? frontiers ‘ Frontiers in Endocrinology

@ Check for updates

OPEN ACCESS

EDITED BY
Duan Xing,
Southeast University, China

REVIEWED BY
Fahimeh Ramezani Tehrani,

Shahid Beheshti University of Medical
Sciences, Iran

Shaobo Li,

The First Affiliated Hospital of Henan University
of Science and Technology, China

*CORRESPONDENCE

Yan Zhang
peneyyan@whu.edu.cn

Su Liu
sunnysue0309@163.com

RECEIVED 05 May 2025
AccepTeD 15 September 2025
PUBLISHED 06 October 2025

CITATION

Wen J, Cheng G, Zhang Y and Liu S (2025)
Hippo signaling pathway in polycystic ovary
syndrome.

Front. Endocrinol. 16:1623143.

doi: 10.3389/fendo.2025.1623143

COPYRIGHT
© 2025 Wen, Cheng, Zhang and Liu. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Endocrinology

TYPE Review
PUBLISHED 06 October 2025
p0110.3389/fend0.2025.1623143

Hippo signaling pathway in
polycystic ovary syndrome

Jiahui Wen', Guan Cheng®, Yan Zhang™ and Su Liu®

‘Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan
University, Wuhan, Hubei, China, 2Shenzhen Key Laboratory for Reproductive Immunology of Peri-
implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen
Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital),
Shenzhen, Guangdong, China

Polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic disorder
syndrome, that predominantly affects women of reproductive age. It is
characterized by marked clinical heterogeneity involving multiple systems
including reproductive, metabolic and immune systems, while existing
diagnostic protocols remain inadequate for clinical needs. Moreover, the
incomplete understanding of PCOS etiology has limited therapeutic strategies
for symptomatic management rather than interventions targeting core
pathological mechanisms, resulting in PCOS frequently persisting as a chronic
condition with an increased risk of long-term complications such as type 2
diabetes, metabolic disorder-associated fatty liver disease and cardiovascular
disease. This clinical reality underscores the urgent need to elucidate its
pathogenic network at the molecular level. Emerging evidence suggests that
the Hippo signaling pathway plays a central role in the pathological process of
PCOS through dynamically regulating cell proliferation-apoptosis balance,
differentiation programs and metabolic homeostasis. This review examines
the molecular mechanisms governing Hippo signaling transduction and
its physiological relevance, with a focused analysis of its diverse implications in
PCOS pathophysiology, particularly in reproductive dysfunction, metabolic-
endocrine disturbances, and immune dysregulation. These mechanistic
insights not only advance our understanding of PCOS pathogenesis but also
provide a theoretical foundation for developing signaling pathway-targeted
precision therapies.

KEYWORDS
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1 Introduction

PCOS, also known as Stein-Leventhal syndrome, is a complex endocrine-metabolic
disorder affecting approximately 11-13% of reproductive-aged women globally (1). This
condition is clinically characterized by impaired fertility, metabolic disorders and immune
microenvironment dysregulation. Notably, current therapeutic interventions remain
challenging, with patients facing significant risks of comorbidities such as type 2 diabetes
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mellitus, cardiovascular disease and non-alcoholic fatty liver disease
(2). Furthermore, as a multisystem disorder involving reproductive,
metabolic and immune interactions, systematic elucidation of
PCOS pathogenesis holds critical implications for advancing
clinical diagnosis and treatment strategies.

The Hippo signaling pathway, an evolutionarily conserved
regulatory network, derives its name from the tissue
hyperproliferation phenotype observed in Drosophila
melanogaster with Hippo kinase mutations (3, 4). This pathway
governs several biological processes including cell proliferation,
apoptosis, differentiation and tissue homeostasis through
phosphorylation cascades (5). Remarkably, the Hippo signaling
pathway has multidimensional regulatory functions. In the female
reproductive system, it regulates follicular developmental
homeostasis, while its functional dysregulation is strongly
associated with reproductive-endocrine disorders, such as PCOS
and premature ovarian insufficiency (6-9). In addition, this
pathway can also coordinate systemic metabolism by interfering
with metabolites and/or metabolic signaling, as well as modulate
immune microenvironment homeostasis through its involvement
in immune cell differentiation and inflammatory cytokine secretion
(10, 11).

As early as 2012, Li et al. identified the Hippo signaling pathway
core effector YAP1 as a susceptibility gene for PCOS through
genome-wide association study (GWAS) analysis (12).
Subsequent advancements in research methodologies have
established that Hippo signaling dysregulation contributes to
PCOS pathogenesis via aberrant androgen biosynthesis, granulosa
cell cycle disruption, and impaired folliculogenesis (13). However,
given the multisystem complexity of PCOS, the mechanistic studies
need to break through the traditional single-system analysis
framework and conduct comprehensive analysis from a holistic
perspective. As evidenced by extensive literature reviews, current
research on the Hippo-PCOS relationship remains limited. This
review summarizes and discusses the roles of the Hippo signaling
pathway and its key components in reproductive, metabolic and
immune regulation, elucidating its molecular mechanisms and
therapeutic implications in PCOS. By emphasizing the cross-
system regulatory properties of the pathway, this work aims to
inspire researchers to explore novel insights into PCOS
pathogenesis and therapeutic targets.

