FITC and propidium iodide (PI)
and subsequently analyzed by flow cytometry (CytoFlex LX,
Beckman, USA). For each sample, 10° cells were analyzed, and
each experimental condition was performed in triplicate. The
percentage of pyroptotic cells was determined using FlowJo v10
software, with double-positive (Annexin V-FITC+/PI+) cells
considered as pyroptotic.

2.15 Statistical analyses

Quantitative results are expressed as mean values + standard
error of the mean (SEM). Intergroup differences were assessed as
follows: Two-group comparisons: Student’s t-test (unpaired, two-
tailed) was employed. Multi-group comparisons: One-way or two-
way analysis of variance (ANOVA) was selected based on
experimental design, followed by Tukey’s post hoc test for
pairwise significance evaluation when ANOVA indicated global
differences (p < 0.05). A significance threshold of p < 0.05 was
applied across all analyses. Data processing and statistical
computations were executed using GraphPad Prism V8 software
(GraphPad Inc., San Diego, CA), with normality and homogeneity
of variance verified prior to parametric testing.

3 Results

3.1 SGLT2 is associated with tubular
epithelial cell pyroptosis and diabetic
tubulopathy

To investigate the association between SGLT2 and pyroptosis,
we performed dual immunofluorescence staining for SGLT2 and
Gasdermin D N-terminal domain (GSDMD-N) in human renal
biopsy specimens. The results demonstrated co-localization of
SGLT2 and GSDMD-N in renal tubules of diabetic kidney disease
(DKD) patients, with significantly increased expression compared
to controls (Figures 1A-C). Since GSDMD-N-mediated pore
formation facilitates the release of interleukin-1p (IL-1B) and
IL-18—hallmark features of pyroptosis—we observed significantly
elevated urinary IL-1f and IL-18 levels in DKD patients
(Figures 1D, E). Additionally, clinical analysis revealed a positive
correlation between SGLT2 expression and renal tubular injury
markers, including plasma retinol-binding protein (RBP) and
urinary N-acetyl-B-D-glucosaminidase (NAG) (Figures 1F, G).
GSDMD-N expression also negatively correlated with estimated
glomerular filtration rate (eGFR), and positively with serum
creatinine (SCR), blood urea nitrogen (BUN), and urinary
albumin-to-creatinine ratio (ACR) (Figures 1H-K), suggesting
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that SGLT2 may contribute to renal dysfunction in DKD
through pyroptosis.

3.2 Empagliflozin attenuates tubular
pyroptosis and ameliorates renal injury in
STZ-induced diabetic mice

In streptozotocin (STZ)-induced diabetic mice, co-localization
of SGLT2 and GSDMD-N was observed in renal tubules, with
significantly increased expression compared to controls
(Figures 2A-C). STZ mice showed elevated SCR, BUN, and
urinary levels of IL-1B and IL-18, all of which were mitigated by
empagliflozin (EMPA) treatment (Figures 2D-G). Western blotting
revealed marked upregulation of pyroptosis-related proteins
(NLRP3, cleaved caspase-1, GSDMD-N, IL-1f, and IL-18), which
was reversed by EMPA (Figures 2H, I). Histological staining
confirmed attenuation of tubular injury and interstitial fibrosis
following EMPA therapy. Immunohistochemistry showed
decreased expression of KIM-1 and reduced inflammatory cell
infiltration in EMPA-treated mice (Figures 2J-N). These findings
suggest that EMPA mitigates diabetic tubulopathy by suppressing
tubular pyroptosis.

3.3 High glucose induces SGLT2
upregulation and pyroptosis in HK-2 cells

To further validate the association between SGLT2 and
pyroptosis in renal tubular epithelial cells (RTECs), HK-2 cells
were exposed to high glucose (HG, 30 mM) for 24-72 hours. Cell
viability declined significantly after 48 hours and dropped to ~60%
by 72 hours (Figure 3A). Lactate dehydrogenase (LDH), IL-1f and
IL-18 levels in the supernatant increased in a time-dependent
manner (Figures 3B-D). Western blotting showed upregulation of
SGLT2 and pyroptosis-related proteins, peaking at 72 hours
(Figures 3E, F). DNA damage and membrane integrity disruption
were confirmed via TUNEL and Annexin V-FITC/PI staining (27)
(Figures 3G-]), establishing that HG induces pyroptosis in HK-2
cells, with 72-hour exposure as the optimal model condition.

