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Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes

that affects nearly half of diabetic patients and manifests as chronic pain, sensory

loss, and motor dysfunction. The limited efficacy of traditional pharmacological

treatments, coupled with their side effects, has intensified the search for

alternative therapies that not only mitigate symptoms but also delay the

progression of diabetes-related neural complications. In this review, the

potential of transcranial magnetic stimulation (TMS) as a nonpharmacological

intervention for DPN is explored, with a focus on the ability of TMS to delay neural

inflammation—a key factor in the progression of DPN—rather than directly

treating diabetes. TMS has shown promising results in alleviating neuropathic

pain, promoting nerve regeneration, and regulating autonomic nervous function,

making it a strong candidate for delaying adverse neural outcomes. Other

neuromodulation techniques, such as spinal cord stimulation (SCS),

decompression nerve surgery (DNS), and transcranial direct current stimulation

(tDCS), have also been examined for their efficacy in treating DPN. While TMS has

significant therapeutic potential for protecting neural function and delaying

inflammation, further research is needed to optimize treatment protocols and

understand their long-term benefits. This review emphasizes the translational

potential of neuromodulation technologies in delaying the progression of

diabetes-induced neural damage, underscoring the need for further studies to

translate these therapies into clinical practice.
KEYWORDS

transcranial magnetic stimulation (TMS), diabetic peripheral neuropathy (DPN), neural
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1 Introduction

1.1 Diabetes and diabetic neuropathy

Diabetes mellitus (DM) is a common condition that has been

prevalent for many years. The International Diabetes Federation

(IDF) reported that in 2021, the global prevalence of diabetes in

adults was 10.5% (1). The IDF suggested that this percentage will

continue to rise. They reported that by the year 2045, 12.2% of people

worldwide will be confirmed to have diabetes (1). Diabetes is a

chronic metabolic disease caused by elevated blood glucose levels (2,

3). There are two possible etiologies of diabetes: a lack of insulin or

insulin insufficiency (4, 5). Insulin is a hormone that facilitates the

transfer of glucose from the blood into cells to further provide energy

for metabolism (6–8). A lack of insulin or insulin insufficiency

destroys this important process and may lead to diabetes.

The etiologies mentioned above can result in two main types of

diabetes (9–11). Type 1 diabetes mellitus (T1DM) occurs when a

patient’s own immune system antibodies attack and destroy insulin-

producing b-cells in the pancreas, resulting in less insulin

production (12, 13); however, it is unclear what exactly causes

T1DM. Some findings have suggested that genetic or environmental

factors are responsible for T1DM, whereas other findings have

suggested that viruses could also play a role, as supported by case

studies and blood test results (14–17). On the other hand, type 2

diabetes mellitus (T2DM) can be caused by either insufficient

insulin production or insulin resistance (18–23). Research shows

that a family history of T2DM increases an individual’s risk of

developing the disease for genetic reasons (24–26). Furthermore,

consuming high-fat foods, insufficient exercise, being overweight,

being stressed, and having high blood lipid and cholesterol levels are

factors that can cause T2DM (27). Studies have even shown that

changes in the gut microbiota can be a cause of T2DM (28, 29). The

gut microbiome is responsible for controlling fat accumulation and

the progression of obesity-related diseases, making the gut

microbiome a significant factor in T2DM development. When the

microbiota of the gut is not regulated properly, a large amount of

short-chain fatty acids are produced by bacteria, which can lead to

impaired glucose metabolism and the occurrence of insulin

resistance, ultimately resulting in T2DM (30, 31).

Both types of diabetes increase the glucose concentration in the

blood. These changes can lead to several problems related to the

circulatory system. Issues such as eye disease, kidney disease, and

nerve damage can occur (32, 33). There is also a risk of severe

circulatory system problems, such as heart disease, strokes, and

diseases affecting blood flow in the limbs (34–36). Diabetic

peripheral neuropathy (DPN) affects almost half of DM patients

globally, making it a difficult, persistent challenge in DM treatment.

DPN leads to problems such as lower limb pain and amputations,

irregular heartbeats, and heart tissue breakdown, directly affecting

everyday tasks and quality of life (37–39). Among patients with DPN,

20 to 30% also suffer from neuropathic pain (40, 41). This type of pain

is hard to address because it usually gradually worsens and becomes

more severe. To relieve pain, people often need medicines or other

treatments (42, 43). The current understanding of DPN is based on
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abnormalities in glucose metabolism (44). A relatively high level of

glucose triggers the activity of alternative metabolic pathways (45).

These pathways and processes include the polyol and protein

kinase C pathway, hexosamine and glucosamine formation, the

accumulation of advanced glycation end products, and the

anaerobic glycolytic process. One of these processes, alone or

in combination, can lead to the beginning and progression of

DPN (41, 45).
1.2 Drug treatment of diabetes and DPN

Presently, common therapeutic classes of drugs for diabetes

include sulfonylureas, meglitinides, biguanides, peroxisome

proliferator-activated receptor (PPAR) agonists, a-glucosidase
inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists,

dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium–glucose

cotransporter 2 (SGLT2) inhibitors (46–49), as shown in Table 1.

People with T2DM usually take sulfonylureas and meglitinides,

which are insulin secretagogues. Insulin secretions facilitate the

release of insulin by interacting with sulfonylurea receptors on

pancreatic b-cells (50, 63, 64). Biguanides do not impact insulin

release directly. The mechanism of action of biguanides involves

decreasing the number of insulin-resistant cells. Biguanides also

reduce the uptake of glucose in the intestine, which helps maintain

glucose levels in the blood, prevents glucose delivery into the blood

and facilitates the absorption of more glucose by cells (65, 66).