2 Search methods

To ensure a comprehensive review of the literature, a systematic
search was performed using the PubMed, Medline, and Embase
databases for relevant articles published between 2010 and 2025.
The search used a combination of keywords and Medical Subject
Headings (MeSH) terms related to “polycystic ovary syndrome”,
“infertility”, “ovarian follicular development”, “ovarian
microenvironment”, “lipid metabolism”, “metabolic dysfunction-
associated steatotic liver disease/MASLD”, “insulin resistance”,
“hyperandrogenemia”, “adipose tissue”, “inflammation”,
“macrophages”, and “Hippo signaling pathway” (including YAP/
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TAZ, MST1/2 and LATS1/2). The scope of the search encompassed
original research (observational, epidemiological and
experimental), reviews, systematic reviews, and meta-analyses.
The inclusion criteria were limited to English-language articles
presenting original data or seminal reviews, prioritizing those
published in peer-reviewed journals with an emphasis on recent
evidence. Additional information was obtained from references
cited in the articles resulting from the literature search.

3 Results

3.1 Mechanism of Hippo signaling pathway
transduction

In mammals, the Hippo signaling pathway is organized as a
canonical serine/threonine kinase cascade. Within this cascade, the
MST-LATS kinase can be activated by upstream signals, such as cell
polarity, cell density, stress signals and mechanical cues (14, 15).
Furthermore, the scaffolding protein Salvador homolog-1 (SAV1)
binds to the mammalian Ste20-like kinasel/2 (MST1/2, orthologs of
Hippo) via its SARAH domain, promoting MST1/2
autophosphorylation at Thr183/Thr180 sites to enhance kinase
activity (16). Activated MST1/2 subsequently phosphorylates two
critical regulatory domains of large tumor suppressor kinase 1/2
(LATS1/2, orthologs of Wts), including the Thr1079/Thr1041 sites
in the hydrophobic motif (HM) and the Ser909/Ser872 sites in the
activation loop (T-loop), thereby driving LATS1/2 activation (17).
Additionally, MST1/2 phosphorylates the Thr12/Thr35 sites of the
LATS1/2 coactivator Mps One Binder kinase activator-like 1A/1B
(MOB 1A/B, orthologs of Mats), amplifying signaling through
strengthened MOB1A/B-LATS1/2 interactions (18). Ultimately,
the core effectors of the pathway, Yes-associated protein (YAP)/
transcriptional co-activator with PDZ-binding motif (TAZ, also
known as WWTRI1), are phosphorylated by activated LATS1/2 at
Ser127/Ser89 sites. This phosphorylation promotes YAP/TAZ
cytoplasmic retention through 14-3-3 protein binding or
facilitates their degradation via B-TrCP E3 ubiquitin ligase-
mediated ubiquitination, suppressing their transcriptional activity
(19). Conversely, Hippo pathway inactivation allows
dephosphorylated YAP/TAZ to translocate into the nucleus,
where they compete with VGLL4 (a Drosophila Tgi ortholog and
transcriptional cofactor) to bind TEAD transcription factors (DNA-
binding partners), regulating target genes governing cell
proliferation, apoptosis and migration (10, 20) (Figure 1).

Recent studies have revealed the existence of more sophisticated
regulatory mechanisms based on the classical Hippo signaling
pathway. Qi et al. systematically analyzed the intermediate
regulatory mechanism of the MST1/2-LATS1/2 kinase cascade,
proposing two novel regulatory modules: HPO1 and HPO2. The
HPOI1 module involves WW and C2 domain-containing proteins
(WWC1-3), which mediate LATS1/2-SAV1 interactions and
localize the MST1/2-SAV1 complex to LATS1/2. The HOP2
module consists of neurofibromin 2 (NF2/Merlin) collaborating
with mitogen-activated protein kinase 1-7 (MAP4K1-7, Hippo-like
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FIGURE 1
The Hippo signaling pathway transduction process.

kinases), forming a redundant network with MST1/2 to regulate
LATS1/2 activity (21-24). Furthermore, the transmembrane
protein KIRREL1, a YAP/TAZ target protein, also enhances
MST1/2-mediated LATS1/2 activation in a SAVI1-dependent
manner (25). Citron kinase (CIT), an AGC family kinase involved
in mitotic regulation, exhibits dual regulatory roles in the pathway.
On the one hand, it serves as an essential scaffolding protein
bridging LATS2 and YAP during phosphorylation. On the other
hand, it inhibits MST1-dependent LATS2 HM phosphorylation
(26). This duality suggests that the effect of CIT on LATS2 may be
dynamically modulated by the cellular microenvironment.

In conclusion, the Hippo signaling pathway governs the cellular
localization and activity of the transcriptional coactivators YAP/
TAZ via a highly conserved MST-LATS kinase cascade, which
integrates diverse upstream signals to modulate the life activities
of cells. Mounting evidence has further elucidated a sophisticated
multi-tiered regulatory network, encompassing components such as
the Hpol and Hpo2 modules, alongside factors including KIRREL1
and CIT. These discoveries substantially advance our
comprehension of the pathway’s intricate complexity and
context-dependent nature, while also offering novel insights into
its molecular mechanisms in disease.
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3.2 Hippo signaling pathway and ovarian
dysfunction in PCOS

The pathogenesis of PCOS is rooted in its hallmark ovarian
abnormalities, which provide a critical framework for investigating
Hippo signaling dysregulation in this disorder.