3.4 Empagliflozin suppresses high glucose-
induced pyroptosis

To evaluate the anti-pyroptotic effects of SGLT2 inhibition,
HK-2 cells under HG or NG conditions were treated with EMPA.
EMPA significantly suppressed the HG-induced upregulation of
NLRP3, cleaved caspase-1, GSDMD-N, IL-1f, and IL-18
(Figures 4A, E). It also reduced IL-1fB, IL-18, and LDH
release (Figures 4B-D). Moreover, EMPA treatment led to fewer
TUNEL- and Annexin V-FITC/PI-positive cells under HG
conditions (Figures 4F-I), confirming its in vitro anti-
pyroptotic efficacy.
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3.5 SGLT2 regulates SGK1 signaling and

pyroptosis

To explore whether SGLT2 modulates pyroptosis, we performed
knockdown and overexpression experiments (see Supplementary

Frontiers in
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Figure S1). SGLT2 knockdown attenuated HG-induced expression
of cleaved caspase-1, GSDMD-N, IL-1f, and IL-18, while
overexpression increased these markers (Figures 5A-D). Given
evidence implicating SGK1 in SGLT2i-mediated anti-inflammatory
effects, we assessed SGK1 activation (17). In HG-treated HK-2 cells,
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FIGURE 3

HG-induced pyroptosis in HK-2 cells. (A) Cell viability under HG stimulation. (B—D) LDH (B), IL-1B (C), and IL-18 (D) release after HG treatment. (E, F)
Western blot images (E) and quantification (F) of SGLT2 and pyroptosis-related proteins. (G, H) TUNEL staining images (G) and quantification of TUNEL-
positive cells (H). (I, 3) Annexin V-FITC/PI staining images (I) and quantification of pyroptotic cells (J). Data are presented as mean + SEM. *p < 0.05, **p
< 0.01, ***p < 0.001, ns = not significant by one-way ANOVA

SGK1 and phosphorylated SGK1 (p-SGK1) increased in a time- 3.6 SGKI1 inhibition attenuates pyroptosis
dependent manner (Figures 5E-G), while EMPA treatment decreased

both (see Supplementary Figure S2). Co-localization of SGLT2 and p- SGK1 is known to regulate nuclear factor kappa-light-chain-
SGK1 was also observed in renal tubules of STZ-induced mice  enhancer of activated B cells (NF-kB), particularly its p65 (RelA)
(Figures 5H-]). Notably, SGLT2 overexpression upregulated SGK1  gybunit, which drives NLRP3 inflammasome expression (29). To
phosphorylation even in normoglycemic conditions, suggesting  assess the role of SGK1 in tubular pyroptosis, we treated HG-
SGLT?2 directly regulates SGK1 signaling to promote pyroptosis. stimulated HK-2 cells with EMD638683 (EMD), a selective SGK1
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Empagliflozin suppresses HG-induced pyroptosis in HK-2 cells. (A, E) Western blot images (A) and quantification (E) of pyroptosis-related proteins.
(B—D) LDH (B), IL-1B (C), and IL-18 (D) release under HG + EMPA conditions. (F, G) TUNEL staining images (F) and quantification of TUNEL-positive
cells (G). (H, 1) Annexin V-FITC/PI staining images (H) and quantification of pyroptotic cells (I). Data are presented as mean + SEM. *p < 0.05,

**p < 0.01, ***p < 0.001 by one-way ANOVA

inhibitor. EMD reversed HG-induced upregulation of p-p65,
NLRP3, cleaved caspase-1, GSDMD-N, IL-1B, and IL-18
(Figures 6A, E). LDH release and secretion of IL-1B/IL-18 were
also reduced (Figures 6B-D). Additionally, EMD significantly
decreased the proportion of TUNEL- and Annexin V-FITC/PI-
positive cells (Figures 6F-I). These results demonstrate that SGK1 is
a critical mediator of SGLT2-induced pyroptosis.
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4 Discussion