PPAR agonists act as insulin sensitizers, activating transcription

factors within the superfamily of hormone receptors, including

PPARa, PPARg, and PPARb/d. PPARs regulate metabolic
TABLE 1 Common drugs and their mechanisms of action in the
pharmacological treatment of diabetes.

Type
of drug

Mechanism of action Reference

Sulfonylureas
and repaglinide

Increase insulin secretion (50)

Meglitinides Enhance insulin response (51)

Biguanides
Decrease hepatic gluconeogenesis Decrease

peripheral insulin resistance
(52, 53)

PPAR agonist
Decrease peripheral insulin resistance

Reduce fatty acids
(54, 55)

Alpha-
glucosidase
inhibitors

Slow absorption of carbohydrates (56–58)

GLP-1 and
DPP-

4 inhibitors
Increase GLP-1 levels (59, 60)

SGLT2
antagonists/
inhibitors

Prevents reabsorption of glucose and
increases the excretion of glucose in urine

(61, 62)
Commonly used drugs for diabetes treatment and their mechanisms of action, including
sulfonylureas and repaglinide, meglitinides, biguanides, peroxisome proliferator-activated
receptor (PPAR) agonists, alpha-glucosidase inhibitors, glucagon-like peptide 1 (GLP1) and
dipeptidyl peptidase 4 (DPPIV) inhibitors, and sodium–glucose cotransporter 2 (SGLT2)
antagonists/inhibitors, are listed.
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functions and maintain energy stability, with PPARg increasing

cellular sensitivity to insulin and increasing glucose metabolism

(54, 67, 68). Alpha-glucosidase inhibitors act by temporarily

delaying the intestinal absorption of carbohydrates, resulting in a

slower entry of glucose from food into the bloodstream, thereby

inhibiting postprandial blood glucose levels (56, 69–71). Commonly

used a-glucosidase inhibitors in clinical trials include acarbose,

miglitol, and voglibose.

GLP-1 is a peptide consisting of 36 amino acids that plays

crucial roles in various diabetes-related metabolic processes

(72, 73). These roles include stimulating insulin secretion,

lowering blood glucose levels, reducing gastric emptying,

inhibiting food intake, and regulating rodent b-cell proliferation
(59, 74, 75). DPP-4, a serine protease, degrades numerous peptides

containing GLP-1 within biological organisms (60, 76). Therefore,

the use of GLP-1 receptor agonists and DPP-4 inhibitors to increase

GLP-1 levels and the half-life of GLP-1 in the body effectively lowers

blood glucose levels (77, 78). SGLT2, which is found in the proximal

convoluted tubule, is responsible for glucose reabsorption along

with passive transport proteins, facilitated glucose transporters, and

active cotransporter proteins (79). SGLT2 inhibitors prevent

glucose reabsorption in the proximal convoluted tubule and

promote its excretion in the urine, thereby reducing blood
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glucose concentrations (61, 80, 81). Various drugs are used to

prevent diabetes. The different strategies are illustrated in Figure 1.

There are three classes of Food and Drug Administration

(FDA)-approved drugs for treating DPN: pregabalin, duloxetine,

and tapentadol. However, some experts challenge the approval of

tapentadol because it is categorized as an opioid (82–84). Pregabalin

binds to the a2d subunit of calcium channels, reducing calcium

influx into nerve endings and altering neurotransmitter release

(85–87). Pregabalin is excreted primarily unchanged in the urine.

Therefore, extra care is needed when administering pregabalin to

people with kidney problems (88, 89). Duloxetine is a selective

serotonin and norepinephrine reuptake inhibitor. It can cause side

effects, including nausea, dizziness, and somnolence, when taken.

Combining duloxetine with pregabalin, which has a different

mechanism of action, has shown good clinical efficacy (90–92).
1.3 Nondrug treatment for diabetes and
diabetic neuropathy

Medicines may help alleviate diabetes and DPN, but they also

have notable side effects. We found that different nonpharmacological

methods can be used to manage diabetes and DPN more safely. For
FIGURE 1

Pathophysiology of diabetes and corresponding pharmacological treatment. The blue boxes in the figure represent the pathological pathways of
diabetes, starting from the dysfunction of a and b cells and leading to elevated blood glucose levels, insulin resistance, and ultimately diabetes. Each
component can independently or synergistically contribute to the development and worsening of diabetes. The red boxes indicate the types of
medications that target specific pathological pathways.
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example, diet control and exercise prevent people from developing

diabetes (93–95). To alleviate and suppress DPN, methods such as

spinal cord stimulation (SCS), decompression nerve surgery (DNS),

transcranial direct current stimulation (tDCS), and transcranial

magnetic stimulation (TMS) have also been used (96–99), shown

as Figure 2.

TMS is a new treatment for DPN and has gained much attention

because of research on the use of TMS for neuromodulation, nerve

repair, and stimulation of neural pathways (102–104). TMS is a

noninvasive method of localized cortical stimulation originally

applied for central nervous system disorders (105, 106). However,

by altering stimulation patterns and parameters, TMS can be used to

assess the integrity of the CST and the degree of damage to motor

conduction pathways (107, 108). Additionally, TMS can promote

functional recovery after nerve injury by influencing brain blood flow

and oxidative stress levels (109, 110). In TMS, a magnetic field is

produced by altering the stimulation coil current to create an induced

electrical field in the brain. When the current meets a certain limit, the

axon hillock or interneurons are triggered. This shift in neuron

responsiveness aids in adjusting brain activity (100). TMS is

effective in treating different complications of diabetes, including

painful conditions, depression, autonomic neuropathy, and vascular

damage (102). However, as a relatively new therapy, limited research

is available. Therefore, the aims of this review are to summarize the

current research on the use of TMS in the treatment of DPN and

compare DPM with other nonpharmacological treatment modalities.
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1.4 Research motivation and objectives