3.2.1 Hippo signaling in normal follicular
development

During the reproductive cycle, key components of the Hippo
signaling pathway are widely localized in ovarian cells, including
oocytes, granulosa cells (GCs), theca cells and luteal cells, with
dynamic expression patterns (27). For example, MST1 translocates
to the nucleus from the cytoplasm gradually during oocyte
development and achieves nuclear localization in the antral-stage
oocytes (28). Similarly, YAP demonstrates stage-specific
localization patterns in both oocytes and granulosa cells From
primordial to preovulatory follicles, YAP progressively
accumulates in the nucleus but relocates to the cytoplasm with
markedly reduced expression in postovulatory luteal cells (28, 29).
This observation is corroborated in a bovine ovary study, where
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microarray analysis revealed a significantly elevated YAPI
activation in larger developing follicles (5-10 mm) (30).

The Hippo signaling pathway governs the balance between
primordial follicle dormancy and activation via mechanosensitive
regulation. In mature ovaries, oocytes predominantly exist in a
mechanically stressed state imposed by GCs and extracellular
matrix (ECM), a condition critical for sustaining follicular
dormancy and preserving female reproductive longevity (31).
Subsequently, a series of studies confirms that mechanical signal
during primordial follicle activation is involved in maintaining
primordial follicle quiescence through activation of the Hippo
signaling pathway (28, 32, 33). Furthermore, Liu et al. revealed
that high cellular density promotes LATS1 SUMOylation at K830
residue (K829 in mice), enhancing kinase activity and amplifying
Hippo signaling-mediated suppression of premature follicle
activation (34-36).

Proliferation of GCs is also essential for primordial-to-primary
follicle transition. Murine ovarian models demonstrate that
activation of the Hippo signaling pathway downregulates pro-
proliferative target genes CCN2 and CMYC, thereby inhibiting
GCs proliferation while promoting apoptosis (27, 37-39). Recent
work by Chen et al. further demonstrates that YAP transcriptional
activity prevents GCs apoptosis through NEDD8-mediated K159
neddylation (40). Thus, the Hippo signaling pathway participates in
folliculogenesis by regulating GCs proliferation/apoptosis. Notably,
YAP also serves as a crucial hub for follicle-stimulating hormone
(FSH)- and luteinizing hormone (LH)-mediated follicular
development. Physiologically, FSH suppresses YAP-TEAD
transcriptional activity in GCs, upregulating steroidogenic
enzymes (CYP11Al, HSD3B2 and CYP19A1) to enhance
estradiol synthesis and dominant follicle selection (41, 42).
Conversely, in cumulus cells FSH induces YAP-TEAD
interactions, upregulating cumulus expansion genes (EGFR,
ADAM17, EREG, and PTGS2) to promote oocyte maturation
(43). Additionally, Hippo-YAP signaling also modulates LH
secretion and function. In adenohypophysis, YAP/TAZ is a
negative regulatory factor for LH secretion (44). During LH-
induced ovulation, transient inactivation of the Hippo signaling
pathway promotes nuclear YAP1 binding to the amphiregulin
(Areg) promoter, thereby activating ERK1/2 signaling to induce
LH target gene expression. Subsequent LH-induced cAMP/PKA
signaling sequesters YAP in the cytoplasm, driving GC luteinization
(45-47). Collectively, mature follicle formation and ovulation
depend on precisely coordinating the activity of the Hippo
signaling pathway (Supplementary Table 1).

3.2.2 Ovulation dysfunction in PCOS

Ovulatory dysfunction is a core diagnostic phenotype of PCOS,
characterized by oligo-ovulation or anovulation, and its
pathological mechanisms are closely associated with follicular
developmental arrest and maturation impairment. Huang et al.
observed that ovarian tissues of DHEA-induced PCOS murine
models display an elevated YAP and phosphorylated YAP (p-
YAP) expression but a significant reduction in p-YAP/YAP ratio
(48). Mechanistically, this aberrant YAPI activation in PCOS
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stimulates GCs hyperproliferation and downregulates
luteinization-associated LH target genes (CYPI11AI, STAR,
LHCGR, PGR), which induces GC differentiation arrest,
maintaining it in a non-luteinized state and triggering the
pathological accumulation of immature ovarian follicles (49).
Notably, impaired FSH signaling in PCOS synergistically
contributes to dominant follicle selection failure (50). Recent
studies reveal that YAP overexpression can impede follicular
maturation by suppressing FSH responsiveness in GCs (42). In
addition, a pathogenic androgen-YAP positive feedback loop may
exist in PCOS. Jiang et al. found that androgens can attenuate YAP1
promoter methylation in a dose-dependent manner to increase
YAPI transcriptional activation in GCs (51). Concurrently, YAP-
TEAD complex upregulation inhibits aromatase activity through
suppressing CYP19A1 expression to affect the biotransformation of
androgens to estrogens. This dual mechanism culminates in
localized ovarian estrogen deficiency and androgen excess that
obstruct follicle maturation and ovulation (42). Collectively, these
findings suggest that abnormal YAP activation is intimately linked
to ovulation dysfunction in PCOS (Figure 2B).