Here, we demonstrate that SGLT2 promotes pyroptosis in
RTECs through activation of the SGK1 pathway, contributing to
diabetic tubulopathy. In DKD patients and STZ-induced mice,
SGLT2 co-localized with GSDMD-N in renal tubules,
accompanied by elevated urinary IL-1B and IL-18 and impaired
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as mean + SEM. *p < 0.05, **p < 0.0, ***p < 0.001, ns = not significant by one-way ANOVA or t test.

renal function. HG induced SGLT2 and pyroptosis-related proteins
in HK-2 cells, while EMPA or SGLT2 knockdown suppressed these
effects. EMPA also reduced tubular injury and inflammation in
diabetic mice. Mechanistically, SGLT2 enhanced SGKI1
phosphorylation and pyroptosis, even under normoglycemia,
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whereas SGK1 inhibition by EMD reversed HG-induced
pyroptosis. These findings reveal a novel SGLT2/SGK1-NLRP3
axis driving tubular injury and highlight its therapeutic relevance.

DKD has traditionally been attributed to glomerular injury,
with progressive proteinuria and renal dysfunction considered
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FIGURE 6

SGK1 inhibition attenuates pyroptosis in HK-2 cells. (A, E) Western blot images (A) and quantification (E) of pyroptosis-related proteins following
SGK1 inhibition (EMD). (B—=D) LDH (B), IL-1B (C), and IL-18 (D) release under HG + EMD conditions. (F, G) TUNEL staining images (F) and
quantification of TUNEL-positive cells (G). (H, I) Annexin V-FITC/PI staining images (H) and quantification of pyroptotic cells (I). Data are presented

as mean + SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA.

hallmarks of disease progression (2-4). However, this paradigm
fails to explain clinical observations, including the absence of
proteinuria in 20.5%-61% of diabetic patients prior to renal
function decline, and the stronger correlation of renal
insufficiency with tubular pathology (e.g., tubular atrophy and
interstitial fibrosis) rather than glomerular changes (5, 6, 30).
Under diabetic conditions, RTECs are exposed to high glucose
concentrations from both the apical and basolateral sides but lack
mechanisms to limit glucose uptake, resulting in intracellular
glucose overload. This burden is mostly driven by upregulated
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SGLT2, which enhances glucose and sodium reabsorption and
promotes oxidative stress and inflammation. Based on these
features, SGLT2 is thought to be closely linked to the
development of diabetic tubulopathy (10, 31, 32).

Previous studies have demonstrated that empagliflozin attenuates
cardiac dysfunction by reducing NLRP3 inflammasome activation in
heart failure models, and that SGLT2 inhibitors counteract NLRP3
activation via the immunomodulatory metabolite itaconate in
ischemia-reperfusion injury (IRI) models. While these findings
support the anti-inflammatory effects of SGLT2 inhibitors in various
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organs, research specifically linking SGLT2 activity to pyroptosis in
diabetic renal tubular epithelial cells remains limited (33, 34). Notably,
pyroptosis has emerged as a critical driver of DKD progression, largely
due to its uniquely inflammatory nature. Unlike other forms of
regulated cell death, pyroptosis leads to cell membrane rupture and
the release of pro-inflammatory cytokines such as IL-1B and IL-18,
thereby amplifying tubular inflammation and injury (18-21).
Mechanistically, this process is initiated by the activation of NLRP3
inflammasomes in response to damage- or pathogen-associated
molecular patterns (DAMPs or PAMPs), leading to caspase-1
activation. Caspase-1 subsequently cleaves GSDMD, producing the
pore-forming N-terminal fragment (GSDMD-N) that facilitates
cytokine release (18). Accumulating preclinical and clinical evidence
reveals that SGLT2 inhibitors exert systemic and tissue-specific anti-
inflammatory effects by suppressing NLRP3 inflammasome activation
(33-36). In this study, we observed co-localization of SGLT2 and
GSDMD-N in renal tubules of both human DKD specimens and STZ-
induced diabetic mice, along with elevated urinary IL-1p and IL-18.
SGLT?2 inhibition with empagliflozin reduced pyroptosis and improved
renal function in diabetic mice. These findings support the hypothesis
that pyroptosis, likely driven by SGLT2-mediated NLRP3 activation,
contributes to diabetic tubulopathy and that SGLT?2 inhibition may
confer renoprotection by suppressing this process.