Despite the availability of numerous pharmacological and

nonpharmacological strategies for the management of diabetes and

its complications, DPN remains a prevalent and debilitating

condition that significantly impairs patients’ quality of life. Current

pharmacotherapies for DPN are often associated with limited efficacy,

adverse effects, and poor long-term outcomes, whereas conventional

nonpharmacological approaches yield inconsistent therapeutic

benefits. These limitations underscore the urgent need for

alternative modalities that are both effective and well tolerated. In

recent years, TMS, a noninvasive neuromodulation technique, has

emerged as a promising treatment option for various neurological

and pain-related disorders. Preliminary investigations suggest

that TMS may exert beneficial effects on DPN through

mechanisms involving cortical reorganization, pain modulation,

and neurovascular regulation. However, evidence supporting its

application in DPN remains fragmented, and its efficacy relative to

that of other nonpharmacological interventions has not been

systematically examined. Therefore, this review aims to synthesize

the current literature on the use of TMS in treating DPN, evaluate its

therapeutic potential in comparison with other nonpharmacological

modalities, and elucidate the underlying mechanisms that may

contribute to its clinical effects. This review aims to address an

important gap in existing studies and inform future research

directions and clinical approaches for managing diabetic neuropathy.
FIGURE 2

Nondrug treatments for diabetic neuropathy and the location of treatment. SCS involves placing electrodes on the dorsal side of the dura mater of
the brain, utilizing fixed-frequency electrical stimulation to mask pain sensations (64). DNS is a surgical method that can alleviate chronic
neuropathic pain caused by prolonged nerve compression in the lower limbs according to several observational studies, although its effectiveness
has yet to be confirmed (56). tDCS and TMS are both noninvasive neuromodulatory techniques that can modulate neural functions in the brain,
including through pain inhibition, depression control, and the relief of autonomic nerve dysfunction (74, 96, 100, 101). The magnified image on the
right illustrates the brain regions that each therapy interferes with and the types of neuropathic conditions the therapies treat.
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2 Exercise and diet in the treatment
and management of diabetes

2.1 Mechanisms of action of alleviation and
treatment methods and approaches for
controlling diabetes in the diet

2.1.1 Impact of diet on diabetes
A high-fat diet serves as a standard method to induce obesity in

animal models. Excessive intake of saturated fats leads to the

overexpansion of adipocytes in adipose tissue, resulting in hypoxia.

Hypoxia triggers a cascade of responses, including the activation

of hypoxia-inducible factor 1 (HIF-1) gene expression. HIF-1,

a transcription factor, becomes activated in low-oxygen

environments, leading to the overexpression of other proteins, such

as c-Jun N-terminal kinase and IkB kinase. In turn, inflammatory

responses are induced in cells (111). Inflammation typically manifests

as the production of proinflammatory cytokines, which further

exacerbate the inflammatory process (111, 112). Inflammation

causes a chain reaction in cells, which leads to difficulty in insulin

regulation. Insulin usually controls fat breakdown by reducing the

influence of hormone-sensitive lipases within fat-storing cells.

However, when these cells resist insulin, stored fats are transferred

into free fatty acids (113), move into the bloodstream and are taken

up by various organs. This process further causes these organs to

resist insulin and leads to T2DM (101, 111, 113).

2.1.2 Dietary approaches for the prevention and
alleviation of diabetes

It is clear that what we eat greatly impacts early diabetes

development. Eating properly, such as choosing low-fat foods,

limiting carbohydrates, or following a ketogenic diet, can

effectively prevent and manage diabetes (111, 113, 114). A healthy

diet involves the consumption of daily essential nutrients, such as

water, protein, fat, carbohydrates, and other micronutrients, to

maintain overall health. According to the World Health

Organization recommendations for a healthy diet, individuals

should consume 400 grams of fruits and vegetables per day, as

well as legumes, grains, and nuts. The fat content should be kept

below 30% of the total caloric intake, and the intake of simple sugars

should be limited to less than 10% of the total caloric intake. Daily

caloric intake should be set on the basis of individual energy

expenditure (115).

In contrast to a high-fat diet, a low-fat diet restricts the

consumption of fats, including cholesterol (116). By reducing the

risk of obesity and insulin resistance, a low-fat diet helps prevent

diabetes (117–119). For diabetes patients, reducing fat intake can

effectively alleviate the development of insulin resistance in organs.

A carbohydrate-restricted diet (CRD) involves the replacement of

high-carbohydrate foods with higher protein- or fat-containing

foods and fiber-rich vegetables (120–122). CRD can effectively

control blood sugar levels, and studies suggest that reducing

carbohydrate intake can lower the risk of developing T2DM

(120–123). Therefore, for patients who are unresponsive to

medications that lower glucose levels, a diet limited in
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carbohydrates is a practical choice. For example, a ketogenic diet

causes the body to produce ketones, similar to when the body is

fasting (124). This type of diet makes the body favor ketones over

glucose for energy (124, 125). Ketogenic diets have garnered

significant popularity in contemporary times and are increasingly

employed for the management of diabetes. An intriguing aspect of a

ketogenic diet is its ability to effectively reduce blood glucose levels

(126, 127). Research findings indicate that individuals following a

ketogenic diet may require only half the amount of insulin needed

before initiating this dietary regimen (124, 128, 129). For example, a

four-month research study revealed a decrease in antidiabetic

medicine use with a ketogenic diet. Some patients could even stop

using antidiabetic medications entirely (130). As a result, experts

view a ketogenic diet as a tool that can help regulate blood glucose,

assisting those with diabetes.
2.2 Mechanisms of action of exercise in the
treatment of diabetes and exercise
modalities

2.2.1 Impact of exercise on diabetes
Exercise and diet control are ways to lower weight. Losing

weight with activity and less caloric intake can help approximately

80% of T2DM patients (93–95). Furthermore, regular exercise can

alleviate inflammatory symptoms in muscle cells, reduce cellular

insulin resistance, and stimulate the activity of adenosine

monophosphate-activated protein kinase (AMPK). In turn,

AMPK activity facilitates the translocation of glucose transporter

4 (GLUT4) to the cell membrane, contributing to the control of

blood glucose levels (131–133).
2.2.2 Exercise modalities for the prevention and
alleviation of diabetes

Among all exercise modalities, aerobic exercise, resistance

training, and high-intensity interval training (HIIT) are the most

common. Aerobic exercise involves rhythmic activities, such as

walking and running, which involve large muscle groups (134–136).