3.2.3 Decreased ovarian reserve (DOR) in PCOS

Observational clinical cohort studies have revealed that some
PCOS patients exhibit DOR, but the exact mechanism is unclear
(52). Dysregulation of ECM homeostasis in GCs may contribute to
this pathology. For PCOS, ECM-related genes are down-regulated
in the GCs, including ECM1, laminin o3/B1 (LAMA3/LAMBI) and
fibronectin 1 (FNI), while matrix metalloproteinases (MMP-2,
MMP-9) are upregulated, indicating a reduction in ECM stiffness
(53-55). Furthermore, genomic analysis identified that the Ras
homology growth-related (RHOG) gene, which regulates actin
cytoskeleton polymerization, is abnormally elevated in PCOS
patients” GCs (56). When GCs perceive a decreased mechanical
stress, F-actin is induced to form and hinders the Hippo signaling
pathway, thereby triggering premature activation of dormant
follicles (7, 27, 57). Pharmacological induction of actin
polymerization corroborates this mechanism, as enhanced YAP
nuclear translocation drives follicular recruitment (58). Thus,
Hippo pathway dysregulation in GCs likely contributes to the
pathological early follicular recruitment observed in PCOS-
associated DOR (Figure 2A).

3.2.4 Ovarian microenvironmental perturbations
in PCOS

The ovarian microenvironment provides nutritional support and
signaling transduction essential for normal follicular development
(59). Patil et al. found that follicular growth arrest, luteal insufficiency
and recurrent miscarriage in PCOS are associated with impairment of
the vascular system (60). Moreover, follicular fluid in PCOS displays a
down-regulation of pro-angiogenic genes (FGFRI, VEGFA, FNI),
reflecting compromised vascular development (60). Genome-wide
association analysis further identified a significant association
between vascular endothelial growth factor (VEGF) gene
polymorphisms and PCOS susceptibility (61). Mechanistic
investigations demonstrate that neovascularization is dependent on
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Potential molecular mechanisms of the Hippo signaling pathway in PCOS follicular development. (A) Primordial folliclar stage: Reduced extracellular
matrix (ECM) stiffness maintains Hippo signaling activity and promotes follicular activation. (B) Preovulatory folliclar stage: Androgen-induced YAP
upregulation inhibits FSH and LH effects on follicular development, impairing dominant follicle formation and ovulation.

a feed-forward loop between YAP/TAZ and VEGF-VEGFR2
signaling in endothelial cells mediated by cytoskeletal dynamics,
while YAP suppression disrupts angiogenesis (62, 63).
Consequently, diminished pro-angiogenic factors in PCOS
microenvironments may impede vascular sprouting by inhibiting
YAP signaling in endothelial cells.

Emerging evidence implicates there are relationships between the
ovarian microenvironment exposure to environmental contaminants,
such as perfluoroalkyl and poly-fluoroalkyl substances (PFAS),
zearalenone (ZEN), microplastics and phthalates, and the risk of
PCOS, which involve the Hippo signaling pathway dysregulation
(64-68). Firstly, Perfluorooctanoic acid (PFOA) exposure can result
in ovarian fibrosis and DOR, which are associated with abnormally
high expression of YAP (69, 70). Secondly, co-exposure of
polystyrene nanoparticles (PS-NPs) and phthalates induced PCOS-
like phenotypes in mice via ROS-Hippo signaling activation (66, 71).
Finally, single-cell RNA sequencing identifies the Hippo signaling
pathway disruption as the molecular basis for ZEN-induced
primordial follicle assembly defects (72). These findings establish a
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theoretical framework linking environmental toxicants to PCOS
through the modulation of the Hippo signaling pathway, advancing
etiological and therapeutic insights.

Overall, the Hippo signaling pathway plays a central role in
ovarian dysfunction associated with PCOS. Under physiological
conditions, this pathway is instrumental in the precise regulation of
follicular development, granulosa cell proliferation and
differentiation, hormonal response, and the ovulation process. In
PCOS, however, significant dysregulation of this pathway (e.g.,
abnormal nuclear localization and sustained activation of YAP)
triggers a cascade of pathological alterations, including imbalances
in granulosa cell proliferation and differentiation, premature follicular
activation and impaired angiogenesis, etc. Collectively, these
disruptions contribute to ovulatory dysfunction, DOR and an
aberrant ovarian microenvironment. The above findings not only
provide deeper insights into the pathogenesis of PCOS-related
ovarian dysfunction but also establish a rational basis for
developing novel therapeutic strategies aimed at the Hippo
signaling pathway.
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3.3 Hippo signaling pathway and metabolic
dysregulation in PCOS

PCOS is not only a reproductive disorder, but also a systemic
metabolic syndrome characterized by IR, hyperinsulinemia,
dyslipidemia and obesity. Emerging evidence implicates the
Hippo signaling pathway as a critical regulator of these metabolic
perturbations (Supplementary Table 2).

3.3.1 Lipid metabolism dysregulation in PCOS

The liver, a central organ in lipid homeostasis, exhibits Hippo-
mediated dysregulation in PCOS (73). Clinical studies reveal a
bidirectional association between PCOS and MASLD, though the
underlying molecular mechanisms remain unclear (74, 75). Further
exploration finds that hyperandrogenemia induces metabolic
disruption in the liver of PCOS via increasing YAP expression
and activity (73). Mechanistically, YAP is a co-activator of sterol
regulatory element binding proteins (SREBP-1c and SREBP-2) and a
nuclear cofactor for carbohydrate response element binding protein
(ChREBP) that amplifies the expression of their target genes,
thereby accelerating fatty acid and cholesterol production in
hepatocytes (76, 77). In addition, inhibition of fatty acid oxidation

10.3389/fendo.2025.1623143

mediated by the YAP-FXR axis can further exacerbate lipid
deposition (78). In conclusion, the increased activity and
expression levels of YAP in patients with PCOS are one of the
major causes of their hepatic lipid metabolism disorders (Figure 3).