SGLT2 inhibitors have emerged as novel therapeutic agents for
DKD. Findings from the clinical trials demonstrated that SGLT2
inhibitors improve both cardiovascular and renal outcomes not only
in diabetic patients but also in those without diabetes (14-16). These
observations imply that the renoprotective effects of SGLT2 inhibition
are not solely dependent on glucose control. It has been proposed that
part of these benefits may be attributed to anti-inflammatory activity
at the kidney level (37, 38); however, the underlying molecular
mechanisms remain incompletely understood. Pirklbauer et al. (17)
revealed through transcriptomic analyses that SGK1 may mediate
glucose-independent anti-inflammatory mechanisms of SGLT?2i.
SGK1, a ubiquitously expressed serine/threonine kinase of the AGC
family, is crucial for glucose homeostasis. Notably, SGK1 expression is
characterized by remarkably high transcriptional volatility and is
regulated by a variety of physiological and pathological stimuli,
including hyperglycemia, cell shrinkage, ischemia, glucocorticoids,
and mineralocorticoids (39, 40). SGK1 activation occurs
downstream of insulin and various growth factors, primarily via the
phosphatidylinositol 3-kinase (PI3K) pathway, involving 3-
phosphoinositide-dependent kinase-1 (PDK1) and mammalian
target of rapamycin (mTOR). These features underscore SGK1 as a
key metabolic and stress-responsive kinase, linking upstream signals
such as hyperglycemia to downstream cellular processes including
inflammation and cell death (39, 41). Mechanistically, SGK1 enhances
NF-kB activity via phosphorylation of IKKc, and NF-kB—a master
transcriptional regulator of inflammation—directly promotes the
expression of NLRP3, GSDMD, IL-1B, and IL-18 (29, 42). In our
study, we confirmed the co-localization of SGLT2 and SGKI1 in the
kidneys of STZ-induced diabetic mice. By knocking down or
overexpressing SGLT2, we demonstrated that SGK1 is regulated by
SGLT2. Consistently, overexpression of SGLT2 led to increased
expression of SGK1 and pyroptosis markers even in the absence of
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high glucose stimulation. Our findings are in line with previous studies
demonstrating the functional relevance of the SGLT2-SGK1 axis in
diabetic kidney disease. For instance, SGLT2 knockdown has been
shown to restore the Th17/Treg balance and attenuate diabetic
nephropathy in db/db mice by regulating SGK1 via sodium
signaling (43). These findings suggest that SGLT2 can directly
induce pyroptosis in renal tubular epithelial cells via SGKI1
activation, which may partially explain the renoprotective eftects of
SGLT2 inhibitors observed in non-diabetic patients. In addition,
SGK1-mediated suppression of AMP-activated protein kinase
activity may also be involved in the anti-inflammatory mechanisms
of SGLT2 inhibitors, although this hypothesis requires further
investigation (12, 13, 44).

Taken together, our study elucidates the critical role of SGLT2
in regulating pyroptosis in renal tubular epithelial cells and links it
to the pathogenesis of diabetic tubulopathy. We demonstrate that
SGLT?2 inhibitors primarily suppress pyroptosis by modulating the
SGKI signaling pathway, and this protective effect appears to be
independent of glucose levels. These findings not only deepen our
understanding of the mechanisms underlying diabetic tubulopathy
but also underscore the potential value of SGLT2 inhibitors as anti-
inflammatory agents for treating renal tubular injury.
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