A minimum of 150 minutes per week of moderate to vigorous

aerobic exercise can increase VO2max cardiac output (134, 137).

The risks of heart issues and death are greatly lower in patients with

T2DM who exercise (138). Additionally, aerobic exercise helps

balance fat and other body-building substances. Furthermore,

exercise lowers hemoglobin A1c (HbA1c) levels (139, 140). In

contrast to the fat-reducing effects of aerobic exercise, resistance

training focuses more on altering the structure of the body’s muscle

tissue through the use of weight machines, free weights, and

resistance bands (141). Resistance training improves health

indicators such as bone density, blood pressure, blood lipids,

insulin sensitivity, and muscle strength by 10–15% (142–144).

This effect not only slows the progression of diabetes in elderly

patients but also contributes to a reduction in the risk associated

with other diseases.

As a popular workout style, in HIIT, individuals push their

limits in short, intense workouts of approximately 10 minutes (145,
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146). HIIT is a useful method for controlling blood fat and glucose

levels (147, 148). HIIT even increases muscle power and the

response to insulin (147–149). One HIIT workout is short and

might be a good fit for T2DM patients willing to take on a challenge.

However, HIIT is not suitable for everyone. Some experts believe

that combined aerobic and resistance workouts could work better

(150). This combined workout regimen could lead to more positive

results in terms of insulin response and HbA1c reduction than

either type alone (151–153). The efficacy of a combined exercise

strategy in terms of reducing the risk of cardiovascular diseases has

been demonstrated (153, 154). In conclusion, a mixed aerobic and

resistance regimen could be suitable for T2DM patients for whom

HIIT is too difficult.
2.3 Limitations of exercise and diet in the
treatment and management of diabetes

While exercise and dietary interventions are widely

acknowledged as foundational nonpharmacological approaches

for managing type 2 diabetes, their effectiveness is subject to

several important limitations. One key constraint is the influence

of concurrent antidiabetic medications, such as metformin, SGLT2

inhibitors, or insulin, which can alter baseline glycemic levels and

potentially obscure or exaggerate the true effects of lifestyle changes

(155, 156). Additionally, individual behavioral and lifestyle factors,

including smoking, alcohol use, chronic stress, poor sleep quality,

and prolonged sedentary behavior, can negatively impact insulin

sensitivity and systemic inflammation, thereby confounding the

outcomes of exercise- and diet-based interventions.
3 Diabetic neuropathy alleviation and
treatment

3.1 Spinal cord stimulation

In the past, it was usually difficult to efficiently ease pain with

the standard medication for DPN (43, 157). This standard

treatment is often associated with substantial side effects and low

tolerance (158, 159). To reduce our dependence on medicines, the

search for different treatment methods or adjunct therapies is now

an important part of research. Compared with traditional medicine,

SCS provides pain relief that lasts eight times longer (160). SCS is a

method in which the sense of pain is replaced with sensory

paresthesia. The electrodes are placed on the dorsal surface of the

spinal cord. Then, a certain strength of electrical current is sent

through the spinal cord and masks the sensation of pain (161, 162).

With technological advancements, SCS is no longer limited to the

original 40~60 Hz low-frequency stimulation; a unique waveform at

10 kHz can be utilized to alleviate the pain associated with DPN

without inducing sensory disturbances. The evidence suggests that,

following high-frequency SCS stimulation, 87.5% of patients

experienced at least a 50% reduction in pain during a six-month

follow-up (163). Furthermore, more than half of patients
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experienced a reduction in pain intensity of over 50%, even five

years after treatment (164). The supporting evidence confirms the

effectiveness of the SCS.
3.2 Decompression nerve surgery

DPN is characterized by symptoms of regular, long-term nerve

pressure, including discomfort, a burning sensation, a pin-and-

needle sensation, and a loss of sensation (165, 166). Because of these

parallels, some studies have suggested that nerve compression

causes DPN (167). The affected areas in the human body include

three nerves located in the legs, including the distal fibula on the

lateral side of the lower leg, the intersection of the leg with the

posterior heel on the medial side, and the junction of the short

extensor muscle of the thumb with the branch of the deep peroneal

nerve (168). These nerves are often compressed because of the

narrow tunnel they pass through at these locations. Thus, DNS is

widely used to prevent pain due to DPN (99, 169), but the

effectiveness of DNS is still a matter of debate. Indeed, most

researchers have proposed the effectiveness of DNS simply on the

basis of observations (99). Future research is needed to further

clarify the feasibility and efficacy of DNS in the treatment of DPN.
3.3 Transcranial direct current stimulation

3.3.1 Mechanism of action of tDCS
tDCS is a noninvasive brain stimulation technique, and its

efficacy was confirmed in rodents several decades ago (170).

Anodal tDCS can increase cortical excitability, whereas cathodal

stimulation can reduce cortical excitability (171, 172). The effects of

tDCS are rapid, with cortical excitability typically being influenced

within seconds of stimulation, and prolonged stimulation can

significantly extend the duration of cortical modulation

(173–175). Rather than inducing changes in only single brain

cells, tDCS has a greater impact on whole-brain networks (176).