Obesity is another important phenotype of lipid disorders in
PCOS, affecting approximately 50% of these patients (79). Its
pathological changes are characterized by adipose tissue excessive
expansion (hypertrophy and/or hyperplasia) (80). Despite the lack
of studies on the Hippo signaling pathway in adipose tissue of obese
PCOS patients, researchers have observed significantly elevated
YAP activity in white adipose tissue of humans and mice with
obesity (81). Mechanistically, high YAP activity can exacerbate
adipocyte hypertrophy by inducing Wnt5a-1 expression (82, 83).
Therefore, high YAP activity in adipocytes of obese PCOS patients
may contribute to their fat accumulation.

However, in normal-weight women with PCOS, adipogenic
gene expression (PPARY, CEBPo, AGPAT2) is abnormally
elevated in their abdominal adipose-derived stem cells compared
to healthy controls (84). Furthermore, a meta-analysis confirmed a
significant association between PPARG gene polymorphisms and
PCOS susceptibility (85). These imply that enhanced adipogenic
tendency is a risk for non-obese patients. In recent years, a series of
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FIGURE 3

Potential molecular mechanisms of the Hippo signaling pathway in hepatic lipid metabolism. Hyperlipidemia inhibits Hippo signaling, activating YAP/
TAZ and enhancing the transcriptional activity of SREBP-2, SREBP-1c and ChREBP, thereby driving hepatic lipid metabolism. Additionally, the Hippo
signaling pathway inactivation suppresses insulin signaling, exacerbating insulin resistance (IR) (blue arrow).
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laboratory studies have demonstrated that the YAP-PPARy
regulatory axis is a key molecular mechanism for the
differentiation of endocrine stem cells/pre-adipocytes to mature
adipocytes (86-88). Therefore, there may be a lipogenic tendency
mediated by the Hippo-YAP signaling pathway in preadipocytes of
non-obese women with PCOS (Figure 4).

3.3.2 Insulin resistance and hyperinsulinemia in
PCOS

IR as a core phenotype of metabolic disorders in PCOS, involves
functional dysregulation across multiple organs (89). Hepatic lipid
accumulation promotes IR by inducing the Hippo signaling
pathway inactivation to amplify miR-27-mediated suppression of
Akt signaling (73). Moreover, insulin sensitivity and glucose
homeostasis in adipose tissue are negatively correlated with YAP
activity (90, 91). Skeletal muscle, as another major target organ for
insulin, occurs IR is closely related to reduced YAP levels (92, 93).
Mechanistically, inhibited YAP can lead to IR by inducing
mitochondrial fatty acid oxidizing capacity dysfunction in skeletal
muscle (93). Furthermore, although not clear in skeletal muscle,
reduced YAP/TAZ activity has been shown to cause
downregulation of IRS1 phosphorylation levels in endometrial
cancer cells, which in turn affects insulin sensitivity (94). Notably,
hepatic lipid accumulation, adipose tissue dysfunction,
mitochondrial dysfunction and IRS1/PI3K/Akt signaling

10.3389/fendo.2025.1623143

inhibition in skeletal muscle underlies IR pathogenesis in PCOS
(91, 95, 96). Collectively, Hippo-YAP dysregulation underpins IR
pathogenesis through hepatic steatosis, adipocyte dysfunction, and
skeletal muscle metabolic inflexibility.

Hyperinsulinemia (HI), caused by pancreatic B-cell
hypersecretion, exhibits a bidirectional pathological association
with IR (89). Emerging clinical evidence suggests HI may precede
IR onset in PCOS, correlating with hyperandrogenemia (97, 98).
Prenatal androgen exposure induces [-cell apoptosis, whereas
postnatal exposure triggers compensatory f-cell hyperplasia and
HI (99-101). Mechanistic studies demonstrate that the Hippo
pathway collaborates with neurogenin 3 (NGN3) to silence YAP
during endocrine lineage specification, which is a prerequisite for
functional B-cell differentiation (102-104). Conversely, aberrant
YAP activation disrupts its functional maturation (105).
Intriguingly, the upregulation of YAP expression in mature [3-
cells stimulates proliferation without affecting function (106-108).
Given androgen-induced YAP activation in hepatic and ovarian
tissues, we propose that hyperandrogenemia drives HI via ectopic
YAP activation in pancreatic -cells, establishing a self-reinforcing
endocrine-metabolic loop.

In summary, dysregulation of the Hippo signaling pathway
appears to be a critical node in the molecular mechanisms
underlying metabolic disturbances in PCOS. This pathway not only
contributes to hepatic lipid accumulation by regulating lipid synthesis
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FIGURE 4

Genetic model

Potential molecular mechanisms of the Hippo signaling pathway in adipose tissue. (A) In the context of obesity, heightened YAP activity within
mature adipocytes drives adipocyte hypertrophy and proliferation. (B) In a potential genetic model, elevated PPARy expression in stem cells/pre-
adipocytes of lean individuals enhances their differentiation into mature adipocytes. The downregulation of YAP and TEAD4 expression may
potentiate this pro-differentiation effect. Figure was created by Figdraw (www.figdraw.com)
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and lipolysis, but also mediates adipose tissue dysfunction.
Furthermore, it extensively influences insulin signaling transduction
in peripheral tissues, promoting the development of systemic insulin
resistance and hyperinsulinemia. These mechanisms highlight the
significant role of the Hippo signaling pathway in the systemic
metabolic dysregulation of PCOS, providing new perspectives on
the disorder’s molecular underpinnings.