Several cells in our bodies, such as endothelial cells, immune cells,

and brain cells, are sensitive to changes in electrical fields. The

activities of these cells are manipulated when tDCS is applied (177).

These findings indicate that tDCS can influence the development of

certain diseases by affecting these cells.

3.3.2 Application of tDCS in DPN
tDCS successfully lowers pain in people suffering from DPN-

related discomfort. tDCS adjusts brain activity, specifically in the

left dorsolateral prefrontal cortex (DLPFC) and the primary motor

cortex (M1) (178). Anodal stimulation of M1 can inhibit thalamic

activity, thereby regulating the pain threshold and intensity (179).

The DLPFC is one of the most commonly activated brain regions

during pain episodes (180). Therefore, disrupting the involvement

of the DLPFC in pain perception through electrical stimulation can

significantly alleviate patients’ pain. Additionally, stimulation of

regions such as the medial prefrontal cortex, anterior insula,

anterior cingulate cortex, and bilateral amygdala can reduce
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negative emotions such as anxiety and depression (181). The use of

tDCS to alleviate pain associated with DPN has been considered

feasible in numerous studies (182). However, the impact of tDCS

remains inconsistent. The effectiveness of tDCS can be affected by

age, genetic factors, medicines, lifestyle factors, and even physical

activities. Moreover, even the same patient can experience different

results at different time points (183). Determining the right level of

stimulation for each patient can be challenging when tDCS is

applied in clinical practice.
3.4 Transcranial magnetic stimulation

3.4.1 Principles and mechanism of action of TMS
TMS, a noninvasive cortical modulation technique, was initially

employed for functional localization in the central nervous system

(109). Over time, with changes in coil shape, stimulation patterns,

and other parameters, TMS is now being utilized for treating central

and peripheral neuropathologies, evaluating the activity of the

corticospinal tract, and determining the extent of damage to

motor functions and conduction pathways (184, 185).
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Additionally, TMS can influence local cerebral blood flow to alter

oxidative stress levels, promoting functional recovery in the lower

limbs following nerve injury (109).

In a TMS, magnetic field pulses are created via electrical

currents following Faraday’s law. These shifting magnetic fields

pass through the skull to affect the intended area, producing

currents in the process (186). When the intensity of electrical

current flow increases to a certain level, nerves in the focus area

are stimulated. TMS adjusts neuron signals and modulates brain

activity (100, 187). The intensity of the magnetic field follows the

inverse square law, so the intensity decreases rapidly with depth. To

stimulate deeper areas of the brain, a stronger intensity is required

at the surface (188). To address this, various coil shapes have been

developed, including circular, figure-eight, quadruple butterfly, and

Hesed coils (H-coils) (188, 189), as shown in Figure 3. The

determination of coil shape depends on the specific brain region

area and depth. Circular coils are characterized by their simple

design and ease of manufacturing (190, 191). However, the circular

electric field it generates cannot achieve focused stimulation.

Although techniques have been developed to focus the electric

field by altering the winding angle and density of the coil (192, 193),
FIGURE 3

Performance comparison of coil designs. Since the development of the TMS, the design of the coil has been improved many times. Currently, four
coil designs are most commonly used (188, 189), each with distinct advantages and disadvantages, as illustrated in the figure. The circular coil was
the earliest design and is relatively easy to manufacture, although it lacks precision and depth in stimulation (190–193). The figure-8 coil was
developed as an improvement over the circular coil, enhancing both the focus and penetration depth (194–196). The quadruple butterfly coil,
optimized for increased stimulation depth along a vertical axis, provides the highest focus and penetration depth among the four designs but covers
a relatively narrow area (197, 198). Finally, the H-coil, in contrast to earlier designs, is considered capable of achieving greater stimulation depth and
coverage owing to its skull-encompassing structure, allowing for stimulation across a wider range of brain regions (199, 200). The 3-axis coil
provides a stimulation range similar to that of traditional circular coils but overcomes the difficulty in achieving focal stimulation. By adjusting the
current output of the three coil sets, this coil enables rotation of the electric field to finely tune the stimulation location (201).
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its focusing capability remains inferior to that of other coil designs.

In comparison, figure-8 coils, which consist of two adjacent circular

coils, can generate a focused electric field at the intersection point

beneath the coils (194, 195), allowing for deeper and more precise

stimulation than circular coils. Compared with figure-eight coils,

quadruple butterfly coils, which are derived from figure-eight coils,

are composed of four circular coils and are more commonly used for

stimulating long fiber structures (197, 198). Finally, the more novel

H-coils, compared with the aforementioned designs, are larger in

size and have a more complex winding pattern. This structure

allows the electric field to penetrate deeper into the brain with a

slower rate of field attenuation (199, 200), although this comes at

the cost of reduced focusing ability. In addition, the TMS pattern

includes single-pulse TMS, paired-pulse TMS, and repetitive pulse

TMS (rTMS) (202). This parameter affects the results of the TMS as

well. Single-pulse TMS is commonly used for specific cortical site

stimulation because of its effectiveness in measuring the cortical

response to each pulse (187, 203). Paired-pulse TMS employs two

paired pulses to stimulate the same or different cortical areas,

serving to assess functional connectivity between two regions

(204). rTMS induces cortical effects through a continuous

sequence of pulses, allowing control over the produced effects and

duration through the adjustment of stimulation intensity,

frequency, and time (205, 206). TMS can be used for long-lasting,

high or low activation or blockage of central and peripheral nerves.

This allows focused stimulation of connections between brain areas.

To date, encouraging results of TMS have been shown for

diagnosing and treating central and peripheral nerve injuries.

Even though the use of TMS in DPN patients is not widespread,

TMS still offers significant promise as a treatment option.

3.4.2 Value of TMS in diagnosing DPN
DPN originates in the early stages of diabetes, as elevated blood

glucose levels following dietary intake lead to the onset and

subsequent progression of DPN (207). Therefore, American

Diabetes Association (ADA) scholars emphasize DPN screening

in patients exhibiting early symptoms of diabetes (208). In the early

phase of DPN, smaller nerve groups are usually targeted first, which

could affect pain sensation. However, because small and large nerve

fibers work collaboratively, clear signs of this nerve damage might

not be observable. Thus, DPN examinations should cover both

nerve types to better identify small nerve damage (207). According

to the ADA 2022 Clinical Practice Guidelines, the recommended

protective sensory testing methods can detect only severe sensory

loss (209). Hence, more accurate early screening methods are

needed for a comprehensive assessment. The TMS is likely to

assist in addressing these related issues.

TMS alone is not sensitive enough to serve as a standalone

technique for evaluating DPN. However, TMS can be utilized to

detect motor-evoked potentials when combined with other

assessment methods, such as functional magnetic resonance

imaging (fMRI), electroencephalography (EEG), and Doppler

ultrasound monitoring (210, 211). This integrated approach can

help establish potential connections between various functional

parameters, aiding in a more comprehensive evaluation and
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diagnosis of DPN patients (212, 213). Combined with the above

methods, TMS can be used to detect motor-evoked potentials,

which are crucial for assessing a patient’s neural and muscular

function. Through TMS, key parameters such as nerve conduction

velocity, excitability thresholds, and response times can be

observed, facilitating the identification of abnormalities in the

nervous system (109, 210). In addition, fMRI provides details

about brain activity and connections. These findings reveal how

the nervous system processes pain and sensory information in

diabetes patients (186, 210). EEG detects changes in brain

electrical activity related to pain perception, which is crucial for

evaluating central nervous system abnormalities in DPN patients.

Doppler ultrasound, which is used to monitor vascular health and

focuses on blood flow velocity and microcirculation, is essential for

diagnosing vascular or nerve lesions in DPN patients. TMS can

stimulate specific brain regions, and when combined with fMRI,

neural circuit responses can be observed in real time; when

combined with EEG, fMRI can synchronously record changes in

brain electrical activity; and when combined with Doppler

ultrasound, fMRI can assess blood flow changes in response to

neural stimulation. This multimodal approach helps to

comprehensively assess and diagnose nerve and vascular

abnormalities in early-stage DPN patients. Therefore, the TMS

plays a significant role in this multifaceted assessment process.

3.4.3 Application of TMS in neural protection and
regeneration

In patients with DPN, the lower extremities typically manifest

as the initial site of neuropathic changes, progressing from sensory

impairments to the emergence of motor symptoms as the condition

worsens (214). The main pathological pathways of DPN in the

presence of elevated blood glucose levels include the polyol,

hexosamine, and protein kinase C pathways, as well as oxidative

stress and inflammatory responses that act on neural origins, all of

which contribute to impaired nerve function (215). Studies have

shown that, after 8–12 weeks of a high-fructose diet, C57BL/6 N

mice exhibit significant hippocampal neuroinflammatory

responses; these responses activate glial cells and astrocytes,

leading to neuroglial proliferation and a substantial decrease in

the number of hippocampal neurons and newborn neurons (216).

Matrix metalloproteinases (MMPs), which are downstream

effectors of hyperglycemia and oxidative stress, play dual roles in

extracellular matrix remodeling and neuroregeneration. Under

controlled activation, MMPs facilitate axonal sprouting and the

structural reorganization necessary for nerve regeneration by

promoting the degradation of inhibitory matrix components and

enabling the migration of neural progenitor cells (217).

On the basis of the aforementioned mechanisms, TMS coils

have been used in several studies to generate magnetic field pulses

and stimulate the heads of rats with gray matter injuries. This

approach can restore the regenerative capacity of neurons in the

hypothalamic region (218). Research has demonstrated that rTMS

promotes remyelination in demyelinated white matter regions by

increasing the proliferation, migration, and differentiation of

oligodendrocyte precursor cells (219). Moreover, evidence
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suggests that rTMS can increase the expression of brain-derived

neurotrophic factor, which in turn activates the TrkB signaling

cascade—a critical pathway involved in synaptic plasticity, axonal

growth, and the survival of injured neurons (220–222). These

findings collectively indicate that TMS, as a neuromodulatory

technique, can promote neural regeneration.

3.4.4 TMS for alleviating neuropathic pain in DPN
patients

Various approaches have previously been used to treat

neuropathic pain caused by DPN, including SCS, DNS, tDCS, or

conventional pharmaceutical interventions; however, several

clinical challenges are still faced with these treatments. Issues

such as discomfort during treatment, a pain relief rate less than

50%, and significant side effects associated with drug therapy have

been reported (223). TMS is able to directly stimulate the thalamus,

which serves as the pain integration center, through cortical brain

activity. When stimulated, the thalamus blocks the sensory

transmission pathway from the spinal cord to the thalamus,

reducing the patient’s sensitivity to pain (224). Research findings

indicate that for chronic pain resulting from spinal cord injury,
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low-frequency (1-Hz) stimulation of the M1 region of the brain can

inhibit cortical excitability, thereby increasing the pain threshold

and alleviating pain perception (225). Stimulation of the M1 region

has also been shown to mitigate abnormal temperature perception

caused by chronic neuropathic pain (226). Research has shown that

the use of an H-coil for high-frequency (20 Hz) stimulation of

deeper and broader areas is effective in relieving lower limb pain in

patients (227). Additionally, focused stimulation of the lower limb

motor cortex region via a figure-8 coil can reduce pain sensitivity in

patients over a period of five weeks (228). The analgesic efficacy of

rTMS in DPN has been supported by multiple studies involving

varying designs and stimulation protocols. As summarized in

Table 2, both animal and human studies have reported significant

reductions in pain scores and the levels of inflammatory markers,

with some trials reporting reductions of up to 60% in allodynia or

subjective pain intensity. These outcomes highlight the therapeutic

potential of rTMS; however, given the diversity in coil types,

stimulation frequencies, and cortical targets employed across

studies, further investigations are warranted to optimize

stimulation parameters and identify patient-specific predictors

of responses.
TABLE 2 Summary of the pain relief outcomes of rTMS in DPN and neuropathic pain.