3.4 Hippo signaling pathway and chronic
low-grade inflammation in PCOS

In recent years, researchers have identified chronic low-grade
inflammation as one of the central aspects of PCOS
pathophysiology, forming a complex network with IR,
hyperandrogenemia and metabolic abnormalities (109). Chronic
low-grade inflammation in PCOS is mainly manifested in the form
of increased levels of various inflammatory factors (eg: IL-6, IL-1f,
IL-18) and dysregulated M1/M2 macrophage polarization in
ovarian microenvironments (110, 111). Mechanistic studies reveal
YAP drives inflammation through dual mechanisms. During LPS/
TFN-y-induced pro-inflammatory M1 polarization, YAP/TAZ
overexpression stabilizes cytosolic NLRP3 inflammasomes by
inhibiting B-TrCP1-mediated ubiquitination in the cytoplasm; as
well as combining with TEAD to directly activate IL-6 transcription
via promoter binding in the nuclear (112, 113). Furthermore, YAP
amplifies inflammation through NF-xB and Notchl pathway
activation (114-116). Notably, the inflammatory factor IL-1B can
in turn promote macrophage M1 polarization by inducing
ubiquitination of YAP at the K252 site to increase activity (117).
Conversely, IL-4/IL-13-induced anti-inflammatory M2 polarization
requires deregulating YAP inhibition of the MEK/ERK pathways,
thereby restoring anti-inflammatory gene expression (Arg, Egr2,
Cd206, Ym1, FizzI) (118, 119). These findings implicate that YAP-
mediated macrophage polarization imbalance may be a pivotal
mechanism sustaining chronic inflammation in PCOS (Figure 5)
(Supplementary Table 3).

3.5 Therapeutic prospects in PCOS:
targeting the Hippo-YAP signaling pathway

3.5.1 Modulating follicular development to
restore fertility

Follicular development modulation represents a cornerstone for
addressing PCOS-related infertility. Laparoscopic ovarian drilling
(LOD), as a surgical intervention for clomiphene citrate (CC)-
resistant patients, inhibits Hippo signaling to promote primordial
follicle activation, though its efficacy remains debated (7, 120-123).
Emerging evidence suggests that the Hippo signaling pathway
activation represents an effective therapeutic mechanism in PCOS
patients with impaired follicular development. Huang et al. observe
that verteporfin (a YAP-TEAD interaction inhibitor) treatment in
PCOS mice can reduce serum anti-Miillerian hormone (AMH)
levels and restore follicular growth (48). Furthermore, YAP also
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serves as a molecular hub of biopharmaceutical and nutraceutical
interventions for PCOS. Firstly, anti-growth factor-releasing
peptide antibodies alleviate PCOS phenotypes in murine models,
such as weight gain, estrous cycle disruption, ovarian morphologic
aberrations and hormonal imbalances, via silencing Goiq/11 or YAP
in GCs (124). Secondly, adding n-3 polyunsaturated fatty acids
(PUFAs) to the diet significantly alleviated hormonal and estrous
cycle disturbances in PCOS mice by reducing YAP1/Nrf2 signaling
in GCs (125). Therefore, targeting the Hippo-YAP signaling
pathway is a promising therapeutic strategy for restoring fertility
in PCOS patients.

3.5.2 Metabolic correction: adipose and insulin
signaling

Weight management constitutes the cornerstone of metabolic
intervention in PCOS, particularly in patients with comorbid
overweight/obesity (79). Current therapies reduce adipocyte
hypertrophy but fail to modulate hyperplasia (80, 126). A
mechanistic study by Wang et al. has revealed that YAP
inhibition selectively induces apoptosis in mature adipocytes (81).
Notably, the adipogenic marker PPARY in preadipocytes exhibits a
significant correlation with PCOS metabolic parameters, which is
negatively regulated by YAP and TEAD4 (127-129). In addition,
MST1/2 gene deletion enhances adipocyte mitochondrial
autophagy activity through a non-YAP-dependent pathway,
thereby elevating the efficiency of energy metabolism and
inhibiting dietary obesity (130). Liraglutide as a common insulin
sensitizer in PCOS patients, despite its known glucose-lowering
effect, also inhibits the proliferation of preadipocytes through
activation of the Hippo signaling pathway but also accelerates
adipogenic differentiation (131).

IR management is the center of PCOS metabolic intervention.
Experimental evidence indicates that adipocyte-specific YAP/TAZ
knockout significantly enhances insulin sensitivity in obese
murine models (90, 132). In addition, both clinical observations
and animal studies demonstrate reduced proportions of insulin-
sensitive type I muscle fibers in PCOS, which may be an important
pathological basis for skeletal muscle IR (96, 133). Remarkably,
LATS1/2 knockout in mice can significantly increase the
percentage of type I muscle fibers in skeletal muscle (134). Thus,
precise modulation targeting the Hippo signaling pathway may
provide an innovative therapeutic strategy to ameliorate PCOS
metabolic disorders.