Participants Frequency
Stimulation

region
Coil
type

Duration
Pain

assessment
tool

Pain
relief outcome

Statistical
significance

Reference

Animals (NP
rat model)

1 Hz M1
figure-
8 coil

8 days
Behavioral scale,
cytokine assays

~60% reduction in
mechanical allodynia;
decreased IL-1b and
TNF-a expression

P< 0.05 (225)

Animals (CCI
rat model)

10 Hz PFC
circular
coil

4 weeks
PWMT, ELISA
(IL−1b, IL−6,

TNF−a, TRPV1)

Significantly
increased PWMT;

reduced IL−1b, IL−6,
TNF−a, TRPV1 in
PFC and spinal cord

P< 0.05 (229)

Animals (NP
rat model)

0.5 Hz Amygdala
butterfly
coil

8 days

Mechanical and
thermal

threshold, Golgi
stain, gene/

protein assays

Increased pain
thresholds; reversed
dendritic spine

deficits; decreased
integrin avb3,

P2×7R,
NLRP3 signaling

P< 0.05 (230)

15 patients with
chronic

neuropathic pain
10 Hz left M1

figure-
8 coil

1 day
VAS, thermal
perception tests

Decrease in the mean
VAS score from 7.8
to 4.5; improved
thermal detection

P< 0.03 (226)

18 patients with
painful
diabetic

neuropathy

20 Hz M1 H-coil 5 days
VAS, RIII reflex

area, BDI

Decrease in the VAS
score to below 70% of
baseline; decrease in
the RIII reflex area

by ~30%

P< 0.01 (227)

30 patients with
refractory DPN

10 Hz
lower limbs
motor cortex

figure-
8 coil

5 days
Numeric

rating scale

Decrease in the NRS
score from 6.5 ± 0.9
to 3.6 ± 0.7 (after 1
day) and to 5.3 ± 1.1

(after 1 week)

P< 0.01 (228)
The table highlights stimulation parameters, pain assessment tools, and reported pain reduction outcomes, including both subjective and objective indicators.
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3.4.5 TMS for treating depression induced by
DPN

Depression is an emotional disorder characterized by features such

as loss of pleasure, despair, intensified guilt, and physical distress (231).

The pathological mechanisms underlying this psychological illness are

complex and involve responses to stress, neural structure and function,

and immune–neurological imbalances, all of which are associated with

dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis (232).

The hippocampus, a crucial regulator of stress responses, undergoes

neuronal damage or apoptosis due to HPA axis dysregulation induced

by hyperthyroidism (233). TMS has been demonstrated to significantly

improve mood, cognition, motor function, and sensation (221, 234).

TMS also influences neurotransmitters and the endocrine response of

the HPA axis in patients with depression (235). Therefore, the use of

TMS to restore HPA axis homeostasis and prevent hippocampal

neuronal apoptosis has become a therapeutic strategy for treating

depression. The feasibility of this approach has been acknowledged

in studies using high-frequency (10 Hz) TMS in Sprague–Dawley rats

(236). Additionally, research findings suggest that peripheral

neuropathic pain caused by diabetes is a factor contributing to

depression. Consequently, the use of TMS to inhibit M1 and the

descending pain system to treat muscle-related pain may have an

adjunctive effect on diabetes-induced depression (237). Although the

mechanisms underlying diabetes-induced depression remain unclear,

TMS is practical for modulating depressive symptoms under high-

glucose conditions. TMS can also be employed to assess the efficacy of

antidepressant medications in patients, serving as an auxiliary

therapeutic tool.

3.4.6 Application of TMS in the treatment of
diabetic autonomic neuropathy

Diabetic autonomic neuropathy (DAN) affects the cardiovascular,

gastrointestinal, and urogenital systems, with approximately 20% of

diabetic patients experiencing DAN, often accompanied by other

peripheral neuropathies (238). Autonomic neuropathy occurring in

the cardiovascular system may lead to tachycardia, hypotension,

dizziness, and motor impairment, even resulting in a loss of control

over the sympathetic and parasympathetic nerves of the heart (239).

When the gastrointestinal tract is affected, symptoms such as

esophageal dysmotility and gastroparesis may result. DAN can also

disrupt the urogenital system, causing recurrent urinary tract

infections, pyelonephritis, and bladder and sexual dysfunction (240).

Currently, the understanding of how the cerebral cortex

controls autonomic nervous system function remains uncertain.

However, studies have shown that the use of TMS to stimulate the

sympathetic nervous system can induce transient changes in the

cardiovascular system (241). In another study, TMS was utilized to

stimulate M1, and the neural connection between the brain and

kidneys was demonstrated. The findings indicated a significant

increase in urinary protein levels in both diabetic and nondiabetic

individuals after stimulation, suggesting a potential link between the

brain and renal autonomic functions (242). While the ability of

TMS to influence the autonomic nervous system has been

demonstrated, further research is needed to determine whether

such effects can have therapeutic benefits for patients.
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3.4.7 TMS for addressing vascular damage in DPN
patients

Cardiovascular diseases and microvascular complications

contribute to the increased incidence and mortality of diabetes

patients (243). DPN induces endothelial cell proliferation in

blood vessels, leading to thickening of the capillary basement

membrane. These structural changes result in narrowed blood

vessels, reducing the blood supply to neuronal fibers (244).