3.5.3 Anti-inflammatory interventions

Although current clinical guidelines for PCOS have not yet
incorporated systemic anti-inflammatory treatment regimens,
accumulating experimental evidence underscores the pivotal role
of inflammatory modulation in improving reproductive and
metabolic outcomes in PCOS (109, 126). Recently, Wang et al.
proposed a potential molecular pathway of PUFAs in PCOS
treatment. Their findings demonstrate that PUFAs significantly
upregulate anti-inflammatory gene expression and induce
macrophage M2-like polarization by inhibiting RhoA-YAPI
signaling (135, 136). This implies a potential therapeutic value of
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Molecular mechanisms of the Hippo signaling pathway in macrophages. The Hippo signaling pathway inactivation induces macrophage M1
polarization as well as increased levels of inflammatory vesicle NLRP3. Conversely, the pathway activation promotes macrophage M2 polarization.

the Hippo-YAP signaling pathway remodeling immunocyte
phenotype for anti-inflammatory interventions in PCOS.

3.5.4 Comorbidity management

PCOS combined with MASLD significantly constrains therapeutic
options, exacerbates disease management complexity and amplifies
long-term adverse outcomes (137). Researchers have found that
hyperlipidemia and IR are shared pathological foundations between
PCOS and MASLD, suggesting potential synergistic therapeutic targets
(138). In clinical practice, glucagon-like peptide-1 (GLP-1) receptor
agonists, thiazolidinediones, and statins have demonstrated dual
therapeutic effects, their side-effect profiles necessitate novel
approaches (139). Animal experiments have confirmed that YAP
knockout in MASLD model mice can effectively reduce hepatic
triglyceride (TG) and Perilipin 2 (PLIN2) levels and ameliorate lipid
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metabolism disorders (140). Moreover, emerging therapeutic
approaches utilizing chrysanthemum lactone (PAR), anti-miR-199a-
5p exosome and Hep@PGEA/MST1 nanocarrier demonstrate
reducing hepatic lipid burden effects by disrupting the Hippo
signaling pathway (141-143). These findings collectively propose that
targeting the expression of Hippo signaling components to regulate
metabolic disorders in the liver may be a novel way to treat PCOS-
MASLD comorbidities.

Notably, LATSI1 activity in GCs is negatively correlated with
steroidogenic acute regulatory protein (StAR)-mediated estrogen
synthesis (144). However, pathological estrogen elevation
significantly increases the risk of ovarian hyperstimulation syndrome
(OHSS), a serious complication frequently observed in PCOS patients
undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection
(ICSI) treatments (145). Consequently, activation of LATSI in GCs
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TABLE 1 Effects of core components of the Hippo signaling pathway on follicular development.

Study (first author, year) Model system

Cai, Jun-Hong et al. (2022) (144) KGN and SVOG cell line

Gene expression Findings

Ai A,2018 (37)

Ren P,2024

Bao D,2023 (38)

Hu LL (2019) (27)

Devos M (2023) (39)

Sun T (2019) (45)

Lv X (2019) (29)

Primary mouse ovarian granulosa cells
Primary hen ovarian granulosa cells

Primary human ovarian granulosa cells
and KGN cell line

Mouse model—in vitro ovary culture

Mouse model—in vitro ovary culture

Mouse model—in vitro camulus-oocyte
complexes and mural cell culture

Mouse model—in vitro ovary culture

KGN cell line and Primary mouse

ovarian granulosa cells

de Andrade LG (2022) (41) Primary bovine ovarian granulosa cells

LATSI 1t Suppressed the secretion of estrogen in GCs

LATS1] Promoted GCs proliferation

LATS2) Promoted GCs autophagy and apoptosis

SAV| Promoted GCs proliferation; inhibited GCs apoptosis

YAPI1 Increased primary follicles; decreased primordial
follicles

YAP1] Inc.reased primordial follicles; decreased primary
follicles

YAP1-TEAD] Decreased expression Ccn2, Cmyc

YAPI-TEAD] Inhibited G(?s prollifer-atlon; triggered cumulus cells
premature differentiation

YAP1] Disrupted ovarian follicle development

YAPI} Promotes proliferation but suppresses differentiation
of granulosa cells
D NA i TGF, CYR61

YAP1.TEAD/| ecreased mRNA expression CTGF, CYR61and

ANKRDI, but increased CYP19A1

Mizutani T (2023) (42) KGN cell line

Primary bovine cumulus-oocyte

Increased mRNA expression CYP19A1, CYP11Al and
YAP/TAZ| or TEAD] HSD3B2 (steroidogenic enzyme-encoding genes);

increased 17B-estradiol production

Decreased the expression of critical FSH-induced

Koch J (2022) (43) complexes (COCs) YAP1-TEAD| cumulus expansion-related genes (EGFR, ADAM17,
plex EREG, PTGS2, HAS2, PTX3 and PLAT)
Bovine model Decreased ovulation in cattle
Dos Santos EC (2022) (46) Primary bovine ovarian aranulosa cells YAPL-TEAD| Inhibited the expression of classic LH-induced
vine ov.
vy g preovulatory genes (EREG and PTGS2)
Godin P (2022) (47) Yap175Taz"" mouse modal isolate YAP] Decreased protein expreésion Areg, Pgr, Ptgs2 and
granulosa cells Lhcgr; blunt LH responsiveness
Inhibited TGFo-induced GC liferati d FSH-
Plewes MR (2019) (30) Primary bovine ovarian granulosa cells YAP1/TAZ] ‘n 1oite (.x induce . $ proliteration an
induced estradiol production
Chen, Mengjuan et al. (2024) (40) KGN cell line YAP| Promoted GCs apoptosis
Constituti tive (CA)-YAP
Cheng, Yuan et al. (2015) (58) Or:isall utive active (CA) mouse YAP11 Enhanced follicle development
mo:
Hu, Liao-Liao et al. (2019) (27) Mouse model—in vitro ovary YAP| Suppressed primordial follicle activation

The symbols provided in the table “1” are overexpression and “|” are suppression of expression.

may be a preventive strategy against OHSS during PCOS patients’
assisted reproductive therapy.

In conclusion, targeting the Hippo-YAP signaling pathway
represents a promising multifaceted therapeutic strategy for
PCOS, encompassing key areas such as reproductive function,
metabolic regulation, inflammatory response and comorbidity
management. Specifically, modulation of this pathway could
potentially promote follicular development, improve metabolic
disorders, regulate immune responses and prevent complications
such as OHSS and MASLD.

The current clinical management of PCOS is still based on
symptomatic relief as the main goal with limited therapeutic
options (146). To address this current situation, developing
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stage-specific and tissue-targeted Hippo pathway modulation
strategies holds significant clinical promise. However, the
clinical translation of such strategies faces several challenges,
including limitations in targeting precision, delivery efficiency,
biocompatibility, safety, stability, and scalable production.
Therefore, future research should emphasize multidisciplinary
collaboration to optimize delivery systems, thereby providing
more robust and precise tools for disease treatment.
Furthermore, significantly upregulated YAP expression has been
observed in ovarian granulosa cells of PCOS patients, suggesting
that quantitative assessment of Hippo signaling biomarkers (e.g.,
p-YAP and YAP levels) may facilitate early diagnosis and real-
time therapeutic monitoring (51).
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4 Conclusions

This review systematically delineates the multidimensional
regulatory mechanisms of the Hippo signaling pathway and its core
components (MST1/2, LATS1/2, YAP/TAZ) in the pathogenesis of
PCOS. In reproductive dysfunction, Hippo dysregulation drives
primordial follicle depletion, granulosa cell apoptosis-proliferation
imbalance, and anovulation, while also mediating environmental
toxicant-induced ovarian injury. Metabolically, this pathway is
involved in systemic metabolic disturbances in PCOS by regulating
pancreatic B-cell function, adipose tissue differentiation/function,
skeletal muscle insulin sensitivity, and hepatic lipid metabolism.
Immunologically, YAP-driven M1 macrophage polarization might
emerge as a pivotal mechanism underlying chronic low-grade
inflammation in PCOS. Collectively, Hippo signaling emerges as a
molecular linchpin integrating the reproductive-metabolic-immune
axis in PCOS, establishing a novel therapeutic paradigm for targeted
interventions (Table 1).
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Glossary
PCOS

IR

GWAS
SAV1
MST1/2
LATS1/2
HM

T-loop
MOB 1A/B
YAP

TAZ
WWC1-3
NF2/Merlin
MAP4K1-7
CIT

GCs

ECM

FSH

LH

Areg
p-YAP
LAMA3/LAMB1
FN1

MMP

Polycystic ovary syndrome

Insulin Resistance

Genome-wide association study

Salvador homolog-1

Mammalian Ste20-like kinasel/2

Large tumor suppressor kinase 1/2
Hydrophobic motif

The activation loop

Mps One Binder kinase activator-like 1A/1B
Yes-associated protein

Transcriptional co-activator with PDZ-binding motif
WW and C2 domain-containing proteins
Neurofibromin 2

Mitogen-activated protein kinase 1-7
Citron kinase

Granulosa cells

Extracellular matrix

Follicle-stimulating hormone

Luteinizing hormone

Amphiregulin

Phosphorylated YAP

Laminin o:3/B1

Fibronectin 1

Matrix metalloproteinases
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RHOG
VEGF
PFAS
ZEN
PFOA
PS-NPs
MASLD
SREBP-1C/2
ChREBP
HI
NGN3
LOD
CcC
AMH
PUFAs
GLP-1
TG
PLIN2
PAR
StAR
OHSS
IVE

ICSI

10.3389/fendo.2025.1623143

Ras homology growth-related

Vascular endothelial growth factor
Perfluoroalkyl and poly-fluoroalkyl substances
Zearalenone

Perfluorooctanoic acid

Polystyrene nanoparticles

Metabolic dysfunction-associated steatotic liver disease
Sterol regulatory element binding protein 1C/2
Carbohydrate response element binding protein
Hyperinsulinemia

Neurogenin 3

Laparoscopic ovarian drilling

Clomiphene citrate

Anti-Miillerian hormone

Polyunsaturated fatty acids

Glucagon-like peptide-1

Triglyceride

Perilipin 2

Chrysanthemum lactone

Steroidogenic acute regulatory protein
Ovarian hyperstimulation syndrome

In vitro fertilization

Intracytoplasmic sperm injection
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