Among these, the nerve–vascular barrier and oxygen tension of

dorsal root nerves and other peripheral nerve trunks are lower,

increasing their susceptibility to microvascular changes (245). The

dorsal root nerves, which act as a system to regulate blood flow,

are adversely affected when damaged, disrupting blood flow

regulation and exacerbating the process of vascular damage.

Endothelial dysfunction can also trigger neuropathies; in diabetes,

hyperglycemia-induced adhesion of endothelial cells or thrombus

formation can lead to blood vessel obstruction, causing ischemic

damage to neuronal fibers (246).

Studies have shown that TMS can induce angiogenesis and

significantly increase cerebral blood flow (247). Additionally,

stimulation of brain regions with low-frequency (1-Hz) TMS

increases oxygen consumption and metabolic rates by approximately

28%, which is correlated with increased blood flow (248). Although

there is currently no research on the use of TMS to modulate vascular

blood flow and endothelial cell proliferation in DPN patients, future

studies in this area are highly anticipated.
4 Conclusion and future challenges

DPN affects approximately 50% of diabetic patients and results in

chronic pain, sensory loss, and motor dysfunction. Although

approved by the FDA, traditional pharmacological treatments, such

as pregabalin and duloxetine, provide limited relief for approximately

20–30% of patients and are often accompanied by significant side

effects. This necessitates the exploration of alternative therapeutic

approaches, particularly nonpharmacological interventions. In this

review, the potential of TMS as a noninvasive treatment for delaying

neural inflammation and mitigating the symptoms of DPN is

highlighted. TMS has shown promise in reducing pain sensitivity

by up to 50% over several weeks of treatment and has demonstrated

potential in promoting nerve regeneration and regulating autonomic

nervous function. As outlined in Table 3, the efficacy of TMS is

influenced by various stimulation parameters, such as frequency and

intensity, with low-frequency (1 Hz) stimulation being effective in

reducing cortical excitability and alleviating pain, whereas high-

frequency (10 Hz) stimulation shows benefits in mood regulation.

The flexibility of coil designs, including figure-eight and H-coils,

further expands the application of TMS across different

neuropathic conditions.

Other neuromodulation techniques, such as SCS, have

demonstrated an 87.5% success rate in reducing pain intensity by

at least 50% after six months of treatment, with pain relief being

maintained in 55% of patients five years posttreatment. Similarly,

DNS and tDCS present alternative therapeutic options, although
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their clinical applications remain limited owing to inconsistent

outcomes and a lack of large-scale clinical trials. In contrast, TMS

is a noninvasive intervention with a relatively low incidence of

adverse effects. Reported side effects include transient headaches,

scalp discomfort, and, in rare cases, seizures, particularly in

individuals with a history of epilepsy or those undergoing

prolonged high-frequency stimulation. To integrate these

therapies into routine clinical practice, large-scale, randomized

controlled trials are needed to establish the long-term efficacy,

safety, and cost-effectiveness of TMS and other neuromodulation

approaches. Moreover, advanced diagnostic tools such as fMRI and

EEG could assist in the personalization of these treatments,

enabling more precise and effective interventions for DPN

patients. Table 3 outlines the various frequencies and intensities

used in TMS for different neurological conditions, emphasizing the

need for the standardization of these parameters to optimize patient

outcomes. As the global prevalence of diabetes is projected to rise to

12.2% by 2045, addressing the challenges of DPN through

innovative therapies such as TMS will become increasingly

important. While neuromodulation techniques, especially TMS,

show significant therapeutic potential, the application of

TMS in the treatment of DPN remains relatively limited, and

comprehensive treatment protocols and long-term data are still

lacking. In light of the multifactorial nature of DPN, and

considering that the effectiveness of rTMS may vary significantly

with factors such as age, gender, and cortical thickness, integrative

approaches that combine rTMS with existing pharmacological,

nutritional, or exercise-based interventions should be explored in

future research. For example, combining rTMS with agents that

enhance neuroplasticity or reduce inflammation may yield

synergistic effects. Similarly, coupling rTMS with aerobic or

resistance training, both of which are known to improve glucose

metabolism and nerve function, may help optimize therapeutic

outcomes. These multimodal strategies represent promising

directions for developing personalized and noninvasive

treatments that address both the neurological and metabolic

aspects of diabetic neuropathy. The broader implications of this

work suggest that TMS could serve as a complementary tool in

clinical neurology and diabetes care, particularly for patients who

are unresponsive to pharmacological treatments. The integration of

TMS into multidisciplinary care plans could enhance treatment
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personalization, reduce long-term healthcare costs associated with

diabetes complications, and potentially prevent the progression of

neuropathic symptoms in high-risk populations. In conclusion,

while TMS and other neuromodulation techniques represent

promising frontiers in the nonpharmacological treatment of DPN,

optimizing treatment protocols and expanding clinical trials will be

key to the broader adoption of these techniques. With the

increasing burden of diabetes worldwide, advancing these

therapies could significantly improve the quality of life of millions

of diabetic patients suffering from neuropathy.
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TABLE 3 TMS frequencies and stimulation intensities selected in various research areas.

Research direction Type
Frequency

and intensity
Duration Reference

Neuroregeneration LF, HF
1 Hz, 120%RMT
20 Hz, 120%RMT

3 days (249)

Neuropathy LF-rTMS 1 Hz, 200mT 8 days (225)

Depression HF-rTMS 10 Hz, 50%RMT 15 days (236)

Oxidative stress HF-rTMS 10 Hz, 120%RMT 2 days (250)

Autonomic nervous function HF 20 Hz, 90%RMT 1 day (251)
The transcranial magnetic stimulation (TMS) patterns used in research studies for different diseases are listed. Low frequency (LF) represents low frequency, high frequency (HF) represents high
frequency, and the resting motor threshold (RMT) describes the output intensity used in the studies.
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